Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (6): 659-669.DOI: 10.17521/cjpe.2020.0402
• Research Articles • Previous Articles Next Articles
LU Shi-Tong1,2, CHEN Sen1,2, LI Yan1,2,3, WANG Zhong-Yuan1, PAN Tian-Tian1,2, YE Lin-Feng1,2, XIE Jiang-Bo1,2,3,*()
Received:
2020-12-04
Accepted:
2021-03-17
Online:
2021-06-20
Published:
2021-09-09
Contact:
XIE Jiang-Bo
Supported by:
LU Shi-Tong, CHEN Sen, LI Yan, WANG Zhong-Yuan, PAN Tian-Tian, YE Lin-Feng, XIE Jiang-Bo. Relationships among xylem transport, anatomical structure and mechanical strength in stems and roots of three Podocarpaceae species[J]. Chin J Plant Ecol, 2021, 45(6): 659-669.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0402
树种 Species | 海拔 Altitude (m) | 坡向 Slope direction | 坡度 Slope (°) | 土壤类型 Soil type | 土壤含水量 Soil water content (%) | 土壤容重 Soil bulk density (g·cm-3) | 树高 Tree height (m) | 胸径 DBH (cm) |
---|---|---|---|---|---|---|---|---|
罗汉松 Podocarpus macrophyllus | 42.47 ± 0.23 | 西南 SW | 3 | 黄红壤亚类 Yellow red soil subclass | 36.87 ± 1.81 | 1.22 ± 0.15 | 5.93 ± 0.42 | 13.50 ± 1.55 |
短叶罗汉松 P. macrophyllus var. maki | 39.40 ± 0.44 | 西南 SW | 8 | 黄红壤亚类 Yellow red soil subclass | 35.24 ± 1.75 | 1.20 ± 0.10 | 2.89 ± 0.32 | 11.99 ± 1.54 |
竹柏 Nageia nagi | 41.48 ± 0.20 | 西南 SW | 1 | 黄红壤亚类 Yellow red soil subclass | 36.34 ± 1.74 | 1.23 ± 0.08 | 3.66 ± 0.18 | 8.52 ± 0.64 |
Table 1 Basic characteristics of the sampling plots and trees of three Podocarpaceae species (mean ± SE)
树种 Species | 海拔 Altitude (m) | 坡向 Slope direction | 坡度 Slope (°) | 土壤类型 Soil type | 土壤含水量 Soil water content (%) | 土壤容重 Soil bulk density (g·cm-3) | 树高 Tree height (m) | 胸径 DBH (cm) |
---|---|---|---|---|---|---|---|---|
罗汉松 Podocarpus macrophyllus | 42.47 ± 0.23 | 西南 SW | 3 | 黄红壤亚类 Yellow red soil subclass | 36.87 ± 1.81 | 1.22 ± 0.15 | 5.93 ± 0.42 | 13.50 ± 1.55 |
短叶罗汉松 P. macrophyllus var. maki | 39.40 ± 0.44 | 西南 SW | 8 | 黄红壤亚类 Yellow red soil subclass | 35.24 ± 1.75 | 1.20 ± 0.10 | 2.89 ± 0.32 | 11.99 ± 1.54 |
竹柏 Nageia nagi | 41.48 ± 0.20 | 西南 SW | 1 | 黄红壤亚类 Yellow red soil subclass | 36.34 ± 1.74 | 1.23 ± 0.08 | 3.66 ± 0.18 | 8.52 ± 0.64 |
Fig. 1 Examples of light microscopy images of transverse and vertical sections of wood anatomy of three Podocarpaceae species. A-D, Transverse sections and vertical sections of stem, transverse sections and vertical sections of root in Podocarpus macrophyllus. E-H, Transverse sections and vertical sections of stem, transverse sections and vertical sections of root in P. macrophyllus var. maki. I-L, Transverse sections and vertical sections of stem, transverse sections and vertical sections of root in Nageia nagi.
Fig. 2 Hydraulic functional traits of three Podocarpaceae species (mean ± SE, n = 7). Different lowercase letters indicate significant differences at p ≤ 0.05 level.
Fig. 3 Xylem anatomical structure of three Podocarpaceae species (mean ± SE, n = 7). Different lowercase letters indicate significant differences at p ≤ 0.05 level.
Fig. 4 Xylem mechanical traits of three Podocarpaceae species (mean ± SE, n = 7). Different lowercase letters indicate significant differences at p ≤ 0.05 level.
Fig. 5 Relationship between hydraulic conductivity and embolism resistance in the three Podocarpaceae species. A, The stems of three Podocarpaceae species in this paper. B, The roots of three Podocarpaceae species in this paper. C, The stems of twelve Podocarpaceae species (Data from Brodribb & Hill (1999), van der Willigen et al. (2000), Pittermann & Sperry (2006)). D, The roots of five Podocarpaceae species (Data from Pittermann & Sperry (2006)). ns, non-significant relationships.
Fig. 6 Correlation analysis of ten xylem traits in Podocarpaceae species. A, Xylem traits of stem. B, Xylem traits of root. *, p ≤ 0.05; **, p ≤ 0.01. Dh, hydraulic diameter (μm); Dp, pit membrane diameter (μm); Dt, tracheid diameter (μm); Ks, specific hydraulic conductivity (kg·m-1·MPa-1·s-1); Np, pit density (mm-2); Nt, tracheid density (mm2); P50, the xylem water potential causing 50% loss of hydraulic conductivity (-MPa); Tw, tracheid wall thickness (μm); WD, wood density (g·cm-2); (t/b)2, tracheid thickness to span ratio.
[1] | Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 1, 1285-1291. |
[2] | Allen CD (2009). Climate-induced forest dieback: an escalating global phenomenon. Unasylva, 60, 43-49. |
[3] |
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought- induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029.
DOI PMID |
[4] | Baas P, Ewers FW, Davis SD, Wheeler EA (2004). Evolution of xylem physiology//Hemsley AR, Poole I. The Evolution of Plant Physiology. Elsevier, Oxford, UK. 273-295. |
[5] | Brodribb TJ (2011). A functional analysis of podocarp ecology. Smithsonian Contributions to Botany, 95, 165-173. |
[6] | Brodribb TJ, Feild TS (2000). Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell & Environment, 23, 1381-1388. |
[7] |
Brodribb T, Hill RS (1999). The importance of xylem constraints in the distribution of conifer species. New Phytologist, 143, 365-372.
DOI URL |
[8] |
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539.
DOI URL |
[9] |
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
DOI URL |
[10] |
Choat B, Medek DE, Stuart SA, Pasquet-Kok J, Egerton JJ, Salari H, Sack L, Ball MC (2011). Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytologist, 191, 996-1005.
DOI URL |
[11] |
Dietrich L, Delzon S, Hoch G, Kahmen A (2019). No role for xylem embolism or carbohydrate shortage in temperate trees during the severe 2015 drought. Journal of Ecology, 107, 334-349.
DOI |
[12] |
Domec JC, Lachenbruch B, Meinzer FC (2006). Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. American Journal of Botany, 93, 1588-1600.
DOI URL |
[13] |
Duursma R, Choat B (2017). Fitplc—An R package to fit hydraulic vulnerability curves. Journal of Plant Hydraulics, 4, e002. DOI: 10.20870/jph.2017.e002.
DOI URL |
[14] |
Ennajeh M, Simões F, Khemira H, Cochard H (2011). How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? Physiologia Plantarum, 142, 205-210.
DOI URL |
[15] |
Fan ZX, Sterck F, Zhang SB, Fu PL, Hao GY (2017). Tradeoff between stem hydraulic efficiency and mechanical strength affects leaf-stem allometry in 28 Ficus tree species. Frontiers in Plant Science, 8, 1619. DOI: 10.3389/fpls.2017.01619.
DOI URL |
[16] | Fichot R, Barigah TS, Chamaillard S, Le Thiec D, Laurans F, Cochard H, Brignolas F (2010). Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides × Populus nigra hybrids. Plant, Cell & Environment, 33, 1553-1568. |
[17] | Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, Cochard H, Delzon S, Domec JC, Fan ZX, Field TS, et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 211, 123-136. |
[18] |
Hacke UG, Jansen S (2009). Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist, 182, 675-686.
DOI PMID |
[19] |
Hacke UG, Sperry JS, Pittermann J (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1, 31-41.
DOI URL |
[20] |
Hacke UG, Sperry JS, Pittermann J (2004). Analysis of circular bordered pit function II. Gymnosperm tracheids with torus- margo pit membranes. American Journal of Botany, 91, 386-400.
DOI PMID |
[21] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[22] |
Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.
PMID |
[23] | Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017). An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40, 831-845. |
[24] |
Hajek P, Kurjak D, von Wühlisch G, Delzon S, Schuldt B (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Frontiers in Plant Science, 7, 791. DOI: 10.3389/fpls.2016.00791.
DOI |
[25] | IPCC (2013). Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.. |
[26] |
Jansen S, Choat B, Pletsers A (2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96, 409-419.
DOI URL |
[27] |
Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E, Warren JM, Palmroth S, Domec JC (2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 36, 983-993.
DOI PMID |
[28] |
Lachenbruch B, McCulloh KA (2014). Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist, 204, 747-764.
DOI PMID |
[29] | Larter M, Pfautsch S, Domec JC, Trueba S, Nagalingum N, Delzon S (2017). Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. New Phytologist, 215, 97-112. |
[30] |
Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723.
DOI URL |
[31] |
Lewis AM (1992). Measuring the hydraulic diameter of a pore or conduit. American Journal of Botany, 79, 1158-1161.
DOI PMID |
[32] |
Li S, Lens F, Espino S, Karimi Z, Klepsch M, Schenk HJ, Schmitt M, Schuldt B, Jansen S (2016). Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA Journal, 37, 152-171.
DOI URL |
[33] | Liu CH, Li YY, Chen WY(2014). Hydraulic architecture of three typical woody plants in Ziwuling forest zone on the Loess Plateau. Acta Botanica Boreali-Occidentalia Sinica, 34, 835-842. |
[ 刘存海, 李秧秧, 陈伟月(2014). 子午岭林区3种典型树木的水力结构特性比较. 西北植物学报, 34, 835-842.] | |
[34] |
Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M (2007). The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247, 788-803.
PMID |
[35] | Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB (2006). Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell & Environment, 29, 571-583. |
[36] |
Mackay DS, Savoy PR, Grossiord C, Tai XN, Pleban JR, Wang D, McDowell NG, Adams HD, Sperry JS (2020). Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics. New Phytologist, 225, 679-692.
DOI PMID |
[37] |
Martin-StPaul N, Delzon S, Cochard H (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20, 1437-1447.
DOI PMID |
[38] | Mayr S, Cochard H (2003). A new method for vulnerability analysis of small xylem areas reveals that compression wood of Norway spruce has lower hydraulic safety than opposite wood. Plant, Cell & Environment, 26, 1365-1371. |
[39] | McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC (2019). A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant, Cell & Environment, 42, 2789-2807. |
[40] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[41] |
McElrone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB (2004). Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytologist, 163, 507-517.
DOI PMID |
[42] |
Ogle K, Barber JJ, Willson C, Thompson B (2009). Hierarchical statistical modeling of xylem vulnerability to cavitation. New Phytologist, 182, 541-554.
DOI URL |
[43] |
Peters JMR, Gauthey A, Lopez R, Carins-Murphy MR, Brodribb TJ, Choat B (2020). Non-invasive imaging reveals convergence in root and stem vulnerability to cavitation across five tree species. Journal of Experimental Botany, 71, 6623-6637.
DOI URL |
[44] |
Pittermann J, Choat B, Jansen S, Stuart SA, Lynn L, Dawson TE (2010). The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Plant Physiology, 153, 1919-1931.
DOI PMID |
[45] |
Pittermann J, Sperry JS (2006). Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size. Plant Physiology, 140, 374-382.
PMID |
[46] |
Pittermann J, Sperry J (2003). Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiology, 23, 907-914.
PMID |
[47] | Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006a). Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant, Cell & Environment, 29, 1618-1628. |
[48] |
Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2006b). Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. American Journal of Botany, 93, 1265-1273.
DOI URL |
[49] |
Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007a). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174, 787-798.
DOI URL |
[50] |
Pratt RB, Jacobsen AL, Golgotiu KA, Sperry JS, Ewers FW, Davis SD (2007b). Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecological Monographs, 77, 239-253.
DOI URL |
[51] |
Rowland L, da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528, 119-122.
DOI URL |
[52] |
Rodriguez-Dominguez CM, Carins Murphy MR, Lucani C, Brodribb TJ (2018). Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytologist, 218, 1025-1035.
DOI PMID |
[53] |
Rodriguez-Dominguez CM, Brodribb TJ (2020). Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytologist, 225, 126-134.
DOI PMID |
[54] | Rosas T, Mencuccini M, Barba J, Cochard H, Saura-Mas S, Martínez-Vilalta J (2019). Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist, 223, 632-646. |
[55] | Schoonmaker AL, Hacke UG, Landhäusser SM, Lieffers VJ, Tyree MT (2010). Hydraulic acclimation to shading in boreal conifers of varying shade tolerance. Plant, Cell & Environment, 33, 382-393. |
[56] |
Schumann K, Leuschner C, Schuldt B (2019). Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences. Trees, 33, 1475-1490.
DOI URL |
[57] |
Schulte PJ, Hacke UG, Schoonmaker AL (2015). Pit membrane structure is highly variable and accounts for a major resistance to water flow through tracheid pits in stems and roots of two boreal conifer species. New Phytologist, 208, 102-113.
DOI PMID |
[58] |
Schuldt B, Knutzen F, Delzon S, Jansen S, Müller-Haubold H, Burlett R, Clough Y, Leuschner C (2016). How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytologist, 210, 443-458.
DOI URL |
[59] |
Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93, 1490-1500.
DOI PMID |
[60] |
Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal, 15, 335-360.
DOI URL |
[61] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. Springer, Berlin. 45-56. |
[62] |
van der Willigen C, Sherwin HW, Pammenter NW (2000). Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions. New Phytologist, 145, 51-59.
DOI URL |
[63] |
Zhang JZ, Gou XH, Zhao ZQ, Liu WH, Zhang F, Cao ZY, Zhou FF(2013). Improved method of obtaining micro- core paraffin sections in dendroecological research. Chinese Journal of Plant Ecology, 37, 972-977.
DOI URL |
[ 张军周, 勾晓华, 赵志千, 刘文火, 张芬, 曹宗英, 周非飞(2013). 树轮生态学研究中微树芯石蜡切片制作的方法探讨. 植物生态学报, 37, 972-977.] | |
[64] |
Zhou HH, Li WH, Ayup M, Xu Q(2012). Xylem hydraulic conductivity and embolism properties of desert riparian forest plants and its response to drought stress. Chinese Journal of Plant Ecology, 36, 19-29.
DOI URL |
[ 周洪华, 李卫红, 木巴热克•阿尤普, 徐茜(2012). 荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应. 植物生态学报, 36, 19-29.] | |
[65] |
Zhu SD, Cao KF (2009). Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecology, 204, 295-304.
DOI URL |
[1] | WANG Jia-Yi, WANG Xiang-Ping, XU Cheng-Yang, XIA Xin-Li, XIE Zong-Qiang, FENG Fei, FAN Da-Yong. Response of hydraulic architecture in Fraxinus velutina street trees to the percentage of impervious pavement in Beijing [J]. Chin J Plant Ecol, 2023, 47(7): 998-1009. |
[2] | ZHANG Zhi-Shan, HAN Gao-Ling, HUO Jian-Qiang, HUANG Ri-Hui, XUE Shu-Wen. Response of xylem hydraulic conductivity and leaf photosynthetic capacity of sand-binding shrubs Caragana korshinskii and C. liouana to soil water [J]. Chin J Plant Ecol, 2023, 47(10): 1422-1431. |
[3] | WU Min, TIAN Yu, FAN Da-Yong, ZHANG Xiang-Xue. Hydraulic regulation of Populus tomentosa and Acer truncatum under drought stress [J]. Chin J Plant Ecol, 2022, 46(9): 1086-1097. |
[4] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
[5] | REN Jin-Pei, LI Jun-Peng, WANG Wei-Feng, DAI Yong-Xin, WANG Lin. Responses of leaf hydraulic traits to water conditions in eight tree species and the driving factors [J]. Chin J Plant Ecol, 2021, 45(9): 942-951. |
[6] | LUO Dan-Dan, WANG Chuan-Kuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress [J]. Chin J Plant Ecol, 2021, 45(9): 925-941. |
[7] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
[8] | NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region [J]. Chin J Plant Ecol, 2021, 45(4): 394-403. |
[9] | LI Zhi-Min, WANG Chuan-Kuan. Research progress on responses of xylem of woody plants to freeze-thaw embolism [J]. Chin J Plant Ecol, 2019, 43(8): 635-647. |
[10] | CHENG Xiang-Fen, MA Jin, ZHAO Han , JIANG Zai-Min, CAI Jing . Vessel length as a key hydraulic structure in woody plants: A review [J]. Chin J Plan Ecolo, 2018, 42(6): 609-618. |
[11] | AN Rui, MENG Feng, YIN Peng-Xian, DU Guang-Yuan. Comparison of methods for detecting vulnerability of xylem embolism in Robinia pseudoacacia [J]. Chin J Plant Ecol, 2018, 42(11): 1113-1119. |
[12] | Dan-Dan LUO, Chuan-Kuan WANG, Ying JIN. Plant water-regulation strategies: Isohydric versus anisohydric behavior [J]. Chin J Plan Ecolo, 2017, 41(9): 1020-1032. |
[13] | Ying JIN, Chuan-Kuan WANG, Zheng-Hu ZHOU. Mechanisms of xylem embolism repair in woody plants: Research progress and questions [J]. Chin J Plan Ecolo, 2016, 40(8): 834-846. |
[14] | Rong LI, Wei DANG, Jing CAI, Shuo-Xin ZHANG, Zai-Min JIANG. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees [J]. Chin J Plant Ecol, 2016, 40(3): 255-263. |
[15] | LI Rong,JIANG Zai-Min,ZHANG Shuo-Xin,CAI Jing. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plan Ecolo, 2015, 39(8): 838-848. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn