Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (9): 1287-1297.DOI: 10.17521/cjpe.2022.0219

Special Issue: 光合作用

• Research Articles • Previous Articles     Next Articles

Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats

MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing*()   

  1. School of Forestry, Northeast Forestry University, Harbin 150040, China
  • Received:2022-05-26 Accepted:2023-01-31 Online:2023-09-20 Published:2023-09-28
  • Contact: * WEI Xing(weixing94@163.com)
  • Supported by:
    Fundamental Research Funds for the Central Universities(2572020DR05)

Abstract:

Aims The morphology and photosynthetic functions of compound leaf are one of the most intuitive manifestations of plant response to habitats. The changes of photosynthetic capacity and number of leaflets of compound leaf directly reflect the adaptability of plants to habitats. There are some morphological differences between male and female Fraxinus mandschurica, and their compound leaf may have different adaptabilities in various habitats.
Methods This experiment took compound leaves male and female mature F. mandschurica growing in the drought saline-alkali habitat and suitable habitat as the research materials. The gender differences between female and male plants and the differences of morphology and photosynthetic function between compound leaf with different numbers of leaflets under two habitats were compared and analyzed.
Important findings The results showed that (1) compared with the suitable habitat, the morphology and photosynthetic capacity of compound leaf with the same number leaflets of female and male F. mandschurica under the drought saline-alkali habitat did not show gender difference, but the increment of percentages of compound leaf with 9 leaflets of female plants was 29.13% higher than that of the male plants, the decrement of percentages of compound leaf with 11 leaflets was 33.74% higher than that of the male plants, and the decreament of photosynthetic rate of compound leaf with 9 leaflets of female plants was 10.98% higher than that of the male plants. (2) Under the suitable habitat, the proportion of compound leaves of male plants was mainly concentrated within 9 and 11 leaflets, while the proportion of compound leaf of female plants was mainly concentrated within 11 leaflets. Meanwhile, the specific leaf area and leaf dry mass of compound leaves with 11 leaflets of female and male plants were greater than that of compound leaf with 7 and 9 leaflets. Under the drought saline-alkali habitat, the proportion of compound leaf of female and male plants was mainly concentrated in 9 leaflets. The specific leaf area of compound leaf with 9 leaflets of male and female plants was less than that of 11 leaflet compound leaf, whereas the leaf dry mass showed the opposite trend. There was also no significant difference in the net photosynthetic rate of compound leaf with 9 and 11 leaflets between female and male plants in the two habitats. (3) Among the indexes of compound leaf morphology and stomatal gas exchange capacity, the percentages of compound leaf with different number of leaflets, leaf dry mass, specific leaf area and net photosynthetic rate of compound leaf have high plasticity. Therefore, under the suitable habitat, there is no gender difference in the photosynthetic function between male and female plants, but there are gender differences in the morphology of compound leaf of male and female F. mandschurica, which are shown as follows: the female plants mainly developed the compound leaf with 11 leaflets, and the male plants predominantly developed the compound leaf with 9 leaflets and 11 leaflets. However, under the drought saline-alkali habitat, the morphology and photosynthetic function of compound leaf of male and female F. mandschurica did not show gender differences, and both female and male plants mainly developed the compound leaf with 9 leaflets. This study provides a theoretical basis for the gender difference in the growth and development of compound leaf in different habitats, and also provides data support for the ecological adaptability of compound leaf of dioecious trees.

Key words: Fraxinus mandschurica, dioecious plant, compound leaf, drought saline-alkali habitat, phenotypic plasticity