Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (5): 440-451.DOI: 10.3724/SP.J.1258.2014.00040
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
LI Xi-Liang1,2,HOU Xiang-Yang1,*(),WU Xin-Hong1,null null1,JI Lei1,CHEN Hai-Jun1,LIU Zhi-Ying1,2,DING Yong1,*()
Received:
2013-12-26
Accepted:
2014-02-17
Online:
2014-12-26
Published:
2014-05-13
Contact:
HOU Xiang-Yang,DING Yong
LI Xi-Liang,HOU Xiang-Yang,WU Xin-Hong,null null,JI Lei,CHEN Hai-Jun,LIU Zhi-Ying,DING Yong. Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe[J]. Chin J Plant Ecol, 2014, 38(5): 440-451.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00040
Fig. 2 Effects of enclosure and grazing to leaf phenotypic trait of Leymus chinensis (mean ± SE). LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, mean leaf width; LWE, leaf mass; TLA, total leaf area; TLW, total leaf mass. Plots see Fig. 1. Different small letters indicate significant differences (p < 0.05).
Fig. 3 Effects of enclosure and grazing to stem phenotypic trait of Leymus chinensis (mean ± SE). SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SW, stem mass. Plots see Fig. 1. Different small letters indicate significant differences (p < 0.05).
Fig. 4 Effects of enclosure and grazing to functional traits of Leymus chinensis (mean ± SE). AB, aboveground biomass; PH, plant height; SLW, stem mass/leaf mass. Plots see Fig. 1. Different small letters indicate significant differences (p < 0.05).
Fig. 5 Sorting of Leymus chinensis leaf and stem trait plasticity index (PI) change in short-term enclosure (SE), moderate grazing (MG) and heavy degree grazing (HG). AB, aboveground biomass; LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, leaf width; LWE, leaf mass; PH, plant height; SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SLW, stem mass/leaf mass; SW, stem mass; TLA, total leaf area; TLW, total leaf mass.
Fig. 6 Comparisons of variation in leaf and stem functional traits in Leymus chinensis. AB, aboveground biomass; LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, leaf width; LWE, leaf mass; PH, plant height; SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SLW, stem mass/leaf mass; SW, stem mass; TLA, total leaf area; TLW, total leaf mass.
PH | LN | LL | LW | LLW | TLA | LA | SL | SD | SLD | |
---|---|---|---|---|---|---|---|---|---|---|
PH | 1.00 | |||||||||
LN | 0.20 | 1.00 | ||||||||
LL | 0.94** | 0.12 | 1.00 | |||||||
LW | 0.70** | 0.11 | 0.75** | 1.00 | ||||||
LLW | 0.84** | 0.08 | 0.88** | 0.37** | 1.00 | |||||
TLA | 0.92** | 0.32* | 0.94** | 0.81** | 0.75** | 1.00 | ||||
LA | 0.91** | 0.08 | 0.97** | 0.84** | 0.77** | 0.96** | 1.00 | |||
SL | 0.98** | 0.24 | 0.92** | 0.68** | 0.81** | 0.91** | 0.89** | 1.00 | ||
SD | 0.64** | 0.01 | 0.66** | 0.76** | 0.37** | 0.70** | 0.73** | 0.63** | 1.00 | |
SLD | 0.95** | 0.28* | 0.87** | 0.57** | 0.83** | 0.85** | 0.82** | 0.96** | 0.44** | 1.00 |
Table 1 The coordinated variation of Leymus chinensis leaf and stem phenotypic traits
PH | LN | LL | LW | LLW | TLA | LA | SL | SD | SLD | |
---|---|---|---|---|---|---|---|---|---|---|
PH | 1.00 | |||||||||
LN | 0.20 | 1.00 | ||||||||
LL | 0.94** | 0.12 | 1.00 | |||||||
LW | 0.70** | 0.11 | 0.75** | 1.00 | ||||||
LLW | 0.84** | 0.08 | 0.88** | 0.37** | 1.00 | |||||
TLA | 0.92** | 0.32* | 0.94** | 0.81** | 0.75** | 1.00 | ||||
LA | 0.91** | 0.08 | 0.97** | 0.84** | 0.77** | 0.96** | 1.00 | |||
SL | 0.98** | 0.24 | 0.92** | 0.68** | 0.81** | 0.91** | 0.89** | 1.00 | ||
SD | 0.64** | 0.01 | 0.66** | 0.76** | 0.37** | 0.70** | 0.73** | 0.63** | 1.00 | |
SLD | 0.95** | 0.28* | 0.87** | 0.57** | 0.83** | 0.85** | 0.82** | 0.96** | 0.44** | 1.00 |
Fig. 8 Regression fitting of Leymus chinensis individual aboveground biomass and functional traits. AB, aboveground biomass; LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, leaf width; LWE, leaf mass; PH, plant height; SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SLW, stem mass/leaf mass; SW, stem mass; TLA, total leaf area; TLW, total leaf mass.
Fig. 9 The variable importance in projection values (VIP) (mean ± SE) (bar charts) and weights of influential factors (pie charts) of individual aboveground biomass by the biomass components (A) and functional traits (B). LA, leaf area; LL, leaf length; LLW, leaf length/width ratio; LMA, leaf mass per area; LN, leaf number; LW, leaf width; LWE, leaf mass; PH, plant height; SD, stem diameter; SL, stem length; SLD, stem length/stem diameter; SLW, stem mass/leaf mass; SW, stem mass; TLA, total leaf area; TLW, total leaf mass.
[1] | Akiyama T, Kawamura K (2007). Grassland degradation in China: methods of monitoring, management and restoration. Grassland Science, 53, 1-17. |
[2] | Bernard-Verdier M, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E (2012). Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. Journal of Ecology, 100, 1422-1433. |
[3] |
Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001). A plant trait analysis of responses to grazing in a long-term experiment. Journal of Applied Ecology, 38, 253-267.
DOI URL |
[4] |
Conti G, Díaz S (2013). Plant functional diversity and carbon storage―an empirical test in semi-arid forest ecosystems. Journal of Ecology, 101, 18-28.
DOI URL |
[5] | Corner EJH (1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414. |
[6] |
de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005). A modular concept of phenotypic plasticity in plants. The New Phytologist, 166, 73-82.
DOI URL PMID |
[7] | Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skerpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341. |
[8] | Gao LX, Chen JK, Yang J (2008). Phenotypic plasticity: Eco-Devo and evolution. Journal of Systematics and Evolution, 46, 441-451. (in Chinese with English abstract) |
[ 高乐旋, 陈家宽, 杨继 (2008). 表型可塑性变异的生态-发育机制及其进化意义. 植物分类学报, 46, 441-451.] | |
[9] | Giese M, Gao YZ, Lin S, Brueck H (2011). Nitrogen availability in a grazed semi-arid grassland is dominated by seasonal rainfall. Plant and Soil, 340, 157-167. |
[10] | Han B, Zhao ML, Shan D (2011). Stipa Molecular Ecology. Science Press, Beijing. 1-32. |
[ 韩冰, 赵萌莉, 珊丹 (2011). 针茅属植物分子生态学. 科学出版社, 北京. 1-32.] | |
[11] |
He JS, Wang L, Flynn DF, Wang X, Ma W, Fang J (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[12] | Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
[13] | Hou XY (2013). Chinese Grassland Science. Science Press, Beijing. 424-470. |
[ 侯向阳 (2013). 中国草原科学. 科学出版社, 北京. 424-470.] | |
[14] | Klimkowska A, Bekker RM, van Diggelen R, Kotowski W (2010). Species trait shifts in vegetation and soil seed bank during fen degradation. Plant Ecology, 206, 59-82. |
[15] |
Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484.
DOI URL PMID |
[16] | Li B (1997). The rangeland degradation in north China and its preventive strategy. Scientia Agricutura Sinica, 30(6), 1-9. (in Chinese with English abstract) |
[ 李博 (1997). 中国北方草地退化及其防治对策. 中国农业科学, 30(6), 1-9.] | |
[17] |
Li SY, Verburg PH, Lü SH, Wu JL, Li XB (2012). Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Regional Environmental Change, 12, 461-474.
DOI URL |
[18] |
Li WJ, Ali SH, Zhang Q (2007). Property rights and grassland degradation: a study of the Xilingol Pasture, Inner Mongolia, China. Journal of Environmental Management, 85, 461-470.
DOI URL |
[19] |
Lindborg R, Helm A, Bommarco R, Heikkinen RK, Kühn I, Pykälä J, Pärtel M (2012). Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography, 35, 356-363.
DOI URL |
[20] | Liu ZL, Wang W, Hao DY, Liang CZ (2002). Probes on the degeneration and recovery succession mechanisms of Inner Mongolia steppe. Journal of Arid Land Resources and Environment, 16, 84-91. (in Chinese with English abstract) |
[ 刘钟龄, 王炜, 郝敦元, 梁存柱 (2002). 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 16, 84-91.] | |
[21] | Louault F, Pillar VD, Aufrère J, Garnier E, Soussana JF (2005). Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science, 16, 151-160. |
[22] | Ma WJ, Zhang Q, Niu JM, Kang S, Liu PT, He X, Yang Y, Zhang YN, Wu JG (2013). Relationship of ecosystem primary productivity to species diversity and functional group diversity: evidence from Stipa breviflora grassland in Inner Mongolia. Chinese Journal of Plant Ecology, 37, 620-630. (in Chinese with English abstract) |
[ 马文静, 张庆, 牛建明, 康萨如拉, 刘朋涛, 何欣, 杨艳, 张艳楠, 邬建国 (2013). 物种多样性和功能群多样性与生态系统生产力的关系——以内蒙古短花针茅草原为例. 植物生态学报, 37, 620-630.] | |
[23] |
Milton SJ, Dean WRJ, du Plessis MA, Siegfried WR (1994). A conceptual model of arid rangeland degradation. BioScience, 44, 70-76.
DOI URL |
[24] |
Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 327, 1642-1644.
DOI URL PMID |
[25] |
Nussey DH, Postma E, Gienapp P, Visser ME (2005). Selection on heritable phenotypic plasticity in a wild bird population. Science, 310, 304-306.
DOI URL PMID |
[26] |
Peng SS, Piao SL, Ciais P, Myneni RB, Chen AP, Chevallier F, Dolman AJ, Janssens IA, Penuelas J, Zhang GX, Vicca S, Wan SQ, Wang SP, Zeng H (2013). Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501, 88-92.
DOI URL PMID |
[27] |
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
DOI URL PMID |
[28] | Ren JZ (1998). Research Methods in Prataculturae. China Agriculture Press, Beijing. |
[ 任继周 (1998). 草业科学研究方法. 中国农业出版社, 北京.] | |
[29] | Ren JZ (2004). The General Theory of Agro-pasture Ecosystem. Anhui Education Press, Hefei. 105-320. |
[ 任继周 (2004). 草地农业生态系统通论. 安徽教育出版社, 合肥. 105-320.] | |
[30] | Ren JZ (2012). Grazing, the basic form of grassland ecosystem and its transformation. Journal of Natural Resources, 27, 1259-1275. (in Chinese with English abstract) |
[ 任继周 (2012). 放牧, 草原生态系统存在的基本方式——兼论放牧的转型. 自然资源学报, 27, 1259-1275.] | |
[31] |
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981-993.
DOI URL PMID |
[32] |
Rusch GM, Skarpe C, Halley DJ (2009). Plant traits link hypothesis about resource-use and response to herbivory. Basic and Applied Ecology, 10, 466-474.
DOI URL |
[33] |
Sarula, Li JX, Hou XY (2013). Research on soil organic carbon storage distribution in the grassland ecosystem. Scientia Agricultura Sinica, 46, 3604-3614. (in Chinese with English abstract)
DOI URL |
[ 萨茹拉, 李金祥, 侯向阳 (2013). 草地生态系统土壤有机碳储量及其分布特征. 中国农业科学, 46, 3604-3614.]
DOI URL |
|
[34] |
Stahlheber KA, D’Antonio CM (2013). Using livestock to manage plant composition: A meta-analysis of grazing in California Mediterranean grasslands. Biological Conservation, 157, 300-308.
DOI URL |
[35] |
Suzuki RO, Suzuki SN (2011). Facilitative and competitive effects of a large species with defensive traits on a grazing-adapted, small species in a long-term deer grazing habitat. Plant Ecology, 212, 343-351.
DOI URL |
[36] | Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925-1936. |
[37] |
van Kleunen M, Weber E, Fischer M (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
DOI URL PMID |
[38] |
von Wehrden H, Hanspach J, Kaczensky P, Fischer J, Wesche K (2012). Global assessment of the non-equilibrium concept in rangelands. Ecological Applications, 22, 393-399.
DOI URL PMID |
[39] | Wang SP, Wang YF, Chen ZZ (2003). The Management of Grazing Ecosystem. Science Press, Beijing. 113-132. |
[ 汪诗平, 王艳芬, 陈佐忠 (2003). 放牧生态系统管理. 科学出版社, 北京. 113-132.] | |
[40] | Wang W, Liang CZ, Liu ZL, Hao DY (2000). Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community. Acta Phytoecologica Sinica, 24, 268-274. (in Chinese with English abstract) |
[ 王炜, 梁存柱, 刘钟龄, 郝敦元 (2000). 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 24, 268-274.] | |
[41] | Wu JG (2007). Landscape Ecology: Pattern, Process, Scale and Level. 2nd edn. Higher Education Press, Beijing. 85-87. |
[ 邬建国 (2007). 景观生态学——格局、过程、尺度与等级(第二版). 高等教育出版社, 北京. 85-87.] | |
[42] | Zhu TC (2004). Leymus chinensis Biological Ecology. Jilin Science and Technology Press, Changchun. 177-191. |
[ 祝廷成 (2004). 羊草生物生态学. 吉林科学技术出版社, 长春. 177-191.] |
[1] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[2] | Chen-Hui CHANG Jiangling Zhu Wan-Qin YANG. A review on the study of forest coarse woody debris decomposition [J]. Chin J Plant Ecol, 2024, 48(5): 541-560. |
[3] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[4] | FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 364-376. |
[5] | LIU Cong-Cong, HE Nian-Peng, LI Ying, ZHANG Jia-Hui, YAN Pu, WANG Ruo-Meng, WANG Rui-Li. Current and future trends of plant functional traits in macro-ecology [J]. Chin J Plant Ecol, 2024, 48(1): 21-40. |
[6] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[7] | YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest [J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277. |
[8] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[9] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[10] | DAI Jing-Zhong, BAI Yu-Ting, WEI Zhi-Jun, ZHANG Chu, XIN Xiao-Ping, YAN Yu-Chun, YAN Rui-Rui. Dynamic response of functional traits to fertilization in Leymus chinensis [J]. Chin J Plant Ecol, 2023, 47(7): 943-953. |
[11] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[12] | CHEN Xue-Chun, LIU Hong, ZHU Shao-Qi, SUN Ming-Yao, YU Zhen-Rong, WANG Qing-Gang. Intraspecific variations in plant functional traits of four common herbaceous species under different abandoned years and their relevant driving factors in Lijiang River Basin, China [J]. Chin J Plant Ecol, 2023, 47(4): 559-570. |
[13] | WANG Wen-Wei, HAN Wei-Peng, LIU Wen-Wen. Short-term response of leaf functional traits of the invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands [J]. Chin J Plant Ecol, 2023, 47(2): 216-226. |
[14] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[15] | TANG Lu-Yao, FANG Jing, QIAN Hai-Rong, ZHANG Bo-Na, SHANGGUAN Fang-Jing, YE Lin-Feng, LI Shu-Wen, TONG Jin-Lian, XIE Jiang-Bo. Variation and coordination in functional traits along the tree height of Taxodium distichum and Taxodium distichum var. imbricatum [J]. Chin J Plant Ecol, 2023, 47(11): 1561-1575. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn