Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (9): 1287-1297.DOI: 10.17521/cjpe.2022.0219
Special Issue: 光合作用
• Research Articles • Previous Articles Next Articles
MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing*()
Received:
2022-05-26
Accepted:
2023-01-31
Online:
2023-09-20
Published:
2023-09-28
Contact:
* WEI Xing(Supported by:
MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats[J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0219
7小叶 7 leaflets | 9小叶 9 leaflets | 11小叶 11 leaflets | |
---|---|---|---|
生境 Habitat | 8.76** | 28.58** | 29.70** |
性别 Gender | 0.06** | 1.98 | 4.83* |
性别×生境 Gender × habitat | 7.49** | 0.40 | 8.75** |
Table 1 Two-factor ANOVA of habitat and gender on the proportion of compound leaves of different leaflet number of Fraxinus mandschurica
7小叶 7 leaflets | 9小叶 9 leaflets | 11小叶 11 leaflets | |
---|---|---|---|
生境 Habitat | 8.76** | 28.58** | 29.70** |
性别 Gender | 0.06** | 1.98 | 4.83* |
性别×生境 Gender × habitat | 7.49** | 0.40 | 8.75** |
Fig. 2 Violin plots of proportion of compound leaf types with different leaflet number of male and female Fraxinus mandschurica under two habitats. The black horizontal line in the box represents the median of percentages of compound leaves per plant, and the upper and lower edges of the white box represents the upper and lower quartiles in the data set. *, p < 0.05; **, p < 0.01; ns, p > 0.05.
Fig. 3 Effects of two habitats on the leaf morphology of compound leaf types with different leaflet number of male and female Fraxinus mandschurica (mean ± SE). F, female; M, male. Different lowercase letters indicate significant difference in compound leaf with the same leaflets number of female and male plants in the two habitats (p < 0.05), and different uppercase letters indicate significant differences in compound leaf with the different leaflets number of the same sex plants in the same habitat (p < 0.05).
Fig. 4 Effects of two habitats on the leaf dry mass and water content of compound leaf types with different leaflet number of male and female Fraxinus mandschurica (mean ± SE). F, female; M, male. Different lowercase letters indicate significant difference in compound leaf with the same leaflets number of female and male plants in the two habitats (p < 0.05), and different uppercase letters indicate significant difference in compound leaf with the different leaflets number of the same sex plants in the same habitat (p < 0.05).
Fig. 5 Effects of two habitats on the stomatal gas exchange capacity of compound leaf types of different leaflet number in male and female Fraxinus mandschurica (mean ± SE). F, female; M, male. Different lowercase letters indicate significant difference in compound leaf with the same leaflets number of female and male plants in the two habitats (p < 0.05), and different uppercase letters indicate significant difference in compound leaf with the different leaflets number of the same sex plants in the same habitat (p < 0.05).
性别 Gender | 复叶类型 Compound leaf type | 单株数量占比 Percentages of single plant | 叶面积 Leaf area | 叶长 Leaf length | 叶宽 Leaf width | 叶干质量 Leaf dry mass | 叶含水量 Leaf water content | 比叶面积 Specific leaf area | 净光合速率 Net photosynthetic rate | 气孔导度 Stomatal conductance | 胞间CO2浓度 Intercellular CO2 concentration | 蒸腾速率 Transpiration rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|
雌 Female | 7小叶 7 leaflets | 0.65 | 0.05 | 0.09 | 0.06 | 0.25 | 0.00 | 0.30 | 0.11 | 0.02 | 0.01 | 0.02 |
9小叶 9 leaflets | 0.28 | 0.04 | 0.03 | 0.02 | 0.29 | 0.06 | 0.34 | 0.15 | 0.11 | 0.09 | 0.10 | |
11小叶 11 leaflets | 0.55 | 0.08 | 0.06 | 0.06 | 0.15 | 0.04 | 0.21 | 0.17 | 0.01 | 0.03 | 0.03 | |
雄 Male | 7小叶 7 leaflets | 0.02 | 0.05 | 0.05 | 0.01 | 0.23 | 0.08 | 0.28 | 0.12 | 0.21 | 0.04 | 0.05 |
9小叶 9 leaflets | 0.19 | 0.05 | 0.08 | 0.02 | 0.21 | 0.05 | 0.28 | 0.16 | 0.15 | 0.02 | 0.02 | |
11小叶 11 leaflets | 0.23 | 0.14 | 0.13 | 0.08 | 0.14 | 0.05 | 0.19 | 0.18 | 0.06 | 0.02 | 0.03 | |
雌株均值 Mean value in female | 0.49 | 0.06 | 0.06 | 0.05 | 0.23 | 0.03 | 0.28 | 0.14 | 0.05 | 0.04 | 0.05 | |
雄株均值 Mean value in male | 0.15 | 0.08 | 0.09 | 0.04 | 0.19 | 0.06 | 0.25 | 0.15 | 0.14 | 0.03 | 0.03 | |
总均值 Total mean value | 0.32 | 0.07 | 0.08 | 0.05 | 0.21 | 0.05 | 0.27 | 0.15 | 0.06 | 0.04 | 0.04 |
Table 2 Plasticity index of compound leaf types with different leaflet number of male and female Fraxinus mandschurica (relative distance plasticity index) (RDPI)
性别 Gender | 复叶类型 Compound leaf type | 单株数量占比 Percentages of single plant | 叶面积 Leaf area | 叶长 Leaf length | 叶宽 Leaf width | 叶干质量 Leaf dry mass | 叶含水量 Leaf water content | 比叶面积 Specific leaf area | 净光合速率 Net photosynthetic rate | 气孔导度 Stomatal conductance | 胞间CO2浓度 Intercellular CO2 concentration | 蒸腾速率 Transpiration rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|
雌 Female | 7小叶 7 leaflets | 0.65 | 0.05 | 0.09 | 0.06 | 0.25 | 0.00 | 0.30 | 0.11 | 0.02 | 0.01 | 0.02 |
9小叶 9 leaflets | 0.28 | 0.04 | 0.03 | 0.02 | 0.29 | 0.06 | 0.34 | 0.15 | 0.11 | 0.09 | 0.10 | |
11小叶 11 leaflets | 0.55 | 0.08 | 0.06 | 0.06 | 0.15 | 0.04 | 0.21 | 0.17 | 0.01 | 0.03 | 0.03 | |
雄 Male | 7小叶 7 leaflets | 0.02 | 0.05 | 0.05 | 0.01 | 0.23 | 0.08 | 0.28 | 0.12 | 0.21 | 0.04 | 0.05 |
9小叶 9 leaflets | 0.19 | 0.05 | 0.08 | 0.02 | 0.21 | 0.05 | 0.28 | 0.16 | 0.15 | 0.02 | 0.02 | |
11小叶 11 leaflets | 0.23 | 0.14 | 0.13 | 0.08 | 0.14 | 0.05 | 0.19 | 0.18 | 0.06 | 0.02 | 0.03 | |
雌株均值 Mean value in female | 0.49 | 0.06 | 0.06 | 0.05 | 0.23 | 0.03 | 0.28 | 0.14 | 0.05 | 0.04 | 0.05 | |
雄株均值 Mean value in male | 0.15 | 0.08 | 0.09 | 0.04 | 0.19 | 0.06 | 0.25 | 0.15 | 0.14 | 0.03 | 0.03 | |
总均值 Total mean value | 0.32 | 0.07 | 0.08 | 0.05 | 0.21 | 0.05 | 0.27 | 0.15 | 0.06 | 0.04 | 0.04 |
[1] |
Blein T, Hasson A, Laufs P (2010). Leaf development: What it needs to be complex. Current Opinion in Plant Biology, 13, 75-82.
DOI PMID |
[2] |
Bongers FJ, Olmo M, Lopez-Iglesias B, Anten NPR, Villar R (2017). Drought responses, phenotypic plasticity and survival of Mediterranean species in two different microclimatic sites. Plant Biology, 19, 386-395.
DOI PMID |
[3] |
Bradshaw AD (2006). Unravelling phenotypic plasticity—Why should we bother? New Phytologist, 170, 644-648.
DOI PMID |
[4] | Chen XQ (1983). Study on soil genesis and soil classification on Harbin experimental tree farm. Journal of Northeast Forestry University, 11(3), 12-19. |
[陈喜全 (1983). 关于哈尔滨实验林场土壤发生分类的探讨. 东北林学院学报, 11(3), 12-19.] | |
[5] |
Dai AG (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52-58.
DOI |
[6] |
DeMason DA, Chawla R (2004). Roles for auxin during morphogenesis of the compound leaves of pea (Pisum sativum). Planta, 218, 435-448.
DOI URL |
[7] | Dong TF, Feng YL, Lei YB, Zhang LK (2012). Comparison on leaf functional traits of main dominant woody species in wet and dry habitats. Chinese Journal of Ecology, 31, 1043-1049. |
[董廷发, 冯玉龙, 类延宝, 张丽坤 (2012). 干旱和湿润生境中主要优势树种叶片功能性状的比较. 生态学杂志, 31, 1043-1049.] | |
[8] |
Du H, Liu H, Xiong L (2013). Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers in Plant Science, 4, 397. DOI: 10.3389/fpls.2013.00397.
PMID |
[9] | Feng S, Sun HW, Ma HP, Zhang X, Ma SR, Qiao K, Zhou AM, Bu YY, Liu SK (2020). Sexual differences in physiological and transcriptional responses to salinity stress of Salix linearistipularis. Frontiers in Plant Science, 11, 517962. DOI: 10.3389/fpls.2020.517962. |
[10] |
Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright J (2017). Revisiting the Holy Grail, using plant functional traits to understand ecological processes. Biological Reviews, 92, 1156-1173.
DOI URL |
[11] | Gage JL, Jarquin D, Romay C, Lorenz A, Buckler ES, Kaeppler S, Alkhalifah N, Bohn M, Campbell DA, Edwards J, Ertl D, Flint-Garcia S, Gardiner J, Good B, Hirsch CN, et al. (2017). The effect of artificial selection on phenotypic plasticity in maize. Nature Communications, 8, 1-11. |
[12] | Gao L, Yang J, Liu RX (2009). Effects of soil moisture levels on photosynthesis, transpiration, and moisture use efficiency of female and male plants of Hippophae rhamnoides ssp. sinensis. Acta Ecologica Sinica, 29, 6025-6034. |
[高丽, 杨劼, 刘瑞香 (2009). 不同土壤水分条件下中国沙棘雌雄株光合作用、蒸腾作用及水分利用效率特征. 生态学报, 29, 6025-6034.] | |
[13] |
Gao L, Yang J, Liu RX (2010). Leaf morphological structure and physiological and biochemical characteristics of female and male Hippophae Rhamnoides subsp. sinensis under different soil moisture condition. Chinese Journal of Applied Ecology, 21, 2201-2208.
PMID |
[高丽, 杨劼, 刘瑞香 (2010). 不同土壤水分条件下中国沙棘雌雄株叶片形态结构及生理生化特征. 应用生态学报, 21, 2201-2208.]
PMID |
|
[14] | Gao S, Song HF (2021). Sex-related response of Salicaceae to drought stress. Chinese Journal of Applied and Environmental Biology, 27, 495-502. |
[高爽, 宋海凤 (2021). 杨柳科植物对干旱胁迫的性别响应差异. 应用与环境生物学报, 27, 495-502.] | |
[15] |
Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21, 394-407.
DOI URL |
[16] |
Gianoli E, González-Teuber M (2005). Environmental heterogeneity and population differentiation in plasticity to drought in Convolvulus chilensis (Convolvulaceae). Evolutionary Ecology, 19, 603-613.
DOI URL |
[17] |
Henn JJ, Buzzard V, Enquist BJ, Halbritter AH, Klanderud K, Maitner BS, Michaletz ST, Pötsch C, Seltzer L, Telford RJ, Yang Y, Zhang L, Vandvik V (2018). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science, 9, 1548. DOI: 10.3389/fpls.2018.01548.
PMID |
[18] |
Ibrahimova U, Zivcak M, Gasparovic K, Rastogi A, Allakhverdiev SI, Yang XH, Brestic M (2021). Electron and proton transport in wheat exposed to salt stress: Is the increase of the thylakoid membrane proton conductivity responsible for decreasing the photosynthetic activity in sensitive genotypes? Photosynthesis Research, 150, 195-211.
DOI PMID |
[19] |
Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032.
DOI |
[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.]
DOI |
|
[20] |
Juvany M, Munné-Bosch S (2015). Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context. Journal of Experimental Botany, 66, 6083-6092.
DOI PMID |
[21] |
Koch G, Rolland G, Dauzat M, Bédiée A, Baldazzi V, Bertin N, Guédon Y, Granier C (2018). Are compound leaves more complex than simple ones? A multi-scale analysis. Annals of Botany, 122, 1173-1185.
DOI PMID |
[22] |
Letts MG, Phelan CA, Johnson DRE, Rood SB (2008). Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Tree Physiology, 28, 1037-1048.
PMID |
[23] |
Li JG, Pu LJ, Han MF, Zhu M, Zhang RS, Xiang YZ (2014). Soil salinization research in China: advances and prospects. Journal of Geographical Sciences, 24, 943-960.
DOI URL |
[24] |
Liao J, Song H, Tang D, Zhang S (2019). Sexually differential tolerance to water deficiency of Salix paraplesia—A female-biased alpine willow. Ecology and Evolution, 9, 8450-8464.
DOI |
[25] |
Liu YY, Song J, Wang M, Li N, Niu CY, Hao GY (2015). Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. Tree Physiology, 35, 1333-1342.
DOI URL |
[26] | Lu RK (2000). Soil Agriculture Chemistry Analytical Methods. Chinese Agricultural Science and Technology Press, Beijing. |
[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[27] | Ma JL, Shi JC, Jing FM (1991). Site classification for Manchurian ash. Journal of Northeast Forestry University, 19(S1), 62-68. |
[马建路, 石家琛, 景凤鸣 (1991). 水曲柳立地区划. 东北林业大学学报, 19(S1), 62-68.] | |
[28] |
Malhado ACM, Whittaker RJ, Malhi Y, Ladle RJ ter Steege H, Phillips O, Aragão LEOC, Baker TR, Arroyo L, Almeida S, Higuchi N, Killeen TJ, Monteagudo A, Pitman NCA, Prieto A, et al. (2010). Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 19, 852-862.
DOI URL |
[29] |
Montesinos D, Villar-Salvador P, García-Fayos P, Verdú M (2012). Genders in Juniperus thurifera have different functional responses to variations in nutrient availability. New Phytologist, 193, 705-712.
DOI PMID |
[30] |
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684-692.
DOI PMID |
[31] |
Nybakken L, Julkunen-Tiitto R (2013). Gender differences in Salix myrsinifolia at the pre-reproductive stage are little affected by simulated climatic change. Physiologia Plantarum, 147, 465-476.
DOI URL |
[32] |
Pan T, Liu MM, Kreslavski VD, Zharmukhamedov SK, Nie CR, Yu M, Kuznetsov VV, Allakhverdiev SI, Shabala S (2021). Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 51, 791-825.
DOI URL |
[33] | Qi CJ, Tang GG (2005). Dendrology. China Forestry Publishing House, Beijing. |
[祁承经, 汤庚国 (2005). 树木学. 中国林业出版社, 北京.] | |
[34] |
Song J, Yang D, Niu CY, Zhang WW, Wang M, Hao GY (2018). Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China. Forest Ecology and Management, 418, 63-72.
DOI URL |
[35] |
Stowe LG, Brown JL (1981). A geographic perspective on the ecology of compound leaves. Evolution, 35, 818-821.
DOI PMID |
[36] | Sun JJ (2020). Variations of Leaf and Fine Root Functional Traits of 15 Woody Species in Two Habitats. PhD dissertation, Northeast Forestry University, Harbin. 18. |
[孙婧珏 (2020). 两种生境下15种木本植物叶和细根功能性状的差异. 博士学位论文, 东北林业大学, 哈尔滨. 18.] | |
[37] |
Valladares F, Gianoli E, Gómez JM (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 749-763.
DOI PMID |
[38] |
Valladares F, Sanchez-Gomez D, Zavala MA (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94, 1103-1116.
DOI URL |
[39] |
van Kleunen M, Fischer M (2005). Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytologist, 166, 49-60.
DOI PMID |
[40] | Velikova V, Arena C, Izzo LG, Tsonev T, Koleva D, Tattini M, Roeva O, de Maio A, Loreto F (2020). Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two Platanus orientalis populations from contrasting habitats. International Journal of Molecular Sciences, 21, E3912. DOI: 10.3390/ijms21113912. |
[41] |
Verelst W, Bertolini E, de Bodt S, Vandepoele K, Demeulenaere M, Pè ME, Inzé D (2013). Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Molecular Plant, 6, 311-322.
DOI PMID |
[42] |
Wang H, Jones B, Li ZG, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M (2005). The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. The Plant Cell, 17, 2676-2692.
DOI URL |
[43] |
Wang JW, Liu Y, Xu YX, Chen WJ, Han YN, Wang GG, Jin SH (2022). Sexual differences in gas exchange and chlorophyll fluorescence of Torreya grandis under drought stress. Trees, 36, 283-294.
DOI |
[44] |
Ward JK, Dawson TE, Ehleringer JR (2002). Responses of Acer negundo genders to interannual differences in water availability determined from carbon isotope ratios of tree ring cellulose. Tree Physiology, 22, 339-346.
PMID |
[45] |
Wu BD, Liu J, Jiang K, Zhou JW, Wang CY (2019). Differences in leaf functional traits between simple and compound leaves of Canavalia maritime. Polish Journal of Environmental Studies, 28, 1425-1432.
DOI URL |
[46] |
Xu F, Guo WH, Xu WH, Wei YH, Wang RQ (2009). Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Progress in Natural Science, 19, 1789-1798.
DOI URL |
[47] |
Xu X, Peng GQ, Wu CC, Korpelainen H, Li CY (2008). Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana. Tree Physiology, 28, 1751-1759.
DOI URL |
[48] |
Yang D, Zhang YJ, Song J, Niu CY, Hao GY (2019). Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China. Tree Physiology, 39, 729-739.
DOI PMID |
[49] | Yang XY, Lu MQ, Wang YF, Wang YR, Liu ZJ, Chen S (2021). Response mechanism of plants to drought stress. Horticulturae, 7, 50. DOI: 10.3390/horticulturae7030050. |
[50] |
Zhang S, Chen LH, Duan BL, Korpelainen H, Li CY (2012). Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress. Forest Ecology and Management, 275, 68-78.
DOI URL |
[51] | Zhang WX, Cao FL (2002). Influence of drought stress on photosynthesis and photochemistry efficiency in leaves of Ginkgo biloba during high temperature days. Forest Research, 15, 672-679. |
[张往祥, 曹福亮 (2002). 高温期间水分对银杏光合作用和光化学效率的影响. 林业科学研究, 15, 672-679.] | |
[52] | Zhao WL, Zhang JL, Zhang YJ, Cao KF (2019). Analysis of photosynthesis-water relationship between simple-and compound-leafed leguminous trees. Plant Science Journal, 37, 628-636. |
[赵万里, 张教林, 章永江, 曹坤芳 (2019). 豆科复叶和单叶树种的光合-水分关系分析. 植物科学学报, 37, 628-636.] | |
[53] | Zheng WJ (1985). Records of Chinese Trees. China Forestry Publishing House, Beijing. |
[郑万钧 (1985). 中国树木志. 中国林业出版社, 北京.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn