Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (9): 10241032.DOI: 10.17521/cjpe.2021.0083
• Methods and techniques • Previous Articles
ZHENG JingMing(), LIU HongYu
Received:
20210310
Accepted:
20210519
Online:
20210920
Published:
20211118
Contact:
ZHENG JingMing
Supported by:
ZHENG JingMing, LIU HongYu. Using StraussHardcore model to detect vessel spatial distribution in angiosperms with various vessel configurations[J]. Chin J Plant Ecol, 2021, 45(9): 10241032.
Add to citation manager EndNoteRisBibTeX
URL: https://www.plantecology.com/EN/10.17521/cjpe.2021.0083
Fig. 1 Spatial distribution of vessels in xylem of Stewartia pseudocamelliashi and envelope test of fitted StraussHardcore (SH) model. A, Distribution of vessels in xylem crosssection. Each cycle stands for a vessel with cycle diameter as vessel diameter (µm). B, Envelope test for L function at significance of 0.05. r, the distance of paired points; Yaxis is the L function defined in equation (3). Black line represents L value from data fitted SH model, red line for average L value from 19 simulation of theoretical SH model, green and blue lines represent 2.5% and 97.5% quantile of L value from 19 simulation of theoretical SH model respectively.
模型 Model  点过程特点 Pointprocess characteristic  适用范围 Scenario for model application 

空间泊松模型 Poisson model  空间点位置完全随机 Complete spatial randomness of points  单一尺度, 单一导管属性, 随机分布特征 Single scale, single vessel identity, random distribution 
硬核模型 Hardcore model  相邻点间距低于硬核距离则不能存在 Neighbor point is forbidden at distance smaller than hardcore distance  单一尺度, 单一导管属性, 均匀分布特征 Single scale, single vessel identity, uniform distribution 
施特劳斯模型 Strauss model  相邻点间距越小则出现概率越低 Neighbor points have lower probability with smaller distance between them  单一尺度, 单一导管属性, 聚集分布特征 Single scale, single vessel identity, aggregation distribution 
盖耶饱和模型 Geyer saturation model  任一点全部分布概率不超过特定值 Probability of each point is restrained at specific threshold value  单一尺度, 单一导管属性, 聚集分布特征, 受导管密度影响 Single scale, single vessel identity, aggregation distribution, influenced by total vessel density 
多类型硬核模型 MultiHardcore model  点属性2类以上的硬核模型 Hardcore model with more than two point identities  单一尺度, 两类以上导管属性(如早、晚材导管, 单、复导管等), 同类导管均匀分布特征 Single scale, more than two vessel identities (e.g., vessel for early and latewood, single vessel and multiple vessel), uniform distribution for each identity 
多类型施特劳斯模型 MultiStrauss model  点属性2类以上的施特劳斯模型 Strauss model with more than two point identities  单一尺度, 两类以上导管属性, 同类导管聚集分布特征 Single scale, more than two vessel identities, aggregation distribution for each identity 
斯特劳斯硬核模型 StraussHardcore model  一个硬核模型和一个施特劳斯模型的组合 A combination of a Strauss model and a Hardcore model  两个尺度, 单一属性的导管, 均匀聚集分布特征 Two scales, single two vessel identity, uniformaggregation distribution 
多类型施特劳斯硬核模型 MultiStraussHardcore model  点属性2类以上的斯特劳斯硬核模型 StraussHardcore model with more than two point identities  两个尺度, 两类以上导管属性, 同类导管不同尺度上呈均匀和聚集分布特征 Two scales, more than two vessel identities, uniformaggregation distribution 
组合式盖耶模型 Piecewise Geyer model  组合模型, 可包括多个盖耶饱和子模型、硬核子模型和施特劳斯子模型 A hybrid model including multiple submodels such as Strauss model, Hardcore model, and Geyer saturation model  多个尺度, 单一属性的导管, 均匀和聚集分布特征, 受导管总密度影响 More than two scales, single vessel identity, uniformaggregation distribution, influenced by total vessel density 
Table 2 Characteristics of spatial pointprocess models for vessel configuration analysis
模型 Model  点过程特点 Pointprocess characteristic  适用范围 Scenario for model application 

空间泊松模型 Poisson model  空间点位置完全随机 Complete spatial randomness of points  单一尺度, 单一导管属性, 随机分布特征 Single scale, single vessel identity, random distribution 
硬核模型 Hardcore model  相邻点间距低于硬核距离则不能存在 Neighbor point is forbidden at distance smaller than hardcore distance  单一尺度, 单一导管属性, 均匀分布特征 Single scale, single vessel identity, uniform distribution 
施特劳斯模型 Strauss model  相邻点间距越小则出现概率越低 Neighbor points have lower probability with smaller distance between them  单一尺度, 单一导管属性, 聚集分布特征 Single scale, single vessel identity, aggregation distribution 
盖耶饱和模型 Geyer saturation model  任一点全部分布概率不超过特定值 Probability of each point is restrained at specific threshold value  单一尺度, 单一导管属性, 聚集分布特征, 受导管密度影响 Single scale, single vessel identity, aggregation distribution, influenced by total vessel density 
多类型硬核模型 MultiHardcore model  点属性2类以上的硬核模型 Hardcore model with more than two point identities  单一尺度, 两类以上导管属性(如早、晚材导管, 单、复导管等), 同类导管均匀分布特征 Single scale, more than two vessel identities (e.g., vessel for early and latewood, single vessel and multiple vessel), uniform distribution for each identity 
多类型施特劳斯模型 MultiStrauss model  点属性2类以上的施特劳斯模型 Strauss model with more than two point identities  单一尺度, 两类以上导管属性, 同类导管聚集分布特征 Single scale, more than two vessel identities, aggregation distribution for each identity 
斯特劳斯硬核模型 StraussHardcore model  一个硬核模型和一个施特劳斯模型的组合 A combination of a Strauss model and a Hardcore model  两个尺度, 单一属性的导管, 均匀聚集分布特征 Two scales, single two vessel identity, uniformaggregation distribution 
多类型施特劳斯硬核模型 MultiStraussHardcore model  点属性2类以上的斯特劳斯硬核模型 StraussHardcore model with more than two point identities  两个尺度, 两类以上导管属性, 同类导管不同尺度上呈均匀和聚集分布特征 Two scales, more than two vessel identities, uniformaggregation distribution 
组合式盖耶模型 Piecewise Geyer model  组合模型, 可包括多个盖耶饱和子模型、硬核子模型和施特劳斯子模型 A hybrid model including multiple submodels such as Strauss model, Hardcore model, and Geyer saturation model  多个尺度, 单一属性的导管, 均匀和聚集分布特征, 受导管总密度影响 More than two scales, single vessel identity, uniformaggregation distribution, influenced by total vessel density 
[1]  Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, BarronGafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multispecies synthesis of physiological mechanisms in droughtinduced tree mortality. Nature Ecology & Evolution, 1, 12851291. 
[2]  Baddeley A, Turner R (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software, 12, 142. 
[3]  Baddeley A, Rubak E, Turner R (2015). Spatial Point Patterns: Methodology and Applications with R. CRC Press, New York. 
[4] 
Beeckman H (2016). Wood anatomy and traitbased ecology. IAWA Journal, 37, 127151.
DOI URL 
[5]  Carlquist S (2001). Comparative Wood Anatomy. Springer, Berlin. 
[6]  Carlquist S (2009). Nonrandom vessel distribution in woods: patterns, modes, diversity, correlations. Aliso, 27, 3958. 
[7] 
Carlquist S (2012). How wood evolves: a new synthesis. Botany, 90, 901940.
DOI URL 
[8] 
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531539.
DOI URL 
[9] 
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, MartínezVilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752755.
DOI URL 
[10] 
GarcíaCervigón AI, Olano JM, von Arx G, Fajardo A (2018). Xylem adjusts to maintain efficiency across a steep precipitation gradient in two coexisting generalist species. Annals of Botany, 122, 461472.
DOI PMID 
[11]  Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017). An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40, 831845. 
[12] 
IAWA Committee (1989). IAWA list of microscopic features for hardwood identification. IAWA Bulletin, 10, 219332.
DOI URL 
[13] 
Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW (2012). A global analysis of xylem vessel length in woody plants. American Journal of Botany, 99, 15831591.
DOI PMID 
[14] 
Jacobsen AL, ValdovinosAyala J, Pratt RB (2018). Functional lifespans of xylem vessels: development, hydraulic function, and postfunction of vessels in several species of woody plants. American Journal of Botany, 105, 142150.
DOI PMID 
[15]  Johnson D, Eckart P, Alsamadisi N, Noble H, Martin C, Spicer R (2018). Polar auxin transport is implicated in vessel differentiation and spatial patterning during secondary growth in Populus. American Journal of Botany, 105, 186196. 
[16] 
Loepfe L, MartinezVilalta J, Piñol J, Mencuccini M (2007). The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247, 788803.
PMID 
[17] 
MartínezVilalta J, Mencuccini M, Álvarez X, Camacho J, Loepfe L, Piñol J (2012). Spatial distribution and packing of xylem conduits. American Journal of Botany, 99, 1189 1196.
DOI PMID 
[18] 
Mencuccini M, MartinezVilalta J, Piñol J, Loepfe L, Burnat M, Alvarez X, Camacho J, Gil D (2010). A quantitative and statistically robust method for the determination of xylem conduit spatial distribution. American Journal of Botany, 97, 12471259.
DOI PMID 
[19]  Mrad A, Domec JC, Huang CW, Lens F, Katul G (2018). A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation. Plant, Cell & Environment, 41, 27182730. 
[20]  Panshin AJ, Zeeuw CD (1980). Textbook of Wood Technology: Structure, Identification, Uses Properties of Commercial Woods in the United States and Canada. McGrawHill Publishing Company, New York. 
[21] 
Perry GLW, Miller BP, Enright NJ (2006). A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecology, 187, 5982.
DOI URL 
[22] 
Pfautsch S (2016). Hydraulic anatomy and function of trees Basics and critical developments. Current Forestry Reports, 2, 236248.
DOI URL 
[23]  R Core Team (2015). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 
[24] 
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18, 529.
DOI URL 
[25] 
Schenk HJ (2018). Wood: biology of a living tissue. American Journal of Botany, 105, 139141.
DOI URL 
[26] 
Scholz A, Klepsch M, Karimi Z, Jansen S (2013). How to quantify conduits in wood? Frontiers in Plant Science, 4, 56. DOI: 10.3389/fpls.2013.00056.
DOI 
[27]  Schweingruber FH, Börner A, Schulze ED (2008). Atlas of Woody Plant Stems: Evolution, Structure, and Environmental Modifications. Springer, Berlin. 
[28] 
Sievänen R, Godin C, DeJong TM, Nikinmaa E (2014). Functionalstructural plant models: a growing paradigm for plant studies. Annals of Botany, 114, 599603.
PMID 
[29] 
von Arx G, Kueffer C, Fonti P (2013). Quantifying plasticity in vessel groupingadded value from the image analysis tool ROXAS. IAWA Journal, 34, 433445.
DOI URL 
[30] 
Wheeler EA, Baas P (1998). Wood identificationA review. IAWA Journal, 19, 241264.
DOI URL 
[1]  ZHANG QiaoYing, ZHANG YunChun, LUO Peng, WANG Qian, WU Ning. ECOLOGICAL CHARACTERISTICS OF A SABINA SALTUARIA POPULATION AT TIMBERLINE ON THE SOUTHFACING SLOPE OF BAIMA SNOW MOUNTAIN, SOUTHWEST CHINA [J]. Chin J Plant Ecol, 2007, 31(5): 857864. 
[2]  FAN DaYong, XIE ZongQiang. Several Controversial Viewpoints in Studying the Cavitation of Xylem Vessels [J]. Chin J Plan Ecolo, 2004, 28(1): 126132. 
Viewed  
Full text 


Abstract 


Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 01062836134, 62836138, Email: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn