Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (6): 650-658.DOI: 10.17521/cjpe.2020.0430
• Research Articles • Previous Articles Next Articles
FANG Jing1,2, YE Lin-Feng1,2, CHEN Sen1,2, LU Shi-Tong1,2, PAN Tian-Tian1,2, XIE Jiang-Bo1,2,3, LI Yan1,2,3, WANG Zhong-Yuan1,*()
Received:
2020-12-30
Accepted:
2021-04-26
Online:
2021-06-20
Published:
2021-09-09
Contact:
WANG Zhong-Yuan
Supported by:
FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats[J]. Chin J Plant Ecol, 2021, 45(6): 650-658.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0430
生境 Habitat | 经纬度 Latitude, Longitude | 海拔 Altitude (m) | 坡向 Slope direction | 坡度 Slope (°) | 土壤类型 Soil type | pH |
---|---|---|---|---|---|---|
自然生境 Field habitat | 30.34° N, 119.46° E | 350-450 | 西南 SW | 12 | 红壤 Red soil | 4.88 ± 0.16 |
人工生境 Garden habitat | 30.26° N, 119.73° E | 43-47 | 西南 SW | 9 | 红壤 Red soil | 5.25 ± 0.11 |
Table 1 Basic characteristics for the field and garden habitats (mean ± SE, n = 3)
生境 Habitat | 经纬度 Latitude, Longitude | 海拔 Altitude (m) | 坡向 Slope direction | 坡度 Slope (°) | 土壤类型 Soil type | pH |
---|---|---|---|---|---|---|
自然生境 Field habitat | 30.34° N, 119.46° E | 350-450 | 西南 SW | 12 | 红壤 Red soil | 4.88 ± 0.16 |
人工生境 Garden habitat | 30.26° N, 119.73° E | 43-47 | 西南 SW | 9 | 红壤 Red soil | 5.25 ± 0.11 |
树种 Species | 生境 Habitat | n | 树高 Tree height (m) | 胸径 DBH (cm) | 树龄 Tree age (a) | 冠幅 Crown (m) |
---|---|---|---|---|---|---|
三角槭 Acer buergerianum | 自然生境 Field habitat | 19 | 9.44 ± 0.37 | 10.26 ± 0.38 | 10-15 | 2.70 ± 0.12 |
人工生境 Garden habitat | 20 | 10.75 ± 0.27 | 11.31 ± 0.24 | 10-15 | 3.04 ± 0.07 | |
青冈 Cyclobalanopsis glauca | 自然生境 Field habitat | 18 | 12.41 ± 0.38 | 14.65 ± 0.54 | 15-20 | 6.45 ± 0.14 |
人工生境 Garden habitat | 21 | 12.57 ± 0.30 | 15.43 ± 0.28 | 15-20 | 6.86 ± 0.03 | |
女贞 Ligustrum lucidum | 自然生境 Field habitat | 20 | 6.47 ± 0.24 | 12.10 ± 0.38 | 10-15 | 3.94 ± 0.21 |
人工生境 Garden habitat | 18 | 7.33 ± 0.11 | 13.62 ± 0.27 | 10-15 | 4.51 ± 0.16 |
Table 2 Basic characteristics of the sampled trees for the three species in field and garden habitats (mean ± SE)
树种 Species | 生境 Habitat | n | 树高 Tree height (m) | 胸径 DBH (cm) | 树龄 Tree age (a) | 冠幅 Crown (m) |
---|---|---|---|---|---|---|
三角槭 Acer buergerianum | 自然生境 Field habitat | 19 | 9.44 ± 0.37 | 10.26 ± 0.38 | 10-15 | 2.70 ± 0.12 |
人工生境 Garden habitat | 20 | 10.75 ± 0.27 | 11.31 ± 0.24 | 10-15 | 3.04 ± 0.07 | |
青冈 Cyclobalanopsis glauca | 自然生境 Field habitat | 18 | 12.41 ± 0.38 | 14.65 ± 0.54 | 15-20 | 6.45 ± 0.14 |
人工生境 Garden habitat | 21 | 12.57 ± 0.30 | 15.43 ± 0.28 | 15-20 | 6.86 ± 0.03 | |
女贞 Ligustrum lucidum | 自然生境 Field habitat | 20 | 6.47 ± 0.24 | 12.10 ± 0.38 | 10-15 | 3.94 ± 0.21 |
人工生境 Garden habitat | 18 | 7.33 ± 0.11 | 13.62 ± 0.27 | 10-15 | 4.51 ± 0.16 |
Fig. 1 Hydraulic functional traits of three species in field and garden habitats (mean ± SE). A, The specific hydraulic conductivity (Ks). B, Embolism resistance (water potential at 50% loss of conductivity, P50). Different lowercase letters indicate significant differences within species (p < 0.05).
Fig. 2 Examples of light microscopy images of xylem cross sections of three species in field and garden habitats. A, Acer buergerianum in the field. B, Cyclobalanopsis glauca in the field. C, Ligustrum lucidum in the field. D, A. buergerianum in the garden. E, C. glauca in the garden. F, L. lucidum in the garden.
Fig. 3 Xylem anatomical structure traits of three species in field and garden habitats (mean ± SE). A, Vessel diameter (D). B, Double thickness of vessel wall (T). C, Vessel density (N). D, Xylem density (WD). E, Thickness-to-span ratio of vessels ((t/b)2). Different lowercase letters indicate significant differences within species (p < 0.05).
Fig. 4 Correlation networks between functional traits (Ks and P50) and structural traits of xylem for the three species in field and garden habitat. A, Acer buergerianum in the field. B, Cyclobalanopsis glauca in the field. C, Ligustrum lucidum in the field. D, A. buergerianum in the garden. E, C. glauca in the garden. F, L. lucidum in the garden. Solid lines, positive correlations; dashed lines, negative correlations. Red lines, p < 0.05; grey lines, p > 0.05. Line thickness indicate the correlation coefficient (r) values. D, vessel diameter (μm); Ks, specific hydraulic conductivity (kg·m-1∙MPa-1·s-1); N, vessel density (103∙mm-2); P50, water potential at 50% loss of conductivity (-MPa); T, double thickness of vessel wall (μm); Ttob, thickness-to-span ratio of vessels ((t/b)2); WD, xylem density (g∙cm-3).
[1] |
Aguilar-Romero R, Pineda-Garcia F, Paz H, González- Rodríguez A, Oyama K (2017). Differentiation in the water- use strategies among oak species from central Mexico. Tree Physiology, 37, 915-925.
DOI PMID |
[2] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
DOI URL |
[3] | An F, Zhang SX, Zhao PJ(2002). Progress on study of vulnerability of xylem embolism in woody plants. Journal of Northwest Forestry University, 17(3), 30-34. |
[ 安锋, 张硕新, 赵平娟(2002). 木本植物木质部栓塞脆弱性研究进展. 西北林学院学报, 17(3), 30-34.] | |
[4] |
Anderegg WRL, Anderegg LDL, Berry JA, Field CB (2014). Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off. Oecologia, 175, 11-23.
DOI PMID |
[5] |
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought- induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029.
DOI PMID |
[6] |
Beikircher B, Mayr S (2009). Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. Tree Physiology, 29, 765-775.
DOI PMID |
[7] |
Bréda N, Huc R, Granier A, Dreyer E (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625-644.
DOI URL |
[8] |
Brodribb TJ, Cochard H (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149, 575-584.
DOI PMID |
[9] |
Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenez- Castillo M, Rockwell FA, Manna LL, Guerra P, Bernal PL, Troncoso O, Enricci J, Holbrook MN, Goldstein G (2012). Hydraulic differences along the water transport system of South American Nothofagus species: Do leaves protect the stem functionality? Tree Physiology, 32, 880-893.
DOI URL |
[10] |
Carlquist S (1977). Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64, 887-896.
DOI URL |
[11] | Chen ZC, Jiang LN, Feng JX, Wan XC(2018). Progress and controversy of xylem embolism determination techniques in woody plants. Scientia Silvae Sinicae, 54(5), 143-151. |
[ 陈志成, 姜丽娜, 冯锦霞, 万贤崇(2018). 木本植物木质部栓塞测定技术的争议与进展. 林业科学, 54(5), 143-151.] | |
[12] |
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
DOI URL |
[13] |
Choat B, Sack L, Holbrook NM (2007). Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytologist, 175, 686-698.
DOI URL |
[14] |
Cochard H, Barigah ST, Kleinhentz M, Eshel A (2008). Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? Journal of Plant Physiology, 165, 976-982.
PMID |
[15] |
Cochard H, Casella E, Mencuccini M (2007). Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield. Tree Physiology, 27, 1761-1767.
PMID |
[16] |
Cornwell WK, Bhaskar R, Sack L, Cordell S, Lunch CK (2007). Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional Ecology, 21, 1063-1071.
DOI URL |
[17] | Fichot R, Barigah TS, Chamaillard S, Le Thiec D, Laurans F, Cochard H, Brignolas F (2010). Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides × Populus nigra hybrids. Plant, Cell & Environment, 33, 1553-1568. |
[18] |
Froux F, Huc R, Ducrey M, Dreyer E (2002). Xylem hydraulic efficiency versus vulnerability in seedlings of four contrasting Mediterranean tree species (Cedrus atlantica, Cupressus sempervirens, Pinus halepensis and Pinus nigra). Annals of Forest Science, 59, 409-418.
DOI URL |
[19] |
Gazol A, Camarero JJ, Vicente-Serrano SM, Sánchez-Salguero R, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar PA, Linares JC, Martín-Hernández N, Martínez del Castillo E, Ribas M, García-González I, et al. (2018). Forest resilience to drought varies across biomes. Global Change Biology, 24, 2143-2158.
DOI URL |
[20] |
Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, Cochard H, Delzon S, Domec JC, Fan ZX, Feild TS, et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209, 123-136.
DOI PMID |
[21] |
Hacke UG, Sperry JS, Pittermann J (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1, 31-41.
DOI URL |
[22] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[23] |
Hajek P, Kurjak D, von Wühlisch G, Delzon S, Schuldt B (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Frontiers in Plant Science, 7, 791. DOI: 10.3389/fpls.2016.00791.
DOI |
[24] |
Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD (2005). Do xylem fibers affect vessel cavitation resistance? Plant Physiology, 139, 546-556.
PMID |
[25] |
Lewis AM, Boose ER (1995). Estimating volume flow rates through xylem conduits. American Journal of Botany, 82, 1112-1116.
DOI URL |
[26] |
Maherali H, DeLucia EH (2000). Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiology, 20, 859-867.
PMID |
[27] |
Maherali H, Pockman WT, Jackson RB (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184-2199.
DOI URL |
[28] |
Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002). Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia, 133, 19-29.
DOI PMID |
[29] |
Maseda PH, Fernández RJ (2006). Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 57, 3963-3977.
PMID |
[30] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[31] | Mencuccini M (2003). The ecological significance of long- distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell & Environment, 26, 163-182. |
[32] |
Nolf M, Pagitz K, Mayr S (2014). Physiological acclimation to drought stress in Solidago canadensis. Physiologia Plantarum, 150, 529-539.
DOI URL |
[33] |
Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007a). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174, 787-798.
DOI URL |
[34] |
Pratt RB, Jacobsen AL, Golgotiu KA, Sperry JS, Ewers FW, Davis SD (2007b). Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecological Monographs, 77, 239-253.
DOI URL |
[35] |
Schuldt B, Knutzen F, Delzon S, Jansen S, Müller-Haubold H, Burlett R, Clough Y, Leuschner C (2016). How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytologist, 210, 443-458.
DOI URL |
[36] |
Schumann K, Leuschner C, Schuldt B (2019). Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences. Trees, 33, 1475-1490.
DOI URL |
[37] |
Sperry JS (2003). Evolution of water transport and xylem structure. International Journal of Plant Sciences, 164, S115-S127.
DOI URL |
[38] |
Tissier J, Lambs L, Peltier JP, Marigo G (2004). Relationships between hydraulic traits and habitat preference for six Acer species occurring in the French Alps. Annals of Forest Science, 61, 81-86.
DOI URL |
[39] |
Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal, 15, 335-360.
DOI URL |
[40] |
Tyree MT, Sperry JS (1989). Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-38.
DOI URL |
[41] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. Springer, Berlin. 45-56. |
[42] | Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005). Inter- vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28, 800-812. |
[43] |
Zhang JZ, Gou XH, Zhao ZQ, Liu WH, Zhang F, Cao ZY, Zhou FF(2013). Improved method of obtaining micro- core paraffin sections in dendroecological research. Chinese Journal of Plant Ecology, 37, 972-977.
DOI URL |
[ 张军周, 勾晓华, 赵志千, 刘文火, 张芬, 曹宗英, 周非飞(2013). 树轮生态学研究中微树芯石蜡切片制作的方法探讨. 植物生态学报, 37, 972-977.] |
[1] | WU Min, TIAN Yu, FAN Da-Yong, ZHANG Xiang-Xue. Hydraulic regulation of Populus tomentosa and Acer truncatum under drought stress [J]. Chin J Plant Ecol, 2022, 46(9): 1086-1097. |
[2] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
[3] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[4] | LUO Dan-Dan, WANG Chuan-Kuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress [J]. Chin J Plant Ecol, 2021, 45(9): 925-941. |
[5] | LU Shi-Tong, CHEN Sen, LI Yan, WANG Zhong-Yuan, PAN Tian-Tian, YE Lin-Feng, XIE Jiang-Bo. Relationships among xylem transport, anatomical structure and mechanical strength in stems and roots of three Podocarpaceae species [J]. Chin J Plant Ecol, 2021, 45(6): 659-669. |
[6] | SONG Hui-Qing, NI Ming-Yuan, ZHU Shi-Dan. Hydraulic and photosynthetic characteristics differ between co-generic tree and liana species: a case study of Millettia and Gnetum in tropical forest [J]. Chin J Plant Ecol, 2020, 44(3): 192-204. |
[7] | LI Zhi-Min, WANG Chuan-Kuan. Research progress on responses of xylem of woody plants to freeze-thaw embolism [J]. Chin J Plant Ecol, 2019, 43(8): 635-647. |
[8] | AN Rui, MENG Feng, YIN Peng-Xian, DU Guang-Yuan. Comparison of methods for detecting vulnerability of xylem embolism in Robinia pseudoacacia [J]. Chin J Plant Ecol, 2018, 42(11): 1113-1119. |
[9] | Dan-Dan LUO, Chuan-Kuan WANG, Ying JIN. Plant water-regulation strategies: Isohydric versus anisohydric behavior [J]. Chin J Plan Ecolo, 2017, 41(9): 1020-1032. |
[10] | Liang-Jun ZHU, Zong-Shan LI, Xiao-Chun WANG. Anatomical characteristics of xylem in tree rings and its relationship with environments [J]. Chin J Plan Ecolo, 2017, 41(2): 238-251. |
[11] | Ying JIN, Chuan-Kuan WANG, Zheng-Hu ZHOU. Mechanisms of xylem embolism repair in woody plants: Research progress and questions [J]. Chin J Plan Ecolo, 2016, 40(8): 834-846. |
[12] | Rong LI, Wei DANG, Jing CAI, Shuo-Xin ZHANG, Zai-Min JIANG. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees [J]. Chin J Plant Ecol, 2016, 40(3): 255-263. |
[13] | LI Rong,JIANG Zai-Min,ZHANG Shuo-Xin,CAI Jing. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plan Ecolo, 2015, 39(8): 838-848. |
[14] | ZHOU Hong-Hua, LI Wei-Hong, AYUP Mubarek, XU Qian. Xylem hydraulic conductivity and embolism properties of desert riparian forest plants and its response to drought stress [J]. Chin J Plant Ecol, 2012, 36(1): 19-29. |
[15] | HUANG Ju-Ying, YU Hai-Long, ZHANG Shuo-Xin. EFFECTS OF POTASSIUM ADDITION AND WATER SUPPLY ON XYLEM EMBOLISM IN ACER TRUNCATUMAND LIGUSTRUM LUCIDUM [J]. Chin J Plant Ecol, 2009, 33(6): 1199-1207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn