Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (3): 321-329.DOI: 10.17521/cjpe.2021.0295
Special Issue: 光合作用
• Research Articles • Previous Articles Next Articles
MA Yan-Ze, YANG Xi-Lai, XU Yan-Sen, FENG Zhao-Zhong*()
Received:
2021-08-16
Accepted:
2021-11-24
Online:
2022-03-20
Published:
2021-12-13
Contact:
FENG Zhao-Zhong
Supported by:
MA Yan-Ze, YANG Xi-Lai, XU Yan-Sen, FENG Zhao-Zhong. Response of key parameters of leaf photosynthetic models to increased ozone concentration in four common trees[J]. Chin J Plant Ecol, 2022, 46(3): 321-329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0295
臭氧 O3 | 树种 Species | 臭氧×树种 O3 × Species | |
---|---|---|---|
饱和光合速率 Asat | <0.01 | 0.02 | 0.26 |
气孔导度 gs | <0.01 | <0.01 | 0.01 |
胞间CO2浓度 Ci | 0.43 | 0.05 | 0.25 |
内源水分利用效率 iWUE | 0.25 | 0.02 | 0.08 |
最大羧化速率 Vcmax | <0.01 | 0.11 | 0.04 |
最大电子传递速率 Jmax | <0.01 | 0.30 | <0.01 |
Jmax/Vcmax | 0.25 | <0.01 | 0.18 |
叶肉导度 gm | <0.01 | <0.01 | 0.06 |
Table 1 Variance analysis results of effects of ozone (O3), species, and their interaction on gas exchange traits (p value)
臭氧 O3 | 树种 Species | 臭氧×树种 O3 × Species | |
---|---|---|---|
饱和光合速率 Asat | <0.01 | 0.02 | 0.26 |
气孔导度 gs | <0.01 | <0.01 | 0.01 |
胞间CO2浓度 Ci | 0.43 | 0.05 | 0.25 |
内源水分利用效率 iWUE | 0.25 | 0.02 | 0.08 |
最大羧化速率 Vcmax | <0.01 | 0.11 | 0.04 |
最大电子传递速率 Jmax | <0.01 | 0.30 | <0.01 |
Jmax/Vcmax | 0.25 | <0.01 | 0.18 |
叶肉导度 gm | <0.01 | <0.01 | 0.06 |
Fig. 1 Effects of elevated ozone concentration (E-O3) on light-saturated net photosynthesis (Asat)(A), stomatal conductance to H2O (gs)(B), CO2 concentration in the leaf intercellular spaces (Ci)(C), and intrinsic water-use efficiency (iWUE)(D) of four tree species (mean ± SD). Different lowercase letters in the figures indicate significant differences (p < 0.05). CF, charcoal-filtered air.
Fig. 2 Effects of elevated ozone concentration (E-O3) on the maximum rates of Rubisco carboxylation (Vcmax)(A), the maximum rate of ribulose 1,5 bisphosphate regeneration (Jmax)(B), Jmax/Vcmax (C), and mesophyll conductance (gm)(D) of four tree species (mean ± SD). Different lowercase letters in the figures stand for the significant differences (p < 0.05). CF, charcoal-filtered air.
Fig. 3 Relationship between stomatal conductance (gs) and the index of the optimal stomatal conductance (1.6 An/(Ca$\sqrt{\text{VPD}}$)) of four tree species. CF, charcoal-filtered air; E-O3, ambient air + 60 nmol·mol–1 O3. An, leaf photosynthetic rate; Ca, environmental CO2 concentration; VPD, vapor pressure defict.
Fig. 4 Relationship between water use efficiency (iWUE) and the slope parameters of stomata model (g1) of four tree species under different treatments. CF, charcoal-filtered air; E-O3, ambient air + 60 nmol·mol-1 O3.
[1] |
Ainsworth EA (2017). Understanding and improving global crop response to ozone pollution. The Plant Journal, 90, 886-897.
DOI URL |
[2] |
Agathokleous E, Feng ZZ, Oksanen E, Sicard P, Wang Q, Saitanis CJ, Araminiene V, Blande JD, Hayes F, Calatayud V, Domingos M, Veresoglou SD, Peñuelas J, Wardle DA, de Marco A, et al. (2020). Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Science Advances, 6, eabc1176. DOI: 10.1126/sciadv.abc1176.
DOI URL |
[3] |
Bernacchi CJ, Portis AR, Nakano H, Caemmerer SV, Long SP (2002). Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology, 130, 1992-1998.
PMID |
[4] | Bernacchi CJ, Singsaas EL, Pimentel C, Portis Jr AR, Long SP (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell & Environment, 24, 253-259. |
[5] |
Calatayud A, Iglesias DJ, Talón M, Barreno E (2006). Effects of long-term ozone exposure on citrus: chlorophyll a fluorescence and gas exchange. Photosynthetica, 44, 548-554.
DOI URL |
[6] |
Dai LL, Li P, Shang B, Liu S, Yang AZ, Wang YN, Feng ZZ (2017). Differential responses of peach (Prunus persica) seedlings to elevated ozone are related with leaf mass per area, antioxidant enzymes activity rather than stomatal conductance. Environmental Pollution, 227, 380-388.
DOI URL |
[7] | Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Möls T, Kasparova I, Vapaavuori E, Laisk A (2004). Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in CO2- and O3-enriched atmospheres. Plant, Cell & Environment, 27, 479-495. |
[8] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI PMID |
[9] |
Feng ZZ, Hu EZ, Wang XK, Jiang LJ, Liu XJ (2015). Ground- level O3 pollution and its impacts on food crops in China: a review. Environmental Pollution, 199, 42-48.
DOI URL |
[10] | Feng ZZ, Li P, Yuan XY, Gao F, Jiang LJ, Dai LL (2018). Progress in ecological and environmental effects of ground- level O3 in China. Acta Ecologica Sinica, 38, 1530-1541. |
[冯兆忠, 李品, 袁相洋, 高峰, 姜立军, 代碌碌 (2018). 我国地表臭氧生态环境效应研究进展. 生态学报, 38, 1530-1541.] | |
[11] |
Feng ZZ, Niu JF, Zhang WW, Wang XK, Yao FF, Tian Y (2011). Effects of ozone exposure on sub-tropical evergreen Cinnamomum camphora seedlings grown in different nitrogen loads. Trees, 25, 617-625.
DOI URL |
[12] |
Feng ZZ, Sun JS, Wan WX, Hu EZ, Calatayud V (2014). Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environmental Pollution, 193, 296-301.
DOI URL |
[13] | Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, et al. (2012). Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science, 193-194, 70-84. |
[14] | Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008). Mesophyll conductance to CO2: current knowledge and future prospects. Plant, Cell & Environment, 31, 602-621. |
[15] | Franks PJ, Bonan GB, Berry JA, Lombardozzi DL, Holbrook NM, Herold N, Oleson KW (2018). Comparing optimal and empirical stomatal conductance models for application in earth system models. Global Change Biology, 24, 5708-5723. |
[16] |
Goumenaki E, Taybi T, Borland A, Barnes J (2010). Mechanisms underlying the impacts of ozone on photosynthetic performance. Environmental and Experimental Botany, 69, 259-266.
DOI URL |
[17] |
Harley PC, Loreto F, Di Marco G, Sharkey TD (1992). Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology, 98, 1429-1436.
DOI PMID |
[18] |
Hoshika Y, Haworth M, Watanabe M, Koike T (2020). Interactive effect of leaf age and ozone on mesophyll conductance in Siebold’s beech. Physiologia Plantarum, 170, 172-186.
DOI URL |
[19] |
Hoshika Y, Watanabe M, Inada N, Koike T (2013). Model- based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata). Annals of Botany, 112, 1149-1158
DOI URL |
[20] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[21] |
Kinose Y, Fukamachi Y, Watanabe M, Izuta T (2020). Ozone- induced change in the relationship between stomatal conductance and net photosynthetic rate is a factor determining cumulative stomatal ozone uptake by Fagus crenata seedlings. Trees, 34, 445-454.
DOI URL |
[22] |
Knauer J, Zaehle S, de Kauwe MG, Bahar NHA, Evans JR, Medlyn BE, Reichstein M, Werner C (2019). Effects of mesophyll conductance on vegetation responses to elevated CO2concentrations in a land surface model. Global Change Biology, 25, 1820-1838.
DOI URL |
[23] |
Leung F, Williams K, Sitch S, Tai APK, Wiltshire A, Gornall J, Ainsworth EA, Arkebauer T, Scoby D (2020). Calibrating soybean parameters in JULES 5.0 from the US-Ne2/3 FLUXNET sites and the SoyFACE-O3 experiment. Geoscientific Model Development, 13, 6201-6213.
DOI URL |
[24] | Li H, Peng L, Bi F, Li L, Bao JM, Li JL, Zhang H, Chai FH (2019). Strategy of coordinated control of PM2.5 and ozone in China. Research of Environmental Sciences, 32, 1763-1778. |
[李红, 彭良, 毕方, 李陵, 鲍捷萌, 李俊玲, 张浩, 柴发合 (2019). 我国PM2.5与臭氧污染协同控制策略研究. 环境科学研究, 32, 1763-1778.] | |
[25] | Li P, Feng ZZ, Catalayud V, Yuan XY, Xu YS, Paoletti E (2017). A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant, Cell & Environment, 40, 2369-2380. |
[26] |
Lin YS, Medlyn BE, Duursma RA, Prentice IC, Wang H, Baig S, Eamus D, de Dios VR, Mitchell P, Ellsworth DS, Beeck MO, Wallin G, Uddling J, Tarvainen L, Linderson ML, et al. (2015). Optimal stomatal behaviour around the world. Nature Climate Change, 5, 459-464.
DOI URL |
[27] | Long SP, Postl WF, Bolhár-Nordenkampf HR (1993). Quantum yields for uptake of carbon dioxide in C3 vascular plants of contrasting habitats and taxonomic groupings. Planta, 189, 226-234. |
[28] |
Masutomi Y, Kinose Y, Takimoto T, Yonekura T, Oue H, Kobayashi K (2019). Ozone changes the linear relationship between photosynthesis and stomatal conductance and decreases water use efficiency in rice. Science of the Total Environment, 655, 1009-1016.
DOI |
[29] |
Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, Angelis PD, Freeman M, Wingate L (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17, 2134-2144.
DOI URL |
[30] |
Reid CD, Fiscus EL (1998). Effects of elevated [CO2] and/or ozone on limitations to CO2 assimilation in soybean (Glycine max). Journal of Experimental Botany, 49, 885-895.
DOI URL |
[31] |
Shang B, Xu YS, Dai LL, Yuan XY, Feng ZZ (2019). Elevated ozone reduced leaf nitrogen allocation to photosynthesis in poplar. Science of the Total Environment, 657, 169-178.
DOI |
[32] |
Sitch S, Cox PM, Collins WJ, Huntingford C (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791-794.
DOI URL |
[33] |
Sun JD, Feng ZZ, Ort DR (2014). Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean. Plant Science, 226, 147-161.
DOI URL |
[34] | von Caemmerer S (2000). Biochemical Models of Leaf Photosynthesis. Csiro Publishing, Collingwood, VIC, Australia. |
[35] |
von Caemmerer S, Farquhar GD (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376-387.
DOI PMID |
[36] |
Warren CR, Löw M, Matyssek R, Tausz M (2007). Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environmental and Experimental Botany, 59, 130-138.
DOI URL |
[37] |
Watanabe M, Kamimaki Y, Mori M, Okabe S, Arakawa I, Kinose Y, Nakaba S, Izuta T (2018). Mesophyll conductance to CO2 in leaves of Siebold’s beech (Fagus crenata) seedlings under elevated ozone. Journal of Plant Research, 131, 907-914.
DOI PMID |
[38] | Wittig VE, Ainsworth EA, Long SP (2007). To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell & Environment, 30, 1150-1162. |
[39] | Wolz KJ, Wertin TM, Abordo M, Wang D, Leakey ADB (2017). Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nature Ecology & Evolution, 1, 1292-1298. |
[40] |
Xu YS, Feng ZZ, Shang B, Dai LL, Uddling J, Tarvainen L (2019). Mesophyll conductance limitation of photosynthesis in poplar under elevated ozone. Science of the Total Environment, 657, 136-145.
DOI URL |
[41] |
Xu YS, Shang B, Feng ZZ, Tarvainen L (2020). Effect of elevated ozone, nitrogen availability and mesophyll conductance on the temperature responses of leaf photosynthetic parameters in poplar. Tree Physiology, 40, 484-497.
DOI URL |
[42] |
Xu YS, Shang B, Peng JL, Feng ZZ, Tarvainen L (2021). Stomatal response drives between-species difference in predicted leaf water-use efficiency under elevated ozone. Environmental Pollution, 269, 116137. DOI: 10.1016/j.envpol.2020.116137.
DOI URL |
[43] | Yan H, Zhang W, Hou M, Li YS, Gao P, Xia Q, Meng XY, Fan LY, Ye DQ (2020). Sources and control area division of ozone pollution in cities at prefecture level and above in China. Environmental Science, 41, 5215-5224. |
[闫慧, 张维, 侯墨, 李银松, 高平, 夏青, 孟晓艳, 范丽雅, 叶代启 (2020). 我国地级及以上城市臭氧污染来源及控制区划分. 环境科学, 41, 5215-5224.] | |
[44] | Yuan XY, Calatayud V, Gao F, Fares S, Paoletti E, Tian Y, Feng ZZ (2016). Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. Plant, Cell & Environment, 39, 2276-2287. |
[1] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[2] | LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves [J]. Chin J Plant Ecol, 2020, 44(8): 854-863. |
[3] | FENG Zhao-Zhong, YUAN Xiang-Yang, LI Pin, SHANG Bo, PING Qin, HU Ting-Jian, LIU Shuo. Progress in the effects of elevated ground-level ozone on terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(5): 526-542. |
[4] | FENG Zhao-Zhong, XU Yan-Sen, SHANG Bo. Free-Air Concentration Enrichment (FACE) techniques, experimental approach and its application in the field of global change ecology: a review [J]. Chin J Plant Ecol, 2020, 44(4): 340-349. |
[5] | WANG Yan-Hong, LI Shuai-Feng, LANG Xue-Dong, HUANG Xiao-Bo, LIU Wan-De, XU Chong-Hua, SU Jian-Rong. Effects of topographic heterogeneity on species diversity in a monsoon evergreen broad- leaved forest in Puʼer, Yunnan, China [J]. Chin J Plant Ecol, 2020, 44(10): 1015-1027. |
[6] | Jing-Xin XU, You-Fei ZHENG, Bo-Ru MAI, Hui ZHAO, Zhong-Fang CHU, Ji-Qing HUANG, Yue YUAN. Characteristics and partitioning of ozone dry deposition measured by eddy-covariance technology in a winter wheat field [J]. Chin J Plant Ecol, 2017, 41(6): 670-682. |
[7] | Dao-Xin LI, Guo LI, Ze-Hao SHEN, Shen-Dong XU, Qing-Yu HAN, Gong-Fang WANG, Feng-Lei TIAN. Growth-form regulates the altitudinal variation of interspecific seed mass of woody plants in Mt. Dalaoling, the Three Gorges Region, China [J]. Chin J Plant Ecol, 2017, 41(5): 539-548. |
[8] | YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238. |
[9] | Yang-Qing LUO, Mei-Sheng YU, Jing-Jing YU, Shi-Lu ZHENG, Jia-Jia LIU, Ming-Jian YU. Effects of plant traits and the relative abundance of common woody species on seedling herbivory in the Thousand Island Lake region [J]. Chin J Plant Ecol, 2017, 41(10): 1033-1040. |
[10] | Jia-Zhi FAN, Dan WANG, Ya-Lin HU, Pan-Pan JING, Peng-Peng WANG, Jiquan CHEN. Optimal stomatal behavior theory for simulating stomatal conductance [J]. Chin J Plan Ecolo, 2016, 40(6): 631-642. |
[11] | XU Yue, SHEN Ze-Hao, LÜ Nan, TANG Yuan-Yuan, LI Dao-Xin, WANG Gong-Fang, TAN Jia-Lin, LIU Yi-Ping. Ten years’ observation of seed rain in a Fagus lucida community in Dalaoling Nature Reserve in the Three Gorges: seed rain density, species composition and their correlation with the community [J]. Chin J Plant Ecol, 2012, 36(8): 708-716. |
[12] | YUAN Guo-Fu, ZHUANG Wei, LUO Yi. Parameterization of water response functions in leaf stomatal conductance model for winter wheat [J]. Chin J Plant Ecol, 2012, 36(5): 463-470. |
[13] | ZHU Zhi-Lin,SUN Xiao-Min,ZHAO Feng-Hua,WEN Xue-Fa,TANG Xin-Zhai,YUAN Guo-Fu. Variation of ozone concentration of winter wheat field and mechanistic analysis of its possible effect on wheat yield in Northwest-Shandong Plain of China [J]. Chin J Plant Ecol, 2012, 36(4): 313-323. |
[14] | CHEN Juan, ZENG Qing, ZHU Jian-Guo, LIU Gang, CAO Ji-Ling, XIE Zu-Bin, TANG Hao-Ye, KAZUHIKO Kobayashi. Nitrogen supply mitigates the effects of elevated [O3] on photosynthesis and yield in wheat [J]. Chin J Plant Ecol, 2011, 35(5): 523-530. |
[15] | BAI Jie, GE Quan-Sheng, DAI Jun-Hu, WANG Ying. Relationship between woody plants phenology and climate factors in Xi’an, China [J]. Chin J Plant Ecol, 2010, 34(11): 1274-1282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn