Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (5): 593-601.DOI: 10.17521/cjpe.2021.0328
• Research Articles • Previous Articles Next Articles
XIANG Wei, HUANG Dong-Liu, ZHU Shi-Dan()
Received:
2021-09-10
Accepted:
2021-12-22
Online:
2022-05-20
Published:
2022-02-16
Contact:
ZHU Shi-Dan
Supported by:
XIANG Wei, HUANG Dong-Liu, ZHU Shi-Dan. Absorptive root anatomical traits of 26 tropical and subtropical fern species[J]. Chin J Plant Ecol, 2022, 46(5): 593-601.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0328
物种 Species | 缩写 Abbreviation | 科 Family | 地点 Site | 海拔1) Altitude1) (m) |
---|---|---|---|---|
无腺毛蕨 Cyclosorus procurrens | Cp | 金星蕨科 Thelypteridaceae | 大明山 Damingshan | 200-1 900 |
披针贯众 Cyrtomium devexiscapulae | Cd | 鳞毛蕨科 Dryopteridaceae | 大明山 Damingshan | 380-700 |
薄叶双盖蕨 Diplazium pinfaense | Dp | 蹄盖蕨科 Athyriaceae | 大明山 Damingshan | 400-1 800 |
双扇蕨 Dipteris conjugata | Dc | 双扇蕨科 Dipteridaceae | 大明山 Damingshan | 1 400-2 100 |
栗蕨 Histiopteris incisa | Hi | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | 500-1 900 |
华南鳞盖蕨 Microlepia hancei | Mh | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | 300-800 |
斜方鳞盖蕨 Microlepia rhomboidea | Mr | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | <1 000 |
乌蕨 Odontosoria chinensis | Oc | 鳞始蕨科 Lindsaeaceae | 大明山 Damingshan | 200-1 900 |
紫萁 Osmunda japonica | Oj | 紫萁科 Osmundaceae | 大明山 Damingshan | <2 300 |
钝角金星蕨 Parathelypteris angulariloba | Pa | 金星蕨科 Thelypteridaceae | 大明山 Damingshan | 500-800 |
瘤足蕨 Plagiogyria adnata | Pla | 瘤足蕨科 Plagiogyriaceae | 大明山 Damingshan | 500-2 000 |
华中瘤足蕨 Plagiogyria euphlebia | Ple | 瘤足蕨科 Plagiogyriaceae | 大明山 Damingshan | 500-1 200 |
井栏边草 Pteris multifida | Pm | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <1 000 |
半边旗 Pteris semipinnata | Ps | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <850 |
蜈蚣凤尾蕨 Pteris vittata | Pv | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <2 000 |
卤蕨 Acrostichum aureum | Aa | 凤尾蕨科 Pteridaceae | 东寨港 Dongzhaigang | - |
桫椤 Alsophila spinulosa | As | 桫椤科 Cyatheaceae | 伏波 Fubo | 260-1 600 |
乌毛蕨 Blechnum orientale | Bo | 乌毛蕨科 Blechnaceae | 伏波 Fubo | 300-800 |
金毛狗 Cibotium barometz | Cb | 金毛狗科 Cibotiaceae | 伏波 Fubo | 150-1 800 |
长叶实蕨 Bolbitis heteroclita | Bh | 鳞毛蕨科 Dryopteridaceae | 十万大山 Shiwandashan | 50-1 500 |
芒萁 Dicranopteris pedata | Dip | 里白科 Gleicheniaceae | 十万大山 Shiwandashan | 1 880 |
中华里白 Diplopterygium chinense | Dic | 里白科 Gleicheniaceae | 十万大山 Shiwandashan | 800-1 650 |
肾蕨 Nephrolepis cordifolia | Nc | 肾蕨科 Nephrolepidaceae | 十万大山 Shiwandashan | 30-1 500 |
华南紫萁 Osmunda vachellii | Ov | 紫萁科 Osmundaceae | 十万大山 Shiwandashan | <700 |
红色新月蕨 Pronephrium lakhimpurense | Pl | 金星蕨科 Thelypteridaceae | 十万大山 Shiwandashan | 300-1 550 |
条裂叉蕨 Tectaria phaeocaulis | Tp | 叉蕨科 Tectariaceae | 十万大山 Shiwandashan | 400-500 |
Table 1 A list of sample sites and their altitude for the 26 tropical and subtropical fern species
物种 Species | 缩写 Abbreviation | 科 Family | 地点 Site | 海拔1) Altitude1) (m) |
---|---|---|---|---|
无腺毛蕨 Cyclosorus procurrens | Cp | 金星蕨科 Thelypteridaceae | 大明山 Damingshan | 200-1 900 |
披针贯众 Cyrtomium devexiscapulae | Cd | 鳞毛蕨科 Dryopteridaceae | 大明山 Damingshan | 380-700 |
薄叶双盖蕨 Diplazium pinfaense | Dp | 蹄盖蕨科 Athyriaceae | 大明山 Damingshan | 400-1 800 |
双扇蕨 Dipteris conjugata | Dc | 双扇蕨科 Dipteridaceae | 大明山 Damingshan | 1 400-2 100 |
栗蕨 Histiopteris incisa | Hi | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | 500-1 900 |
华南鳞盖蕨 Microlepia hancei | Mh | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | 300-800 |
斜方鳞盖蕨 Microlepia rhomboidea | Mr | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | <1 000 |
乌蕨 Odontosoria chinensis | Oc | 鳞始蕨科 Lindsaeaceae | 大明山 Damingshan | 200-1 900 |
紫萁 Osmunda japonica | Oj | 紫萁科 Osmundaceae | 大明山 Damingshan | <2 300 |
钝角金星蕨 Parathelypteris angulariloba | Pa | 金星蕨科 Thelypteridaceae | 大明山 Damingshan | 500-800 |
瘤足蕨 Plagiogyria adnata | Pla | 瘤足蕨科 Plagiogyriaceae | 大明山 Damingshan | 500-2 000 |
华中瘤足蕨 Plagiogyria euphlebia | Ple | 瘤足蕨科 Plagiogyriaceae | 大明山 Damingshan | 500-1 200 |
井栏边草 Pteris multifida | Pm | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <1 000 |
半边旗 Pteris semipinnata | Ps | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <850 |
蜈蚣凤尾蕨 Pteris vittata | Pv | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <2 000 |
卤蕨 Acrostichum aureum | Aa | 凤尾蕨科 Pteridaceae | 东寨港 Dongzhaigang | - |
桫椤 Alsophila spinulosa | As | 桫椤科 Cyatheaceae | 伏波 Fubo | 260-1 600 |
乌毛蕨 Blechnum orientale | Bo | 乌毛蕨科 Blechnaceae | 伏波 Fubo | 300-800 |
金毛狗 Cibotium barometz | Cb | 金毛狗科 Cibotiaceae | 伏波 Fubo | 150-1 800 |
长叶实蕨 Bolbitis heteroclita | Bh | 鳞毛蕨科 Dryopteridaceae | 十万大山 Shiwandashan | 50-1 500 |
芒萁 Dicranopteris pedata | Dip | 里白科 Gleicheniaceae | 十万大山 Shiwandashan | 1 880 |
中华里白 Diplopterygium chinense | Dic | 里白科 Gleicheniaceae | 十万大山 Shiwandashan | 800-1 650 |
肾蕨 Nephrolepis cordifolia | Nc | 肾蕨科 Nephrolepidaceae | 十万大山 Shiwandashan | 30-1 500 |
华南紫萁 Osmunda vachellii | Ov | 紫萁科 Osmundaceae | 十万大山 Shiwandashan | <700 |
红色新月蕨 Pronephrium lakhimpurense | Pl | 金星蕨科 Thelypteridaceae | 十万大山 Shiwandashan | 300-1 550 |
条裂叉蕨 Tectaria phaeocaulis | Tp | 叉蕨科 Tectariaceae | 十万大山 Shiwandashan | 400-500 |
Fig. 1 Results of the principal component analysis (PCA) for absorptive root anatomical traits (A), and the 26 tropical/subtropical fern species (B). CT, cortex thickness; CT/SD, cortex thickness/stele diameter; RD, root diameter; SD, stele diameter; SD/RD, stele diameter/root diameter; TD, tracheid diameter; TN, tracheid number; XR, xylem area ratio. Species abbreviations are shown in Table 1.
根解剖特征 Root anatomical trait | Blomberg’s K | p |
---|---|---|
根直径 Root diameter | 0.44 | 0.18 |
中柱直径 Stele diameter | 0.32 | 0.62 |
皮层厚度 Cortex thickness | 0.60 | 0.03 |
中柱直径/根直径 Stele diameter/root diameter | 0.43 | 0.22 |
皮层厚度/中柱直径 Cortex thickness/stele diameter | 0.38 | 0.41 |
木质部面积比 Xylem area ratio | 0.28 | 0.82 |
管胞数量 Tracheid number | 0.42 | 0.25 |
管胞直径 Tracheid diameter | 0.34 | 0.52 |
Table 2 Phylogeny signal of absorptive root anatomical traits of the 26 tropical and subtropical fern species
根解剖特征 Root anatomical trait | Blomberg’s K | p |
---|---|---|
根直径 Root diameter | 0.44 | 0.18 |
中柱直径 Stele diameter | 0.32 | 0.62 |
皮层厚度 Cortex thickness | 0.60 | 0.03 |
中柱直径/根直径 Stele diameter/root diameter | 0.43 | 0.22 |
皮层厚度/中柱直径 Cortex thickness/stele diameter | 0.38 | 0.41 |
木质部面积比 Xylem area ratio | 0.28 | 0.82 |
管胞数量 Tracheid number | 0.42 | 0.25 |
管胞直径 Tracheid diameter | 0.34 | 0.52 |
Fig. 2 Relationships between the absorptive root anatomical traits and the precipitation variables of the native ranges of the 26 tropical and subtropical fern species. *, p < 0.05.
Fig. 3 Relationships between root diameter and cortex thickness (A), stele diameter (B), cortex thickness/stele diameter (C) and tracheid diameter (D). ○, subtropical angiosperm woody species (n = 96; Kong et al., 2014); ●, temperate fern species (n = 9; Dong et al., 2015); ●, fern species in this study (n = 26). *, p < 0.05; ***, p < 0.001. Angiosperm woody species and ferns differenced significantly in the slopes of the regression lines (ANCOVA; p < 0.001).
[1] |
Brundrett MC, Tedersoo L (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220, 1108-1115.
DOI PMID |
[2] |
Carlquist S, Schneider EL (2001). Vessels in ferns: structural, ecological, and evolutionary significance. American Journal of Botany, 88, 1-13.
PMID |
[3] | Chang WJ, Guo DL (2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese Version), 32, 1248-1257. |
[ 常文静, 郭大立 (2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.]
DOI |
|
[4] |
Chen WL, Zeng H, Eissenstat DM, Guo DL (2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856.
DOI URL |
[5] | Chen X, Chen DQ, Liu HK, Zhao CZ, Zhao WT, Dong Z, Zhang YT, Wang YP (2021). Responses of fine root anatomical traits of eleven tree species to the soil conditions in coastal saline-alkali stand sites of the Yellow River delta. Acta Ecologica Sinica, 41, 4150-4159. |
[ 陈旭, 陈冬倩, 刘洪凯, 赵春周, 赵文太, 董智, 张永涛, 王延平 (2021). 黄河三角洲滨海盐碱地11个造林树种细根解剖性状对土壤条件的响应. 生态学报, 41, 4150-4159.] | |
[6] |
Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerling DJ (2012). Evolutionary patterns and biogeochemical significance of angiosperm root traits. International Journal of Plant Sciences, 173, 584-595.
DOI URL |
[7] | Ding DJ, Liao BW, Guan W, Xiong YM, Li M, Chen YJ (2016). Evaluation on service value of coastal wetland ecosystem in Dongzhai harbor mangrove nature reserve. Ecological Science, 35, 182-190. |
[ 丁冬静, 廖宝文, 管伟, 熊燕梅, 李玫, 陈玉军 (2016). 东寨港红树林自然保护区滨海湿地生态系统服务价值评估. 生态科学, 35, 182-190.] | |
[8] |
Ding JX, Kong DL, Zhang ZL, Cai Q, Xiao J, Liu Q, Yin HJ (2020). Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal- dominated alpine coniferous forests. Journal of Ecology, 108, 2544-2556.
DOI URL |
[9] |
Dong XY, Wang HF, Gu JC, Wang Y, Wang ZQ (2015). Root morphology, histology and chemistry of nine fern species (Pteridophyta) in a temperate forest. Plant and Soil, 393, 215-227.
DOI URL |
[10] |
Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM, Bonis A, Comas LH, Cornelissen JHC, Dong M, Guo DL, et al. (2017). Climate, soil and plant functional types as drivers of global fine-root trait variation. Journal of Ecology, 105, 1182-1196.
DOI URL |
[11] |
Gao J, Zhou MY, Shao JJ, Zhou GY, Liu RQ, Zhou LY, Liu HY, He YH, Chen Y, Zhou XH (2021). Fine root trait-function relationships affected by mycorrhizal type and climate. Geoderma, 394, 115011. DOI: 10.1016/j.geoderma.2021.115011.
DOI URL |
[12] |
Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ (2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 34, 415-425.
DOI URL |
[13] |
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI URL |
[14] | He TP, Tan WF, Wen YG, Zhao ZH, Wen XF, Huang ZH, Men YY (2007). Diversity of rare and endangered plants in Shiwandashan Mountain National Natural Reserve. Journal of Guangxi Agricultural and Biological Science, 26, 125-131. |
[ 和太平, 谭伟福, 温远光, 赵泽红, 文祥凤, 黄志辉, 门媛媛 (2007). 十万大山国家级自然保护区珍稀濒危植物的多样性. 广西农业生物科学, 26, 125-131.] | |
[15] |
Huang BR, Eissenstat DM (2000). Linking hydraulic conductivity to anatomy in plants that vary in specific root length. Journal of the American Society for Horticultural Science, 125, 260-264.
DOI URL |
[16] | Huang Y, Wang B, Yan LM, Wei XM, Lin L, Wei JW, Li HJ (2020). Observations on the spatial and temporal patterns of amphibian diversity in Damingshan, Guangxi. Journal of Ecology and Rural Environment, 36, 968-974. |
[ 黄勇, 王波, 颜琳妙, 韦筱媚, 林莉, 韦建威, 李华坚 (2020). 广西大明山两栖动物多样性时空格局观测. 生态与农村环境学报, 36, 968-974.] | |
[17] |
Jin Y, Qian H (2019). V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353-1359.
DOI |
[18] |
Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI URL |
[19] |
Kong DL, Wang JJ, Valverde-Barrantes OJ, Kardol P (2021). A framework to assess the carbon supply-consumption balance in plant roots. New Phytologist, 229, 659-664.
DOI URL |
[20] |
Kong DL, Wang JJ, Wu HF, Valverde-Barrantes OJ, Wang RL, Zeng H, Kardol P, Zhang HY, Feng YL (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 10, 2203.
DOI URL |
[21] |
Kong DL, Wang JJ, Zeng H, Liu MZ, Miao Y, Wu HF, Kardol P (2017). The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots. New Phytologist, 213, 1569-1572.
DOI URL |
[22] |
Li HB, Liu BT, McCormack ML, Ma ZQ, Guo DL (2017). Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytologist, 216, 1140-1150.
DOI URL |
[23] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL |
[24] |
McAdam SAM, Brodribb TJ (2012). Stomatal innovation and the rise of seed plants. Ecology Letters, 15, 1-8.
DOI PMID |
[25] |
McCormack ML, Kaproth MA, Cavender-Bares J, Carlson E, Hipp AL, Han Y, Kennedy PG (2020). Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders. New Phytologist, 228, 1824-1834.
DOI URL |
[26] | Page CN (2002). Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology, 119, 1-33. |
[27] |
Paradis E, Claude J, Strimmer K (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
DOI URL |
[28] |
Pregitzer KS (2002). Fine roots of trees—A new perspective. New Phytologist, 154, 267-270.
DOI PMID |
[29] |
Rueden CT, Hiner MC, Eliceiri KW (2016). ImageJ: image analysis interoperability for the next generation of biological image data. Microscopy and Microanalysis, 22, 2066-2067.
DOI URL |
[30] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd ed. Springer, Berlin. |
[31] |
Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017). A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573.
DOI PMID |
[32] |
Valverde-Barrantes OJ, Maherali H, Baraloto C, Blackwood CB (2020). Independent evolutionary changes in fine-root traits among main clades during the diversification of seed plants. New Phytologist, 228, 541-553.
DOI URL |
[33] |
Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807.
DOI URL |
[34] |
Wang HF, Wang ZQ, Dong XY (2019). Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China. PLOS ONE, 14, e0215126. DOI: 10.1371/journal.pone.0215126.
DOI URL |
[35] | Wu WX (2019). Plant Diversity, Soil Microbial Diversity and Ecosystem Multifunction in Pure and Mixed Plantations. PhD dissertation, Guangxi University, Nanning. |
[ 巫文香 (2019). 人工纯林和混交林植物、土壤微生物多样性与生态系统多功能性. 博士学位论文, 广西大学, 南宁.] | |
[36] |
Yang L, Huang YH, Lima LV, Sun ZY, Liu MJ, Wang J, Liu N, Ren H (2021). Rethinking the ecosystem functions of Dicranopteris, a widespread genus of ferns. Frontiers in Plant Science, 11, 581513. DOI: 10.3389/fpls.2020.581513.
DOI URL |
[37] | You YM, Xu JY, Cai DX, Liu SR, Zhu HG, Wen YG (2016). Environmental factors affecting plant species diversity of understory plant communities in a Castanopsis hystrix plantation chronosequence in Pingxiang, Guangxi, China. Acta Ecologica Sinica, 36, 164-172. |
[ 尤业明, 徐佳玉, 蔡道雄, 刘世荣, 朱宏光, 温远光 (2016). 广西凭祥不同年龄红椎林林下植物物种多样性及其环境解释. 生态学报, 36, 164-172.] | |
[38] |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
DOI URL |
[39] |
Zhang KM, Shen Y, Zhou XL, Fang YM (2019). Analysis of fern research article trends across the Web of Science in the 21st century. Biodiversity Science, 27, 1245-1250.
DOI URL |
[ 张开梅, 沈羽, 周晓丽, 方炎明 (2019). 21世纪以来蕨类植物研究论文的发表情况: 基于Web of Science的数据统计. 生物多样性, 27, 1245-1250.]
DOI |
|
[40] | Zhang XC (2012). Lycophytes and Ferns of China. Peking University Press, Beijing. 711. |
[ 张宪春 (2012). 中国石松类和蕨类植物. 北京大学出版社, 北京. 711.] | |
[41] |
Zhou M, Bai WM, Li QM, Guo YM, Zhang WH (2021). Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe. New Phytologist, 229, 1481-1491.
DOI URL |
[42] |
Zhu SD, Li RH, Song J, He PC, Liu H, Berninger F, Ye Q (2016). Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests. Annals of Botany, 117, 497-506.
DOI URL |
[1] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[2] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[3] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[4] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[5] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[6] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[7] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[8] | Yang Lilin Sujing Fu Zhimin Zhang Qifu Yao. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[9] | Ning LIU, Shou-Zhang PENG, Yun-Ming CHEN. Temporal effects of climate factors on vegetation growth on the Qingzang Plateau, China [J]. Chin J Plant Ecol, 2022, 46(1): 18-26. |
[10] | WANG Chun-Cheng, ZHANG Yun-Ling, MA Song-Mei, HUANG Gang, ZHANG Dan, YAN Han. Phylogeny and species differentiation of four wild almond species of subgen. Amygdalus in China [J]. Chin J Plant Ecol, 2021, 45(9): 987-995. |
[11] | GAO De-Cai, BAI E. Influencing factors of soil nitrous oxide emission during freeze-thaw cycles [J]. Chin J Plant Ecol, 2021, 45(9): 1006-1023. |
[12] | NI Ming, ZHANG Xi-Yue, JIANG Chao, WANG He-Song. Responses of vegetation to extreme climate events in southwestern China [J]. Chin J Plant Ecol, 2021, 45(6): 626-640. |
[13] | JI Yu-He, ZHOU Guang-Sheng, WANG Shu-Dong, WANG Li-Xia, ZHOU Meng-Zi. Evolution characteristics and its driving forces analysis of vegetation ecological quality in Qinling Mountains region from 2000 to 2019 [J]. Chin J Plant Ecol, 2021, 45(6): 617-625. |
[14] | FANG Ou-Ya, ZHANG Yong, ZHANG Qi, JIA Heng-Feng. Growth responses of Tamarix austromongolica to extreme drought and flood in the upper Yellow River basin [J]. Chin J Plant Ecol, 2021, 45(6): 641-649. |
[15] | WANG Yi-Dan, LI Liang, LIU Qi-Jing, MA Ze-Qing. Lifespan and morphological traits of absorptive fine roots across six typical tree species in subtropical China [J]. Chin J Plant Ecol, 2021, 45(4): 383-393. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn