Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (6): 700-711.DOI: 10.17521/cjpe.2022.0110
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
ZHAI Jiang-Wei1, LIN Xin-Hui1, WU Rui-Zhe1, XU Yi-Xin1, JIN Hao-Hao1, JIN Guang-Ze2, LIU Zhi-Li2,*()
Received:
2022-04-01
Accepted:
2022-05-19
Online:
2022-06-20
Published:
2022-06-09
Contact:
LIU Zhi-Li
Supported by:
ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China[J]. Chin J Plant Ecol, 2022, 46(6): 700-711.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0110
种 Species | 科 Family | 属 Genus | 生活型 Life form | 叶型 Leaf type | 耐阴性 Shade tolerance |
---|---|---|---|---|---|
白桦 Betula platyphylla | 桦木科 Betulaceae | 桦木属 Betula | >乔木 Tree | 单叶 Simple leaf | 喜光 Shade intolerant |
硕桦 Betula costata | 桦木科 Betulaceae | 桦木属 Betula | >乔木 Tree | 单叶 Simple leaf | 喜光 Shade intolerant |
裂叶榆 Ulmus laciniata | 榆科 Ulmaceae | 榆属 Ulmus | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
五角枫 Acer pictum subsp. mono | 槭树科 Aceraceae | 槭属 Acer | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
紫椴 Tilia amurensis | 椴树科 Tiliaceae | 椴属 Tilia | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
水曲柳 Fraxinus mandshurica | 木樨科 Oleaceae | 梣属 Fraxinus | >乔木 Tree | 复叶 Compound leaf | 喜光 Shade intolerant |
东北茶藨子 Ribes mandshuricum | 虎耳草科 Saxifragaceae | 茶藨子属 Ribes | >灌木 Shrub | 单叶 Simple leaf | |
毛榛 Corylus mandshurica | 桦木科 Betulaceae | 榛属 Corylus | >灌木 Shrub | 单叶 Simple leaf | |
忍冬 Lonicera japonica | 忍冬科 Caprifoliaceae | 忍冬属 Lonicera | >灌木 Shrub | 单叶 Simple leaf | |
山梅花 Philadelphus incanus | 虎耳草科 Saxifragaceae | 山梅花属Philadelphus | >灌木 Shrub | 单叶 Simple leaf | |
溲疏 Deutzia scabra | 虎耳草科 Saxifragaceae | 溲疏属 Deutzia | >灌木 Shrub | 单叶 Simple leaf | |
卫矛 Euonymus alatus | 卫矛科 Celastraceae | 卫矛属 Euonymus | >灌木 Shrub | 单叶 Simple leaf | |
刺五加 Eleutherococcus senticosus | 五加科 Araliaceae | 五加属Acanthopanax | >灌木 Shrub | 复叶 Compound leaf | |
露珠草 Circaea cordata | 柳叶菜科 Onagraceae | 露珠草属 Circaea | >草本 Herb | 单叶 Simple leaf | |
荨麻 Urtica fissa | 荨麻科 Urticaceae | 荨麻属 Urtica | >草本 Herb | 单叶 Simple leaf | |
水金凤 Impatiens noli-tangere | 凤仙花科 Balsaminaceae | 凤仙花属 Impatiens | >草本 Herb | 单叶 Simple leaf | |
透茎冷水花 Pilea pumila | 荨麻科 Urticaceae | 冷水花属 Pilea | >草本 Herb | 单叶 Simple leaf | |
中国茜草 Rubia chinensis | 茜草科 Rubiaceae | 茜草属 Rubia | >草本 Herb | 单叶 Simple leaf | |
北野豌豆 Vicia ramuliflora | 豆科 Leguminosae | 野豌豆属 Vicia | >草本 Herb | 复叶 Compound leaf | |
升麻 Cimicifuga foetida | 毛茛科 Ranunculaceae | 升麻属 Cimicifuga | >草本 Herb | 复叶 Compound leaf |
Table 1 Species statistical information of different functional plants in Xiao Hinggan Mountains
种 Species | 科 Family | 属 Genus | 生活型 Life form | 叶型 Leaf type | 耐阴性 Shade tolerance |
---|---|---|---|---|---|
白桦 Betula platyphylla | 桦木科 Betulaceae | 桦木属 Betula | >乔木 Tree | 单叶 Simple leaf | 喜光 Shade intolerant |
硕桦 Betula costata | 桦木科 Betulaceae | 桦木属 Betula | >乔木 Tree | 单叶 Simple leaf | 喜光 Shade intolerant |
裂叶榆 Ulmus laciniata | 榆科 Ulmaceae | 榆属 Ulmus | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
五角枫 Acer pictum subsp. mono | 槭树科 Aceraceae | 槭属 Acer | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
紫椴 Tilia amurensis | 椴树科 Tiliaceae | 椴属 Tilia | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
水曲柳 Fraxinus mandshurica | 木樨科 Oleaceae | 梣属 Fraxinus | >乔木 Tree | 复叶 Compound leaf | 喜光 Shade intolerant |
东北茶藨子 Ribes mandshuricum | 虎耳草科 Saxifragaceae | 茶藨子属 Ribes | >灌木 Shrub | 单叶 Simple leaf | |
毛榛 Corylus mandshurica | 桦木科 Betulaceae | 榛属 Corylus | >灌木 Shrub | 单叶 Simple leaf | |
忍冬 Lonicera japonica | 忍冬科 Caprifoliaceae | 忍冬属 Lonicera | >灌木 Shrub | 单叶 Simple leaf | |
山梅花 Philadelphus incanus | 虎耳草科 Saxifragaceae | 山梅花属Philadelphus | >灌木 Shrub | 单叶 Simple leaf | |
溲疏 Deutzia scabra | 虎耳草科 Saxifragaceae | 溲疏属 Deutzia | >灌木 Shrub | 单叶 Simple leaf | |
卫矛 Euonymus alatus | 卫矛科 Celastraceae | 卫矛属 Euonymus | >灌木 Shrub | 单叶 Simple leaf | |
刺五加 Eleutherococcus senticosus | 五加科 Araliaceae | 五加属Acanthopanax | >灌木 Shrub | 复叶 Compound leaf | |
露珠草 Circaea cordata | 柳叶菜科 Onagraceae | 露珠草属 Circaea | >草本 Herb | 单叶 Simple leaf | |
荨麻 Urtica fissa | 荨麻科 Urticaceae | 荨麻属 Urtica | >草本 Herb | 单叶 Simple leaf | |
水金凤 Impatiens noli-tangere | 凤仙花科 Balsaminaceae | 凤仙花属 Impatiens | >草本 Herb | 单叶 Simple leaf | |
透茎冷水花 Pilea pumila | 荨麻科 Urticaceae | 冷水花属 Pilea | >草本 Herb | 单叶 Simple leaf | |
中国茜草 Rubia chinensis | 茜草科 Rubiaceae | 茜草属 Rubia | >草本 Herb | 单叶 Simple leaf | |
北野豌豆 Vicia ramuliflora | 豆科 Leguminosae | 野豌豆属 Vicia | >草本 Herb | 复叶 Compound leaf | |
升麻 Cimicifuga foetida | 毛茛科 Ranunculaceae | 升麻属 Cimicifuga | >草本 Herb | 复叶 Compound leaf |
性状 Trait | 参数 Parameter | 生活型 Life form | ||
---|---|---|---|---|
乔木 Tree | 灌木 Shrub | 草本 Herb | ||
叶片面积 Lamina area (cm2) | 样本量 No. of samples | 568 | 380 | 246 |
平均值 Mean | 75.353a | 42.500b | 26.668c | |
范围 Range | 3.960-512.455 | 2.600-262.338 | 1.912-240.509 | |
标准差 SD | 96.168 | 44.125 | 39.218 | |
标准误 SE | 4.035 | 2.264 | 2.500 | |
变异系数 CV (%) | 127.6 | 103.8 | 147.1 | |
叶片鲜质量 Lamina fresh mass (g) | 平均值 Mean | 1.288a | 0.501b | 0.230c |
范围 Range | 0.037-8.456 | 0.028-3.637 | 0.015-2.147 | |
标准差 SD | 1.918 | 0.600 | 0.321 | |
标准误 SE | 0.080 | 0.0308 | 0.020 | |
变异系数 CV (%) | 148.8 | 119.8 | 139.5 | |
叶片干质量 Lamina dry mass (g) | 平均值 Mean | 0.449a | 0.138b | 0.059c |
范围 Range | 0.014-3.035 | 0.006-0.864 | 0.005-0.484 | |
标准差 SD | 0.652 | 0.149 | 0.091 | |
标准误 SE | 0.027 | 0.008 | 0.006 | |
变异系数 CV (%) | 145.3 | 107.7 | 155.7 | |
叶柄干质量 Petiole dry mass (g) | 平均值 Mean | 0.061a | 0.012b | 0.007b |
范围 Range | 0.001-0.442 | 0.001-0.112 | 0.001-0.081 | |
标准差 SD | 0.109 | 0.020 | 0.013 | |
标准误 SE | 0.005 | 0.001 | 0.001 | |
变异系数 CV (%) | 178.4 | 167.4 | 193.7 | |
叶柄/叶干质量 Petiole/leaf dry mass ratio | 平均值 Mean | 0.085a | 0.060b | 0.086a |
范围 Range | 0.004-0.393 | 0.002-0.435 | 0.003-0.304 | |
标准差 SD | 0.049 | 0.052 | 0.051 | |
标准误 SE | 0.002 | 0.003 | 0.003 | |
变异系数 CV (%) | 58.0 | 86.4 | 59.5 |
Table 2 Variation in functional leaf traits among three life-form plants in Xiao Hinggan Mountains (mean ± SE)
性状 Trait | 参数 Parameter | 生活型 Life form | ||
---|---|---|---|---|
乔木 Tree | 灌木 Shrub | 草本 Herb | ||
叶片面积 Lamina area (cm2) | 样本量 No. of samples | 568 | 380 | 246 |
平均值 Mean | 75.353a | 42.500b | 26.668c | |
范围 Range | 3.960-512.455 | 2.600-262.338 | 1.912-240.509 | |
标准差 SD | 96.168 | 44.125 | 39.218 | |
标准误 SE | 4.035 | 2.264 | 2.500 | |
变异系数 CV (%) | 127.6 | 103.8 | 147.1 | |
叶片鲜质量 Lamina fresh mass (g) | 平均值 Mean | 1.288a | 0.501b | 0.230c |
范围 Range | 0.037-8.456 | 0.028-3.637 | 0.015-2.147 | |
标准差 SD | 1.918 | 0.600 | 0.321 | |
标准误 SE | 0.080 | 0.0308 | 0.020 | |
变异系数 CV (%) | 148.8 | 119.8 | 139.5 | |
叶片干质量 Lamina dry mass (g) | 平均值 Mean | 0.449a | 0.138b | 0.059c |
范围 Range | 0.014-3.035 | 0.006-0.864 | 0.005-0.484 | |
标准差 SD | 0.652 | 0.149 | 0.091 | |
标准误 SE | 0.027 | 0.008 | 0.006 | |
变异系数 CV (%) | 145.3 | 107.7 | 155.7 | |
叶柄干质量 Petiole dry mass (g) | 平均值 Mean | 0.061a | 0.012b | 0.007b |
范围 Range | 0.001-0.442 | 0.001-0.112 | 0.001-0.081 | |
标准差 SD | 0.109 | 0.020 | 0.013 | |
标准误 SE | 0.005 | 0.001 | 0.001 | |
变异系数 CV (%) | 178.4 | 167.4 | 193.7 | |
叶柄/叶干质量 Petiole/leaf dry mass ratio | 平均值 Mean | 0.085a | 0.060b | 0.086a |
范围 Range | 0.004-0.393 | 0.002-0.435 | 0.003-0.304 | |
标准差 SD | 0.049 | 0.052 | 0.051 | |
标准误 SE | 0.002 | 0.003 | 0.003 | |
变异系数 CV (%) | 58.0 | 86.4 | 59.5 |
Fig. 1 Differences in petiole-lamina trait correlations and lamina trait-petiole biomass allocation ratio correlations among three life-form plants in Xiao Hinggan Mountains. LA, lamina area; LDM, lamina dry mass; LFM, lamina fresh mass; PDM, petiole dry mass; Petiole/leaf dry mass ratio, petiole biomass allocation ratio in leaves. p value represents the significance of difference in slopes. ***, p < 0.001.
Fig. 2 Differences in petiole-lamina trait correlations and leaf trait-petiole biomass allocation ratio correlations between simple- and compound-leaved species in Xiao Hinggan Mountains. LA, lamina area; LDM, lamina dry mass; LFM, lamina fresh mass; PDM, petiole dry mass; Petiole/leaf dry mass ratio, petiole biomass allocation ratio in leaves. p value represents the significance of difference in slopes. *, p < 0.05; ***, p < 0.001.
Fig. 3 Differences in petiole-lamina trait correlations and lamina trait-petiole biomass allocation ratio relationships in different shade tolerant tree species in Xiao Hinggan Mountains. LA, lamina area; LDM, lamina dry mass; LFM, lamina fresh mass; PDM, petiole dry mass; Petiole/leaf dry mass ratio, petiole biomass allocation ratio in leaves. p value represents the significance of difference in slopes. ***, p < 0.001.
[1] |
Bazzaz FA, Carlson RW (1982). Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia, 54, 313-316.
DOI PMID |
[2] |
Carins Murphy MR, Jordan GJ, Brodribb TJ (2016). Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Annals of Botany, 118, 1127-1138.
DOI URL |
[3] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL |
[4] |
Enquist BJ (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22, 1045-1064.
PMID |
[5] | Feng QH, Shi ZM, Dong LL (2008). Response of plant functional traits to environment and its application. Scientia Silvae Sinicae, 44(4), 125-131. |
[冯秋红, 史作民, 董莉莉 (2008). 植物功能性状对环境的响应及其应用. 林业科学, 44(4), 125-131.] | |
[6] |
Galia Selaya N, Oomen RJ, Netten JJC, Werger MJA, Anten NPR (2008). Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession. Journal of Ecology, 96, 1211-1221.
DOI URL |
[7] |
Gebauer R, Vanbeveren SPP, Volařík D, Plichta R, Ceulemans R (2016). Petiole and leaf traits of poplar in relation to parentage and biomass yield. Forest Ecology and Management, 362, 1-9.
DOI URL |
[8] |
He PC, Wright IJ, Zhu SD, Onoda Y, Liu H, Li RH, Liu XR, Hua L, Oyanoghafo OO, Ye Q (2019). Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytologist, 223, 607-618.
DOI URL |
[9] |
Hess AS, Hess JR (2017). Understanding tests of the association of categorical variables: the Pearson Chi-square test and Fisher's exact test. Transfusion, 57, 877-879.
DOI URL |
[10] |
Huang WW, Reddy GVP, Li YY, Larsen JB, Shi PJ (2020). Increase in absolute leaf water content tends to keep pace with that of leaf dry mass-Evidence from bamboo plants. Symmetry, 12, 1345. DOI: 10.3390/sym12081345.
DOI URL |
[11] |
Jiang F, Cadotte MW, Jin GZ (2021). Individual-level leaf trait variation and correlation across biological and spatial scales. Ecology and Evolution, 11, 5344-5354.
DOI PMID |
[12] |
Kazda M, Miladera JC, Salzer J (2009). Optimisation of spatial allocation patterns in lianas compared to trees used for support. Trees, 23, 295-304.
DOI URL |
[13] |
Kikuzawa K, Koyama H, Umeki K, Lechowicz MJ (1996). Some evidence for an adaptive linkage between leaf phenology and shoot architecture in sapling trees. Functional Ecology, 10, 252-257.
DOI URL |
[14] |
Kleiman D, Aarssen LW (2007). The leaf size/number trade-off in trees. Journal of Ecology, 95, 376-382.
DOI URL |
[15] |
Lee KH, Ehsani R, Castle WS (2010). A laser scanning system for estimating wind velocity reduction through tree windbreaks. Computers and Electronics in Agriculture, 73, 1-6.
DOI URL |
[16] |
Li GY, Yang DM, Sun SC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Functional Ecology, 22, 557-564.
DOI URL |
[17] |
Li Y, He NP, Hou JH, Xu L, Liu CC, Zhang JH, Wang QF, Zhang XM, Wu XQ (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6, 64. DOI: 10.3389/fevo.2018.00064.
DOI URL |
[18] |
Li YN, Kang XM, Zhou JY, Zhao ZG, Zhang ST, Bu HY, Qi W (2021). Geographic variation in the petiole-lamina relationship of 325 eastern Qinghai-Tibetan woody species: analysis in three dimensions. Frontiers in Plant Science, 12, 748125. DOI: 10.3389/fpls.2021.748125.
DOI URL |
[19] |
Lintunen A, Kalliokoski T (2010). The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Tree Physiology, 30, 1433-1447.
DOI PMID |
[20] | Liu XJ, Ma KP (2015). Plant functional traits-Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[21] | Long JY, Zhao YM, Kong XQ, Chen ZY, Wang XS, Zhao K, Cao R, Huang LS, Lü J, Cui Y, Yu YL, Xu CY (2018). Trade-offs between twig and leaf traits of ornamental shrubs grown in shade. Acta Ecologica Sinica, 38, 8022- 8030. |
[龙嘉翼, 赵宇萌, 孔祥琦, 陈治羊, 王秀松, 赵凯, 曹然, 黄丽莎, 吕娇, 崔义, 余玉磊, 徐程扬 (2018). 观赏灌木小枝和叶性状在林下庇荫环境中的权衡关系. 生态学报, 38, 8022-8030.] | |
[22] |
Malhado ACM, Whittaker RJ, Malhi Y, Ladle RJ ter Steege H, Phillips O, Aragão LEOC, Baker TR, Arroyo L, Almeida S, Higuchi N, Killeen TJ, Monteagudo A, Pitman NCA, Prieto A, et al. (2010). Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 19, 852-862.
DOI URL |
[23] |
Meng FQ, Zhang GF, Li XC, Niklas KJ, Sun SC (2015). Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species. Tree Physiology, 35, 621-631.
DOI URL |
[24] |
Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos, 90, 517-524.
DOI URL |
[25] |
Niinemets Ü (1996). Plant growth-form alters the relationship between foliar morphology and species shade-tolerance ranking in temperate woody taxa. Vegetatio, 124, 145-153.
DOI URL |
[26] |
Niinemets Ü, Kull O (1999). Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees. Tree Physiology, 19, 349-358.
PMID |
[27] |
Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007a). Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany, 100, 283-303.
DOI URL |
[28] |
Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.
PMID |
[29] | Niinemets Ü, Portsmuth A, Tobias M (2007b). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology, 21, 28-40. |
[30] |
Niinemets Ü, Valladares F (2006). Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecological Monographs, 76, 521-547.
DOI URL |
[31] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
DOI URL |
[32] |
Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896.
PMID |
[33] |
Niklas KJ, Enquist BJ (2002). Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 89, 812-819.
DOI PMID |
[34] |
Oktavia D, Jin GZ (2020). Variations in leaf morphological and chemical traits in response to life stages, plant functional types, and habitat types in an old-growth temperate forest. Basic and Applied Ecology, 49, 22-33.
DOI URL |
[35] |
Pan SA, Peng GQ, Yang DM (2015). Biomass allocation strategies within a leaf: implication for leaf size optimization. Chinese Journal of Plant Ecology, 39, 971-979.
DOI URL |
[潘少安, 彭国全, 杨冬梅 (2015). 从叶内生物量分配策略的角度理解叶大小的优化. 植物生态学报, 39, 971-979.]
DOI |
|
[36] |
Poorter L (2009). Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist, 181, 890-900.
DOI URL |
[37] |
Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491.
DOI URL |
[38] |
Smith DD, Sperry JS, Adler FR (2016). Convergence in leaf size versus twig leaf area scaling: Do plants optimize leaf area partitioning? Annals of Botany, 119, 447-456.
DOI URL |
[39] |
Song J, Yang D, Niu CY, Zhang WW, Wang M, Hao GY (2018). Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China. Forest Ecology and Management, 418, 63-72.
DOI URL |
[40] |
Takenaka A (1994). Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research, 9, 109-114.
DOI URL |
[41] |
Valladares F, Niinemets Ü (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237-257.
DOI URL |
[42] |
Wang MQ, Jin GZ, Liu ZL (2019). Variation and relationships between twig and leaf traits of species across successional status in temperate forests. Scandinavian Journal of Forest Research, 34, 647-655.
DOI URL |
[43] |
Warman L, Moles AT, Edwards W (2011). Not so simple after all: searching for ecological advantages of compound leaves. Oikos, 120, 813-821.
DOI URL |
[44] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
PMID |
[45] |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
PMID |
[46] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, et al. (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[47] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[48] |
Wu BD, Liu J, Jiang K, Zhou JW, Wang CY (2019). Differences in leaf functional traits between simple and compound leaves of Canavalia maritime. Polish Journal of Environmental Studies, 28, 1425-1432.
DOI URL |
[49] |
Xiang S, Wu N, Sun SC (2009). Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees, 23, 637-647.
DOI URL |
[50] |
Yan ER, Wang XH, Chang SX, He FL (2013). Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests. Tree Physiology, 33, 609-617.
DOI URL |
[51] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[52] | Yin FJ, Wang MQ, Jin GZ, Liu ZL (2021). Trade-off between twig and leaf of Pinus koraiensis at different life history stages. Scientia Silvae Sinicae, 57(3), 54-62. |
[尹凤娟, 王明琦, 金光泽, 刘志理 (2021). 红松不同生活史阶段的枝叶权衡. 林业科学, 57(3), 54-62.] | |
[53] |
Zhu GJ, Niklas KJ, Li M, Sun J, Lyu M, Chen XP, Wang MT, Zhong QL, Cheng DL (2019). “Diminishing Returns” in the scaling between leaf area and twig size in three forest communities along an elevation gradient of Wuyi Mountain, China. Forests, 10, 1138. DOI: 10.3390/f10121138.
DOI URL |
[54] |
Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 35, 687-698.
DOI URL |
[祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.] | |
[55] | Zhu YJ, Yang FY, Zhao JF, Liu JS (2011). Plant functional type and its application in ecosystem modeling. Chinese Journal of Ecology, 30, 138-144. |
[朱玉洁, 杨霏云, 赵俊芳, 刘峻杉 (2011). 植物功能型研究方法在生态系统模型中的应用. 生态学杂志, 30, 138-144.] |
[1] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[2] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[3] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[4] | LI Lu, JIN Guang-Ze, LIU Zhi-Li. Variations and correlations of lamina and petiole traits of three broadleaved species in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 687-699. |
[5] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[6] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[7] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[8] | SHI Bin, DOU Jian-De, HUANG Wei, LI Xiao-Wei. Community characteristics of Ephedra rhytidosperma in Helan Mountain of Ningxia, China [J]. Chin J Plant Ecol, 2022, 46(3): 362-367. |
[9] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[10] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[11] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
[12] | NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region [J]. Chin J Plant Ecol, 2021, 45(4): 394-403. |
[13] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[14] | TAN Yi-Bo, TIAN Hong-Deng, ZENG Chun-Yang, SHEN Hao, SHEN Wen-Hui, YE Jian-Ping, GAN Guo-Juan. Canopy mechanical abrasion between adjacent plants influences twig and leaf traits of Tsuga chinensis assemblage in the Mao’er Mountain [J]. Chin J Plant Ecol, 2021, 45(12): 1281-1291. |
[15] | LI Hao, MA Ru-Yu, QIANG Bo, HE Cong, HAN Lu, WANG Hai-Zhen. Effect of current-year twig stem configuration on the leaf display efficiency of Populus euphratica [J]. Chin J Plant Ecol, 2021, 45(11): 1251-1262. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn