Chin J Plant Ecol ›› 2007, Vol. 31 ›› Issue (4): 665-672.DOI: 10.17521/cjpe.2007.0086
• Articles • Previous Articles Next Articles
SHEN Rui-Ling1,2, GUAN Bao-Hua1,2, CAI Ying1,2, AN Shu-Qing1,2,*(), JIANG Jin-Hui1,2, DONG Lei3
Received:
2006-07-19
Accepted:
2007-01-05
Online:
2007-07-19
Published:
2007-07-30
Contact:
AN Shu-Qing
SHEN Rui-Ling, GUAN Bao-Hua, CAI Ying, AN Shu-Qing, JIANG Jin-Hui, DONG Lei. HIGH SEDIMENT PHOSPHORUS CONCENTRATION ENHANCED INVASIVENESS OF ALTERNANTHERA PHILOXEROIDES[J]. Chin J Plant Ecol, 2007, 31(4): 665-672.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2007.0086
植株密度 Planting density | 底泥磷浓度处理 Sediment phosphorus concentration (mg·g-1) | ||
---|---|---|---|
低 Low 27.56 ± 0.78 | 中 Medium 52.85 ± 1.30 | 高 High 115.61 ± 2.72 | |
低(4株·桶-1) Low (4 individuals per container) | LSP-LPD | MSP-LPD | HSP-LPD |
高(8株·桶-1) High (8 individuals per container) | LSP-HPD | MSP-HPD | HSP-HPD |
Table 1 The experimental design and treatment codes
植株密度 Planting density | 底泥磷浓度处理 Sediment phosphorus concentration (mg·g-1) | ||
---|---|---|---|
低 Low 27.56 ± 0.78 | 中 Medium 52.85 ± 1.30 | 高 High 115.61 ± 2.72 | |
低(4株·桶-1) Low (4 individuals per container) | LSP-LPD | MSP-LPD | HSP-LPD |
高(8株·桶-1) High (8 individuals per container) | LSP-HPD | MSP-HPD | HSP-HPD |
Fig.1 Responses of biomass accumulation and biomass allocation of Alternanthera philoxeroides to the sediment phosphorus concentration and planting density LPD、HPD、LSP、MSP、HSP: See Table 1
Fig.2 Responses of the morphological traits of Alternanthera philoxeroides to the sediment phosphorus concentration and planting density (Mean±SE) LPD、HPD、LSP、MSP、HSP: 见图1 See Fig.1 图中不同的字母表示不同处理之间通过Duncan法进行多重检验得出的显著性差异 Bars with the same letters are not significantly different at p=0.05 (Duncan's post-hoc tests)
Fig.3 Responses of the ecophysiological traits of Alternanthera philoxeroides to the sediment phosphorus concentration and planting density (Mean±SE) LPD、HPD、LSP、MSP、HSP: 见图 1 See Fig. 1 图中不同的字母表示不同处理之间通过Duncan法进行多重检验得出的显著性差异 Bars with the same letters are not significantly different at p=0.05 (Duncan's post-hoc tests)
参数 Dependent variables | 底泥磷浓度 Sediment P concentration (df=2) | 植株密度 Planting density (df=1) | 交互作用 Interaction (df=2) | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
叶重 Leaf mass | 2.466 | 0.124 | 0.001 | 0.978 | 1.756 | 0.211 | ||
叶重比 Leaf mass ratio | 3.873 | 0.048 | 3.614 | 0.080 | 0.430 | 0.659 | ||
叶数 Leaf number | 3.916 | 0.047 | 0.496 | 0.494 | 1.050 | 0.378 | ||
茎重 Stem mass | 1.890 | 0.190 | 5.261 | 0.039* | 7.820 | 0.006 | ||
茎重比 Stem mass ratio | 1.767 | 0.210 | 3.218 | 0.096 | 0.701 | 0.514 | ||
茎长 Stem length | 7.938 | 0.006 | 0.003 | 0.958 | 6.680 | 0.010 | ||
茎直径 Stem basal diameter | 1.038 | 0.382 | 0.496 | 0.494 | 6.804 | 0.010 | ||
比茎长 Stem special length | 0.509 | 0.613 | 4.720 | 0.049 | 4.054 | 0.043 | ||
分枝数 Number of branches | 2.192 | 0.151 | 3.805 | 0.073 | 5.400 | 0.020 | ||
根重 Root mass | 1.260 | 0.316 | 1.748 | 0.209 | 2.706 | 0.104 | ||
根重比 Root mass ratio | 1.137 | 0.351 | 0.009 | 0.925 | 0.092 | 0.913 | ||
根冠比 Root/shoot | 1.287 | 0.309 | 0.000 | 0.994 | 0.108 | 0.899 | ||
根数 Root number | 1.586 | 0.242 | 0.933 | 0.352 | 0.674 | 0.526 | ||
地上重 Above-ground mass | 1.186 | 0.336 | 3.341 | 0.091 | 6.757 | 0.010 | ||
总重 Total mass | 1.236 | 0.323 | 3.171 | 0.098 | 6.107 | 0.014 | ||
叶磷含量 Leaf P concentration | 255.010 | <0.001 | 17.734 | 0.006 | 5.316 | 0.047 | ||
茎磷含量 Stem P concentration | 111.116 | <0.001 | 0.317 | 0.594 | 1.032 | 0.412 | ||
根磷含量 Root P concentration | 2.806 | 0.138 | 3.265 | 0.121 | 0.106 | 0.390 | ||
总磷含量Total plant P concentration | 32.482 | <0.001 | 8.085 | 0.029 | 2.733 | 0.143 |
Table 2 Two-way ANOVA of effects of the sediment phosphorus concentration and planting density on the morphological and ecophysiological traits of Alternanthera philoxeroides
参数 Dependent variables | 底泥磷浓度 Sediment P concentration (df=2) | 植株密度 Planting density (df=1) | 交互作用 Interaction (df=2) | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
叶重 Leaf mass | 2.466 | 0.124 | 0.001 | 0.978 | 1.756 | 0.211 | ||
叶重比 Leaf mass ratio | 3.873 | 0.048 | 3.614 | 0.080 | 0.430 | 0.659 | ||
叶数 Leaf number | 3.916 | 0.047 | 0.496 | 0.494 | 1.050 | 0.378 | ||
茎重 Stem mass | 1.890 | 0.190 | 5.261 | 0.039* | 7.820 | 0.006 | ||
茎重比 Stem mass ratio | 1.767 | 0.210 | 3.218 | 0.096 | 0.701 | 0.514 | ||
茎长 Stem length | 7.938 | 0.006 | 0.003 | 0.958 | 6.680 | 0.010 | ||
茎直径 Stem basal diameter | 1.038 | 0.382 | 0.496 | 0.494 | 6.804 | 0.010 | ||
比茎长 Stem special length | 0.509 | 0.613 | 4.720 | 0.049 | 4.054 | 0.043 | ||
分枝数 Number of branches | 2.192 | 0.151 | 3.805 | 0.073 | 5.400 | 0.020 | ||
根重 Root mass | 1.260 | 0.316 | 1.748 | 0.209 | 2.706 | 0.104 | ||
根重比 Root mass ratio | 1.137 | 0.351 | 0.009 | 0.925 | 0.092 | 0.913 | ||
根冠比 Root/shoot | 1.287 | 0.309 | 0.000 | 0.994 | 0.108 | 0.899 | ||
根数 Root number | 1.586 | 0.242 | 0.933 | 0.352 | 0.674 | 0.526 | ||
地上重 Above-ground mass | 1.186 | 0.336 | 3.341 | 0.091 | 6.757 | 0.010 | ||
总重 Total mass | 1.236 | 0.323 | 3.171 | 0.098 | 6.107 | 0.014 | ||
叶磷含量 Leaf P concentration | 255.010 | <0.001 | 17.734 | 0.006 | 5.316 | 0.047 | ||
茎磷含量 Stem P concentration | 111.116 | <0.001 | 0.317 | 0.594 | 1.032 | 0.412 | ||
根磷含量 Root P concentration | 2.806 | 0.138 | 3.265 | 0.121 | 0.106 | 0.390 | ||
总磷含量Total plant P concentration | 32.482 | <0.001 | 8.085 | 0.029 | 2.733 | 0.143 |
[1] | Bakker J, Wilson S (2001). Competitive abilities of introduced and native grasses. Plant Ecology, 157, 117-125. |
[2] |
Barreto R, Charudattan R, Pomella A, Hanada R (2000). Biological control of neotropical aquatic weeds with fungi. Crop Protection, 19, 697-703.
DOI URL |
[3] | Bradshaw AD (1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115-155. |
[4] |
Callaway RM, Aschehoug ET (2000). Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science, 290, 521-523.
DOI URL PMID |
[5] |
Cheng YX, Zhang WJ, Fu CZ, Lu BR (2003). Genetic diversity of alligator weed in China by RAPD analysis. Biodiversity and Conservation, 12, 637-645.
DOI URL |
[6] | Dewitt TJ, Andrew S, David SW (1998). Costs and limits of phenotypic plasticity. Trees, 13, 77-81. |
[7] |
Dietz H, Køhler A, Ullmann I (2002). Regeneration growth of the invasive clonal forb Rorippa austriaca (Brassicaceae) in relation to fertilization and interspecific competition. Plant Ecology, 158, 171-182.
DOI URL |
[8] |
Dong M, de Kroon H (1994). Plasticity in morphology and biomass allocation in Cynodon dactvlon, a grass species forming stolons and rhizomes. Oikos, 70, 99-106.
DOI URL |
[9] |
Dong M, During HJ, Werger MJA (1997). Clonal plasticity in response to nutrient availability in the pseudoannual herb, Trientalis europeae L. Plant Ecology, 131, 233-239.
DOI URL |
[10] |
Earle TT, Riess K, Hidalgo J (1951). Tracer studies with alligator weed using 2,4-D-C14. Science, 114, 695-696.
DOI URL PMID |
[11] |
Eggler WA (1953). The use of 2,4-D in the control of water hyacinth and alligator weed in the Mississippi delta, with certain ecological implications. Ecology, 34, 409-414.
DOI URL |
[12] |
Fransen B, Blijjenberg J, de Kroon H (1999). Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches. Plant and Soil, 211, 179-189.
DOI URL |
[13] |
Gaudet JJ (1975). Mineral concentrations in papyrus in various African swamps. Journal of Ecology, 63, 483-491.
DOI URL |
[14] | Geng YP (耿宇鹏), Zhang WJ (张文驹), Li B (李博), Chen JK (陈家宽) (2004). Phenotypic plasticity and invasiveness of alien plants. Biodiversity Science (生物多样性), 12, 447-455. (in Chinese with English abstract) |
[15] | Guan BH (关保华), Ge Y (葛滢), Fan MY (樊梅英), Niu XY (牛晓音), Lu Y (卢毅), Chang J (常杰) (2003). Phenotypic plasticity of growth and morphology in Mosla chinensis responds to diverse relative soil water content. Acta Ecologica Sinica (生态学报), 23, 259-263. (in Chinese with English abstract) |
[16] |
He WM, Dong M (2003). Plasticity in physiology and growth of Salix matsudana in response to simulated atmospheric temperature rise in the Mu Us Sandland. Photosynthetica, 41, 297-300.
DOI URL |
[17] | Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977). Distribution and Biology. University Press of Hawaii, Honolulu, Hawaii, 609. |
[18] |
Hunt KW (1943). Floating mats on a southeastern coastal plain reservoir. Bulletin of the Torrey Botanical Club, 70, 481-488.
DOI URL |
[19] | Hunt R (1978). Plant Growth Analysis. Edward Arnold, London. |
[20] |
Longstreth DJ, Mason CB (1984). The effect of light on growth and dry matter allocation patterns of Lternanthera philoxeroides (Mart.) Griseb. Botanical Gazette, 145, 105-109.
DOI URL |
[21] |
Longstreth DJ, Bolanos JA, Goddard RH (1985). Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides growth at two light levels. American Journal of Botany, 72, 14-19.
DOI URL |
[22] |
Maddox DM, Andres LA, Hennessey RD, Blackburn RD, Spencer NR (1971). Insects to control alligator weed: an invader of aquatic ecosystems in the United States. BioScience, 21, 985-991.
DOI URL |
[23] | Pigliucci M (2001). Phenotypic Plastcitity: Beyond Nature and Nurture. Johns Hopkins Press, Baltimore, London, |
[24] |
Sainty G, McCorkelle G, Julien M (1998). Control and spread of alligator weed Alternanthera philoxeroides (Mart.) Griseb, in Australia: lessons for other regions. Wetlands Ecology and Management, 5, 195-201.
DOI URL |
[25] |
Schooler S, Baron Z, Julien M (2006). Effect of simulated and actual herbivory on alligator weed, Alternanthera philoxeroides, growth and reproduction. Biological Control, 36, 74-79.
DOI URL |
[26] |
Schroeder MS, Janos DP (2004). Phosphorus and intraspecific density alter plant responses to Arbuscular mycorrhizas. Plant and Soil, 264, 335-348.
DOI URL |
[27] |
Spector T, Putz FE (2006). Biomechanical plasticity facilitates invasion of maritime forest in the southern USA by Brazilian pepper ( Schinus terebinthifolius). Biological Invasions, 8, 255-260.
DOI URL |
[28] |
Sultan SE, Bazzaz FA (1993). Phenotypic plasticity in Polygonum persicaria. Ⅲ. The evolution of ecological breadth for nutrient environment. Evolution, 47, 1050-1071.
DOI URL PMID |
[29] |
Sultan SE (2001). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542.
DOI URL PMID |
[30] |
Vojtíšková L, Munzarová E, Votrubová A, Řihová A, Juřicová B, (2004). Growth and biomass allocation of sweet flag ( Acorus calamus L.) under different nutrient conditions. Hydrobiologia, 518, 9-22.
DOI URL |
[31] |
Xie YH, An SQ, Yao X, Xiao KY, Zhang C (2005). Short-time response in root morphology of Vallisneria natans to sediment type and water-column nutrient. Aquatic Botany, 81, 85-96.
DOI URL |
[32] |
Xie YH, An SQ, Wu BF, Wang WW (2006). Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans. Environmental and Experimental Botany, 57, 195-200.
DOI URL |
[33] |
Xu CY, Zhang WJ, Fu CZ, Lu BR (2003). Genetic diversity of alligator weed in China by RAPD analysis. Biodiversity and Conservation, 12, 637-645.
DOI URL |
[34] | Xu KY, Ye WH, Cao HL, Deng X, Yang QH, Zhang Y (2004). The role of diversity and functional traits of species in community invasibility. Botanical Bulletin of Academia Sinica, 45, 149-157. |
[35] | Xu KY (许凯扬), Ye WH (叶万辉), Cao HL (曹洪麟), Huang ZL (黄忠良) (2004). An experimental study on the relationship between biodiversity and invasibility of plant communities. Acta Phytoecologica Sinica (植物生态学报), 28, 385-391. (in Chinese with English abstract). |
[36] | Xu KY (许凯扬), Ye WH (叶万辉), Li J (李静), Li GM (李国民) (2005). Phenotypic plasticity in response to soil nutrients in the invasive species Alternanthera philoxeroides. Ecology and Environment (生态环境), 14, 723-726. (in Chinese with English abstract) |
[37] |
Ye WH, Li J, Cao HL, Ge XJ (2003). Genetic uniformity of Alternanthera philoxeroides in South China. Weed Research, 43, 297-302.
DOI URL |
[1] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
[2] | WANG Yin-Liu, GENG Qian-Qian, HUANG Jian-Hui, WANG Chang-Hui, LI Lei, HASI Muqier, NIU Guo-Xiang. Effects of nitrogen addition and planting density on the growth and biological nitrogen fixation of Lespedeza davurica [J]. Chin J Plant Ecol, 2021, 45(1): 13-22. |
[3] | FENG Yin-Ping, SHEN Hai-Hua, LUO Yong-Kai, XU Long-Chao, LIU Shang-Shi, ZHU Yan-Kun, ZHAO Meng-Ying, XING Ai-Jun, FANG Jing-Yun. Effects of planting density on growth and biomass of Medicago sativa [J]. Chin J Plant Ecol, 2020, 44(3): 248-256. |
[4] | Xue YANG, Jun-Fang SHEN, Nian-Xi ZHAO, Yu-Bao GAO. Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis [J]. Chin J Plant Ecol, 2017, 41(3): 359-368. |
[5] | Xiu-Wen CHEN, Dan YU, Chun-Hua LIU. Effect of water level fluctuation frequency on Alternanthera philoxeroides, Myriophyllum aquaticum and Ludwigia adscendens in autumn [J]. Chin J Plant Ecol, 2016, 40(5): 493-501. |
[6] | BAN Zhi-Hua,WANG Qiong. Responses of the competition between Alternanthera philoxeroides and Sambucus chinensis to simulated warming [J]. Chin J Plan Ecolo, 2015, 39(1): 43-51. |
[7] | LI Xi-Liang,HOU Xiang-Yang,WU Xin-Hong,null null,JI Lei,CHEN Hai-Jun,LIU Zhi-Ying,DING Yong. Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe [J]. Chin J Plant Ecol, 2014, 38(5): 440-451. |
[8] | SONG Li-Xia, TAO Jian-Ping, RAN Chun-Yan, YU Xiao-Hong, WANG Yong-Jian, LI Yuan. CLONAL GROWTH OF FARGESIA NITIDA UNDER DIFFERENT CANOPY CONDITIONS IN A SUBALPINE DARK CONIFEROUS FOREST IN WOLONG NATURE RESERVE, CHINA [J]. Chin J Plant Ecol, 2007, 31(4): 637-644. |
[9] | CAI Ying, GUAN Bao-Hua, AN Shu-Qing, SHEN Rui-Ling, JIANG Jin-Hui, DONG Lei. PHENOTYPIC PLASTICITY OF THE CLONAL PLANT TRAPA BICORNIS IN RESPONSE TO SEDIMENT PHOSPHORUS CONCENTRATION AND PLANT DENSITY [J]. Chin J Plant Ecol, 2007, 31(4): 599-606. |
[10] | PAN Xiao-Yun, GENG Yu-Peng, ZHANG Wen-Ju, LI Bo, CHEN Jia-Kuan. COVER SHIFT AND MORPHOLOGICAL PLASTICITY OF INVASIVE ALTERNANTHERA PHILOXEROIDES ALONG A RIPARIAN ZONE IN SOUTH CHINA [J]. Chin J Plant Ecol, 2006, 30(5): 835-843. |
[11] | LIN Jin-Cheng, QIANG Sheng. INFLUENCE OF ALTERNANTHERA PHILOXEROIDES ON THE SPECIES COMPOSITION AND DIVERSITY OF WEED COMMUNITY IN SPRING IN NANJING [J]. Chin J Plant Ecol, 2006, 30(4): 585-592. |
[12] | SHI Gang_Rong, TANG Ying, ZHANG Zheng. LEAF ANATOMY OF DOMINANT PLANT SPECIES IN THE SUCCESSIONAL COMMUNITIES OF XIANGSHAN MOUTNAIN, HUAIBEI, CHINA [J]. Chin J Plant Ecol, 2006, 30(2): 314-322. |
[13] | ZHANG Yu-Fen, ZHANG Da-Yong. ASEXUAL AND SEXUAL REPRODUCTIVE STRATEGIES IN CLONAL PLANTS [J]. Chin J Plant Ecol, 2006, 30(1): 174-183. |
[14] | WANG Man-Lian, FENG Yu-Long. EFFECTS OF SOIL NITROGEN LEVELS ON MORPHOLOGY, BIOMASS ALLOCATION AND PHOTOSYNTHESIS IN AGERATINA ADENOPHORA AND CHROMOLEANA ODORATA [J]. Chin J Plant Ecol, 2005, 29(5): 697-705. |
[15] | WANG Qiong, SU Zhi-Xian, LEI Ning-Fei, ZHANG Yun-Chun. EFFECTS OF PARENT RAMET SIZE ON CLONAL GROWTH IN NEOSINOCALAMUS AFFINIS [J]. Chin J Plan Ecolo, 2005, 29(1): 116-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn