Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (2): 187-196.DOI: 10.17521/cjpe.2020.0257
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
YANG Ke-Tong1, CHANG Hai-Long1, CHEN Guo-Peng1,*(), YU Xiao-Ya2, XIAN Jun-Ren3
Received:
2020-07-30
Accepted:
2020-12-28
Online:
2021-02-20
Published:
2021-03-09
Contact:
CHEN Guo-Peng
Supported by:
YANG Ke-Tong, CHANG Hai-Long, CHEN Guo-Peng, YU Xiao-Ya, XIAN Jun-Ren. Stomatal traits of main greening plant species in Lanzhou[J]. Chin J Plant Ecol, 2021, 45(2): 187-196.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0257
Fig. 1 Stomatal traits of main greening plant species in Lanzhou. Ace. tru., Acer truncatum; Aco. cal., Acorus calamus; Ail. alt., Ailanthus altissima; Amy. per., Amygdalus persica f. duplex; Ber. thu., Berberis thunbergii; Bux. sin., Buxus sinica var. parvifolia; Car. cat., Carya cathayensis; Cer. chi., Cercis chinensis; Cer. ser., Cerasus serrulata var. lannesiana; Cra. pin., Crataegus pinnatifida; Euc. ulm., Eucommia ulmoides; Euo. jap., Euonymus japonicus; Euo. maa., Euonymus maackii; For. sus., Forsythia suspensa; For. vir., Forsythia viridissima; Fra. chi., Fraxinus chinensis; Gin. bil., Ginkgo biloba; Hem. ful., Hemerocallis fulva; Hib. syr., Hibiscus syriacus; Hos. pla., Hosta plantaginea; Hyl. spe., Hylotelephium spectabile; Iri. tec., Iris tectorum; Koe. pan., Koelreuteria paniculata; Lig. luc., Ligustrum lucidum; Lig. ova., Ligustrum ovalifolium; Phe. aiz., Phedimus aizoon; Pla. gra., Platycodon grandiflorus; Pru. cer., Prunus cerasifera; Pun. gra., Punica granatum; Pyr. xer., Pyrus xerophila; Rob. pse., Robinia pseudoacacia; Ros. luc., Rosa lucidissima; Sal. mat., Salix matsudana; Sam. wil., Sambucus williamsii; Sop. jap., Sophora japonica var. Japonica f. pendula; Syr. obl., Syringa oblata; Syr. vil., Syringa villosa subsp. wolfii; Ulm. pum., Ulmus pumila; Vit. Vin., Vitis vinifera; Yul. den., Yulania denudata.
Fig. 2 Effects of growth forms and leaf habitus on stomatal traits of main greening plant species in Lanzhou (mean ± SE). Dec, deciduous; Eve, evergreen; Her, herb; Sem, semi-tree; Shr, shrub; Tre, tree. SA, stomatal area; SD, stomatal density; SL, stomatal length; SOL, stomatal opening level; SOR, stomatal opening ratio; SW, stomatal width. Different lowercase letters indicate significant differences among growth forms and leaf habitus (p < 0.05).
Fig. 3 Allometric relations of stomatal traits of main greening plant species in Lanzhou. SA, stomatal area; SD, stomatal density; SL, stomatal length; SOL, stomatal opening level; SW, stomatal width.
性状 Trait | K | p |
---|---|---|
SL | 0.298 | 0.110 |
SW | 0.291 | 0.140 |
SOL | 0.334 | 0.023 |
SA | 0.269 | 0.379 |
SOR | 0.688 | 0.006 |
SD | 0.281 | 0.185 |
Table 1 Phylogenetic signals of stomatal traits across main greening plant species in Lanzhou
性状 Trait | K | p |
---|---|---|
SL | 0.298 | 0.110 |
SW | 0.291 | 0.140 |
SOL | 0.334 | 0.023 |
SA | 0.269 | 0.379 |
SOR | 0.688 | 0.006 |
SD | 0.281 | 0.185 |
Fig. 4 Classification of plant functional groups based on stomatal traits of main greening plant species in Lanzhou. SA, stomatal area; SD, stomatal density; SL, stomatal length; SOL, stomatal opening level; SOR, stomatal opening ratio; SW, stomatal width. See Fig. 1 for species abbreviation.
性状 Trait | 主成分1 Coefficients of PC 1 | 主成分2 Coefficients of PC 2 |
---|---|---|
SL | 0.512 63 | -0.044 93 |
SW | 0.501 39 | -0.010 85 |
SOL | 0.338 33 | 0.141 74 |
SA | 0.497 11 | 0.024 11 |
SOR | 0.184 12 | 0.792 84 |
SD | -0.300 55 | 0.590 43 |
Table 2 Correlations between stomatal traits of main greening plant species in Lanzhou and principal components
性状 Trait | 主成分1 Coefficients of PC 1 | 主成分2 Coefficients of PC 2 |
---|---|---|
SL | 0.512 63 | -0.044 93 |
SW | 0.501 39 | -0.010 85 |
SOL | 0.338 33 | 0.141 74 |
SA | 0.497 11 | 0.024 11 |
SOR | 0.184 12 | 0.792 84 |
SD | -0.300 55 | 0.590 43 |
[1] | Ackerly D (2009). Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences of the United States of America, 106,19699-19706. |
[2] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees . New Phytologist, 192,437-448.
DOI URL |
[3] |
Brodribb TJ, Jordan GJ, Carpenter RJ (2013). Unified changes in cell size permit coordinated leaf evolution. New Phytologist, 199,559-570.
DOI URL |
[4] | Chen GP, Zhao WZ, He SX, Fu X (2016). Biomass allocation and allometric relationship in aboveground components of Salix psammophila branches . Journal of Desert Research, 36,357-363. |
[ 陈国鹏, 赵文智, 何世雄, 付晓 (2016). 沙柳( Salix psammophila)丛生枝生物量最优分配与异速生长 . 中国沙漠, 36,357-363.] | |
[5] | Ding LZ, Chen YJ, Zhang JL (2014). Leaf traits and their associations among liana species in tropical rainforest. Plant Science Journal, 32,362-370. |
[ 丁凌子, 陈亚军, 张教林 (2014). 热带雨林木质藤本植物叶片性状及其关联. 植物科学学报, 32,362-370.] | |
[6] |
Drake PL, Froend RH, Franks PJ (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64,495-505.
DOI PMID |
[7] |
Duan BB, Zhao CZ, Xu T, Zheng HL, Feng W, Han L (2016). Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou . Chinese Journal of Plant Ecology, 40,1289-1297.
DOI URL |
[ 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲 (2016). 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析. 植物生态学报, 40,1289-1297.]
DOI |
|
[8] |
Fan JZ, Wang D, Hu YL, Jing PP, Wang PP, Chen JQ (2016). Optimal stomatal behavior theory for simulating stomatal conductance. Chinese Journal of Plant Ecology, 40,631-642.
DOI URL |
[ 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉 (2016). 最优气孔行为理论和气孔导度模拟. 植物生态学报, 40,631-642.]
DOI |
|
[9] |
Fiorin L, Brodribb TJ, Anfodillo T (2016). Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. New Phytologist, 209,216-227.
DOI URL |
[10] |
Franks PJ, Farquhar GD (2001). The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiology, 125,935-942.
DOI URL |
[11] | Gao GL, Feng Q, Zhang XY, Si JH, Yu TF (2018). An overview of stomatal and non-stomatal limitations to photosynthesis of plants. Arid Zone Research, 35,929-937. |
[ 高冠龙, 冯起, 张小由, 司建华, 鱼腾飞 (2018). 植物叶片光合作用的气孔与非气孔限制研究综述. 干旱区研究, 35,929-937.] | |
[12] | Gao LH, Sun H, Bai XQ, Dai S, Fan YW, Liu C, Wang XP, Yin WL (2020). Effects of climate and phylogeny on the relationship between specific leaf area and leaf element concentration of trees and shrubs in Changbai Mountain of northeastern China. Journal of Beijing Forestry University, 42(2),19-30. |
[ 高林浩, 孙晗, 白雪卡, 代爽, 樊艳文, 刘超, 王襄平, 尹伟伦 (2020). 气候、系统发育对长白山乔灌木比叶面积与叶元素含量关系的影响. 北京林业大学学报, 42(2),19-30.] | |
[13] |
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424,901-908.
PMID |
[14] | Hu XP, Ji CJ, An LH (2016). Leaf epidermis characteristics of the main grassland monocotyledonous plant species on the Tibetan Plateau. Acta Ecologica Sinica, 36,6465-6474. |
[ 胡选萍, 吉成均, 安丽华 (2016). 青藏高原草地主要单子叶植物的叶表面特征. 生态学报, 36,6465-6474.] | |
[15] | Jia JB, Liu WN, Wen SZ, Wang ZC (2019). Effects of CO2 concentration and soil moisture on leaf stomatal traits and gas exchange parameters of Phoebe bournei. Science of Soil and Water Conservation, 17,1-7. |
[ 贾剑波, 刘文娜, 文仕知, 王忠诚 (2019). 水碳控制条件对闽楠叶片气孔特征和气体交换参数的影响. 中国水土保持科学, 17,1-7.] | |
[16] | Jiang XX, Zou AL, Wang YY, Zhou XL, Ji CJ (2018). Leaf stomatal traits of woody plants and their response to nitrogen addition in typical forests in Eastern China. Acta Scientiarum Naturalium Universitatis Pekinensis, 54,839-847. |
[ 姜星星, 邹安龙, 王媛媛, 周序力, 吉成均 (2018). 我国东部典型森林木本植物的气孔特征及其对氮添加的响应. 北京大学学报(自然科学版), 54,839-847.] | |
[17] |
Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39,1021-1032.
DOI URL |
[ 金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39,1021-1032.]
DOI |
|
[18] |
Loranger J, Shipley B (2010). Interspecific covariation between stomatal density and other functional leaf traits in a local flora. Botany, 88,30-38.
DOI URL |
[19] | Luo DD, Wang CK, Jin Y (2019). Stomatal regulation of plants in response to drought stress. Chinese Journal of Applied Ecology, 30,4333-4343. |
[ 罗丹丹, 王传宽, 金鹰 (2019). 植物应对干旱胁迫的气孔调节. 应用生态学报, 30,4333-4343.] | |
[20] |
Mencuccini M, Minunno F, Salmon Y, Martínez-Vilalta J, Hölttä T (2015). Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytologist, 208,396-409.
DOI URL |
[21] | Pan YP, Chen YP (2014). Recent advances in leaf hydraulic traits. Chinese Journal of Ecology, 33,2834-2841. |
[ 潘莹萍, 陈亚鹏 (2014). 叶片水力性状研究进展. 生态学杂志, 33,2834-2841.] | |
[22] | Ren Y, Lu Q, Wu B, Li YH, Xin ZM, Yao B (2014). Response of leaf of Nitraria tangutorum Bobr stomata characteristics to artificial simulation of rainfall . Acta Ecologica Sinica, 34,6101-6106. |
[ 任昱, 卢琦, 吴波, 李永华, 辛智鸣, 姚斌 (2014). 白刺叶片气孔特征对人工模拟降雨的响应. 生态学报, 34,6101-6106.] | |
[23] |
Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198,983-1000.
DOI URL |
[24] |
Song HQ, Ni MY, Zhu SD (2020). Hydraulic and photosynthetic characteristics differ between co-generic tree and Liana species: a case study of Millettia and Gnetum in tropical forest. Chinese Journal of Plant Ecology, 44,192-204.
DOI URL |
[ 宋慧清, 倪鸣源, 朱师丹 (2020). 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例. 植物生态学报, 44,192-204.]
DOI |
|
[25] | Song LL, Fan JW, Wu SH (2011). Research advances on changes of leaf traits along an altitude gradient. Progress in Geography, 30,1431-1439. |
[ 宋璐璐, 樊江文, 吴绍洪 (2011). 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 30,1431-1439.]
DOI |
|
[26] | Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, MacKay DS, Wang YJ, Love DM (2017). Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment, 40,816-830. |
[27] | Wang BX, Zeng YH, Wang DY, Zhao R, Xu X (2010). Responses of leaf stomata to environmental stresses in distribution and physiological characteristics. Agricultural Research in the Arid Areas, 28,122-126. |
[ 王碧霞, 曾永海, 王大勇, 赵蓉, 胥晓 (2010). 叶片气孔分布及生理特征对环境胁迫的响应. 干旱地区农业研究, 28,122-126.] | |
[28] | Wang HZ, Han L, Xu YL, Niu JL (2015). Model analysis of the stomatal conductance response to light in Populus pruinosa at different temperatures in the Taklimakan desert . Ecology and Environmental Sciences, 24,741-748. |
[ 王海珍, 韩路, 徐雅丽, 牛建龙 (2015). 不同温度下灰胡杨叶片气孔导度对光强响应的模型分析. 生态环境学报, 24,741-748.] | |
[29] | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2016). Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain. Acta Ecologica Sinica, 36,2175-2184. |
[ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2016). 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例. 生态学报, 36,2175-2184.] | |
[30] | Wen JW, Chen HX, Teng YP, Zhang SX, Wang RL (2018). Variation of leaf stomatal traits in Quercus species along the altitudinal gradient in Taibai Mountain, China . Acta Ecologica Sinica, 38,6712-6721. |
[ 温婧雯, 陈昊轩, 滕一平, 张硕新, 王瑞丽 (2018). 太白山栎属树种气孔特征沿海拔梯度的变化规律. 生态学报, 38,6712-6721.] | |
[31] | Wu BJ, Liu YJ, Jiang CD, Shi L (2015). Effects of stomatal development on leaf temperature during leaf expansion. Plant Physiology Journal, 51,119-126. |
[ 吴冰洁, 刘玉军, 姜闯道, 石雷 (2015). 叶片生长进程中气孔发育对叶温调节的影响. 植物生理学报, 51,119-126.] | |
[32] | Wang XF, Li RY, Li XZ, Ma FJ, Sun BN, Wang JY, Wang YK (2014). Variations in leaf characteristics of three species of angiosperms with changing of altitude in Qilian Mountains and their inland high-altitude pattern. Science China: Earth Sciences(Chinese version), 44,706-714. |
[ 王学芳, 李瑞云, 李孝泽, 马福军, 孙柏年, 吴靖宇, 汪有奎 (2014). 祁连山3种被子植物叶特征随海拔变化及其内陆高海拔模式. 中国科学: 地球科学(中文版), 44,706-714.] | |
[33] | Xia ZH, Chen YN, Zhu CG, Zhou YY, Chen XL (2018). Stomatal change in leaves of population euphratica under drought stress. Arid Zone Research, 35,1111-1117. |
[ 夏振华, 陈亚宁, 朱成刚, 周莹莹, 陈晓林 (2018). 干旱胁迫环境下的胡杨叶片气孔变化. 干旱区研究, 35,1111-1117.] | |
[34] |
Xiong H, Ma CE, Li L, Zeng H, Guo DL (2014). Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats. Chinese Journal of Plant Ecology, 38,868-877.
DOI URL |
[ 熊慧, 马承恩, 李乐, 曾辉, 郭大立 (2014). 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应. 植物生态学报, 38,868-877.]
DOI |
|
[35] |
Xu ZZ, Zhou GS (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59,3317-3325.
DOI URL |
[36] | Yang KT, Chen GP, Li G, Yu XY, Zhang K, Tang D, Zhang WX, Guo YJ (2020). Trade-off among leaf traits of typical greening tree species in Lanzhou. Chinese Journal of Ecology, 39,1518-1526. |
[ 杨克彤, 陈国鹏, 李广, 俞筱押, 张凯, 汤东, 张文祥, 郭英杰 (2020). 兰州市典型绿化树种叶性状间的权衡关系. 生态学杂志, 39,1518-1526.] | |
[37] | Yang ZQ, Tan W, Liu ZX, Chen YQ (2015). Effect of soil water stress on stomatal characters of greenhouse tomato leaves. Chinese Journal of Ecology, 34,1234-1240. |
[ 杨再强, 谭文, 刘朝霞, 陈艳秋 (2015). 土壤水分胁迫对设施番茄叶片气孔特性的影响. 生态学杂志, 34,1234-1240.] | |
[38] | Zhang DC, Zhu YH, Li SZ (2018). Variation in stomatal characteristics of eight plant species along a soil moisture gradient in alpine meadow of the Dongda Mountains in southeast Tibet. Acta Prataculturae Sinica, 27,36-46. |
[ 张大才, 朱玉怀, 李双智 (2018). 东达山高寒草甸8种植物气孔特征沿土壤水分梯度的变化. 草业学报, 27,36-46.] | |
[39] |
Zhang SB, Sun M, Cao KF, Hu H, Zhang JL (2014). Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity. PLOS ONE, 9,e84682. DOI: 10.1371/journal.pone.0084682.
DOI URL |
[40] | Zhang Y, Yang SJ, Sun M, Cao KF (2014). Stomatal traits are evolutionarily associated with vein density in basal angiosperms. Plant Science Journal, 32,320-328. |
[ 张亚, 杨石建, 孙梅, 曹坤芳 (2014). 基部被子植物气孔性状与叶脉密度的关联进化. 植物科学学报, 32,320-328.] | |
[41] | Zhu YH, Kang HZ, Liu CJ (2011). Affecting factors of plant stomatal traits variability and relevant investigation methods. Chinese Journal of Applied Ecology, 22,250-256. |
[ 朱燕华, 康宏樟, 刘春江 (2011). 植物叶片气孔性状变异的影响因素及研究方法. 应用生态学报, 22,250-256.] |
[1] | WANG Jia-Yi, WANG Xiang-Ping, XU Cheng-Yang, XIA Xin-Li, XIE Zong-Qiang, FENG Fei, FAN Da-Yong. Response of hydraulic architecture in Fraxinus velutina street trees to the percentage of impervious pavement in Beijing [J]. Chin J Plant Ecol, 2023, 47(7): 998-1009. |
[2] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[3] | HE Jie, HE Liang, LÜ Du, CHENG Zhuo, XUE Fan, LIU Bao-Yuan, ZHANG Xiao-Ping. Spatiotemporal variation and its driving mechanism of photosynthetic vegetation in the Loess Plateau from 2001 to 2020 [J]. Chin J Plant Ecol, 2023, 47(3): 306-318. |
[4] | ZHANG Xue, HAN Feng-Peng, XIAO Bo, SHEN Si-Ming. Effects of biocrusts on surface roughness and seed secondary dispersal of shrubs and grasses on the Loess Plateau, China [J]. Chin J Plant Ecol, 2023, 47(12): 1668-1683. |
[5] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[6] | WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica [J]. Chin J Plant Ecol, 2022, 46(6): 712-721. |
[7] | XIANG Wei, HUANG Dong-Liu, ZHU Shi-Dan. Absorptive root anatomical traits of 26 tropical and subtropical fern species [J]. Chin J Plant Ecol, 2022, 46(5): 593-601. |
[8] | MA Yan-Ze, YANG Xi-Lai, XU Yan-Sen, FENG Zhao-Zhong. Response of key parameters of leaf photosynthetic models to increased ozone concentration in four common trees [J]. Chin J Plant Ecol, 2022, 46(3): 321-329. |
[9] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[10] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[11] | LUO Dan-Dan, WANG Chuan-Kuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress [J]. Chin J Plant Ecol, 2021, 45(9): 925-941. |
[12] | WANG Chun-Cheng, ZHANG Yun-Ling, MA Song-Mei, HUANG Gang, ZHANG Dan, YAN Han. Phylogeny and species differentiation of four wild almond species of subgen. Amygdalus in China [J]. Chin J Plant Ecol, 2021, 45(9): 987-995. |
[13] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[14] | LI Tang-Ji, WANG Mao-Lin, CAO Ying, XU Gang, YANG Qi-Qi, REN Si-Yuan, HU Shang-Lian. Diurnal transpiration of bamboo culm and sheath and their potential effects on water transport during the bamboo shoot stage [J]. Chin J Plant Ecol, 2021, 45(12): 1365-1379. |
[15] | CHEN Sheng-Nan, CHEN Zuo-Si-Nan, ZHANG Zhi-Qiang. Canopy stomatal conductance characteristics of Pinus tabulaeformis and Acer truncatum and their responses to environmental factors in the mountain area of Beijing [J]. Chin J Plant Ecol, 2021, 45(12): 1329-1340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn