Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (1): 38-50.DOI: 10.17521/cjpe.2020.0176
• Research Articles • Previous Articles Next Articles
Hanula TASIKEN1, CAI Hui-Ying2,3, JIN Guang-Ze1,3,*()
Received:
2020-05-29
Accepted:
2020-08-28
Online:
2021-01-20
Published:
2020-12-09
Contact:
JIN Guang-Ze
Supported by:
Hanula TASIKEN, CAI Hui-Ying, JIN Guang-Ze. Effects of canopy structure on productivity in a typical mixed broadleaved-Korean pine forest[J]. Chin J Plant Ecol, 2021, 45(1): 38-50.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0176
尺度 Scale | 比较拟合指数 CFI | 标准均方根残差 SRMR | 渐进残差均方和平方根 RMSEA | 赤池信息准则 AIC | p |
---|---|---|---|---|---|
10 m × 10 m | 1 | 0.006 | 0 | 12 400.938 | 0.653 |
20 m × 20 m | 0.99 | 0.026 | 0.065 | 3 105.839 | 0.118 |
30 m × 30 m | 1 | 0.020 | 0 | 1 308.250 | 0.720 |
Supplement I Results of the best-fit structural equation models (SEMs) of productivity at varying scales
尺度 Scale | 比较拟合指数 CFI | 标准均方根残差 SRMR | 渐进残差均方和平方根 RMSEA | 赤池信息准则 AIC | p |
---|---|---|---|---|---|
10 m × 10 m | 1 | 0.006 | 0 | 12 400.938 | 0.653 |
20 m × 20 m | 0.99 | 0.026 | 0.065 | 3 105.839 | 0.118 |
30 m × 30 m | 1 | 0.020 | 0 | 1 308.250 | 0.720 |
Fig. 1 Schematic illustration of crown volume of a tree. CRmax, the maximum of radius of crown; H, tree height; H-CD, under branch height. The shape of the crown is determined by equation y = αx β, and β is the shape parameter which determines the curvature of the crown.
变量 Variable | 平均值 Mean | 标准差 SD | 范围 Range | ||||
---|---|---|---|---|---|---|---|
Shannon多样性指数 Shannon diversity index | 0.41 | 0.30 | 0.12-1.50 | ||||
Simpson多样性指数 Simpson diversity index | 0.18 | 0.12 | 0.06-0.54 | ||||
均匀度指数 Evenness index | 0.15 | 0.12 | 0.04-0.58 | ||||
物种丰富度指数 Species richness index | 9.48 | 1.99 | 5-16 |
Table 1 Summary of species diversity index in a typical mixed broadleaved-Korean pine forest plot
变量 Variable | 平均值 Mean | 标准差 SD | 范围 Range | ||||
---|---|---|---|---|---|---|---|
Shannon多样性指数 Shannon diversity index | 0.41 | 0.30 | 0.12-1.50 | ||||
Simpson多样性指数 Simpson diversity index | 0.18 | 0.12 | 0.06-0.54 | ||||
均匀度指数 Evenness index | 0.15 | 0.12 | 0.04-0.58 | ||||
物种丰富度指数 Species richness index | 9.48 | 1.99 | 5-16 |
环境因子 Environmental factor | 平均值 Mean | 标准差 SD | 变异系数 CV | 范围 Range | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Elevation (m) | 463.22 | 18.07 | 0.04 | 427.93-499.07 | |||||||||||
坡度 Slope (°) | 15.30 | 4.67 | 0.31 | 8.10-33.40 | |||||||||||
坡向 Aspect (sin) | 0.02 | 0.72 | 36.00 | -0.997-0.994 | |||||||||||
坡向 Aspect (cos) | -0.07 | 0.70 | -10.00 | -0.999-0.999 | |||||||||||
凹凸度 Convex | 0.06 | 1.05 | 17.50 | -1.55-4.45 | |||||||||||
土壤速效磷含量 Soil available phosphorus content (mg·kg-1) | 8.83 | 6.04 | 0.68 | 3.53-43.11 | |||||||||||
土壤速效钾含量 Soil available potassium content (mg·kg-1) | 332.61 | 52.69 | 0.16 | 200.87-485.34 | |||||||||||
土壤速效氮含量 Soil available nitrogen content (mg·kg-1) | 1 103.60 | 147.95 | 0.13 | 666.56-1 450.17 | |||||||||||
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 75.75 | 29.71 | 0.39 | 37.63-186.29 | |||||||||||
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 8.40 | 1.46 | 0.17 | 5.22-11.70 | |||||||||||
土壤全磷含量 Soil total phosphorus content (g·kg-1) | 0.82 | 0.13 | 0.16 | 0.44-1.13 | |||||||||||
土壤pH Soil pH | 5.77 | 0.15 | 0.03 | 5.47-6.19 | |||||||||||
土壤容重 Soil bulk density (g·cm-3) | 0.62 | 0.09 | 0.15 | 0.43-0.85 | |||||||||||
体积含水率 Soil volumetric moisture content (%) | 30.35 | 5.37 | 0.18 | 15.44-44.06 | |||||||||||
质量含水率 Soil mass moisture content (g·g-1) | 0.92 | 0.22 | 0.24 | 0.55-1.40 |
Table 2 Summary of topographic factors and soil physical and chemical properties in a typical mixed broadleaved-Korean pine forest plot
环境因子 Environmental factor | 平均值 Mean | 标准差 SD | 变异系数 CV | 范围 Range | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Elevation (m) | 463.22 | 18.07 | 0.04 | 427.93-499.07 | |||||||||||
坡度 Slope (°) | 15.30 | 4.67 | 0.31 | 8.10-33.40 | |||||||||||
坡向 Aspect (sin) | 0.02 | 0.72 | 36.00 | -0.997-0.994 | |||||||||||
坡向 Aspect (cos) | -0.07 | 0.70 | -10.00 | -0.999-0.999 | |||||||||||
凹凸度 Convex | 0.06 | 1.05 | 17.50 | -1.55-4.45 | |||||||||||
土壤速效磷含量 Soil available phosphorus content (mg·kg-1) | 8.83 | 6.04 | 0.68 | 3.53-43.11 | |||||||||||
土壤速效钾含量 Soil available potassium content (mg·kg-1) | 332.61 | 52.69 | 0.16 | 200.87-485.34 | |||||||||||
土壤速效氮含量 Soil available nitrogen content (mg·kg-1) | 1 103.60 | 147.95 | 0.13 | 666.56-1 450.17 | |||||||||||
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 75.75 | 29.71 | 0.39 | 37.63-186.29 | |||||||||||
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 8.40 | 1.46 | 0.17 | 5.22-11.70 | |||||||||||
土壤全磷含量 Soil total phosphorus content (g·kg-1) | 0.82 | 0.13 | 0.16 | 0.44-1.13 | |||||||||||
土壤pH Soil pH | 5.77 | 0.15 | 0.03 | 5.47-6.19 | |||||||||||
土壤容重 Soil bulk density (g·cm-3) | 0.62 | 0.09 | 0.15 | 0.43-0.85 | |||||||||||
体积含水率 Soil volumetric moisture content (%) | 30.35 | 5.37 | 0.18 | 15.44-44.06 | |||||||||||
质量含水率 Soil mass moisture content (g·g-1) | 0.92 | 0.22 | 0.24 | 0.55-1.40 |
Fig. 2 A conceptual model of hypothesized causal pathways linking the environmental factor, species diversity, canopy structural complexity, stand basal area, and productivity in a mixed broadleaved-Korean pine forest. The environmental factor is a latent variable consisting of soil physical and chemical properties and topography.
解释变量 Explanatory variable | 变量重要性 Variable importance | 含变量模型 Containing model |
---|---|---|
均匀度指数 Evenness index | 0.65 | 5 |
Simpson多样性指数 Simpson diversity index | 0.39 | 3 |
Shannon多样性指数 Shannon diversity index | 0.28 | 2 |
物种丰富度指数 Species richness index | 0.19 | 2 |
坡度 Slope | 0.81 | 4 |
海拔 Elevation | 0.56 | 3 |
坡向 Aspect (sin) | 0.41 | 2 |
坡向 Aspect (cos) | 0.16 | 1 |
土壤全磷含量 Soil total phosphorus content | 1.00 | 8 |
土壤速效氮含量 Soil available nitrogen content | 1.00 | 8 |
土壤速效磷含量 Soil available phosphorus content | 1.00 | 8 |
体积含水率 Soil volumetric moisture content | 0.91 | 7 |
土壤容重 Soil bulk density | 0.49 | 4 |
土壤速效钾含量 Soil available potassium content | 0.22 | 2 |
质量含水率 Soil mass moisture content | 0.11 | 1 |
土壤全氮含量 Soil total nitrogen content | 0.10 | 1 |
Supplement II Results of the relative importance of each variable in multiple regression model with productivity in typical mixed broadleaved-Korean pine forest
解释变量 Explanatory variable | 变量重要性 Variable importance | 含变量模型 Containing model |
---|---|---|
均匀度指数 Evenness index | 0.65 | 5 |
Simpson多样性指数 Simpson diversity index | 0.39 | 3 |
Shannon多样性指数 Shannon diversity index | 0.28 | 2 |
物种丰富度指数 Species richness index | 0.19 | 2 |
坡度 Slope | 0.81 | 4 |
海拔 Elevation | 0.56 | 3 |
坡向 Aspect (sin) | 0.41 | 2 |
坡向 Aspect (cos) | 0.16 | 1 |
土壤全磷含量 Soil total phosphorus content | 1.00 | 8 |
土壤速效氮含量 Soil available nitrogen content | 1.00 | 8 |
土壤速效磷含量 Soil available phosphorus content | 1.00 | 8 |
体积含水率 Soil volumetric moisture content | 0.91 | 7 |
土壤容重 Soil bulk density | 0.49 | 4 |
土壤速效钾含量 Soil available potassium content | 0.22 | 2 |
质量含水率 Soil mass moisture content | 0.11 | 1 |
土壤全氮含量 Soil total nitrogen content | 0.10 | 1 |
模型 Model | CFI | SRMR | RMSEA | AIC | p | ||
---|---|---|---|---|---|---|---|
树冠结构复杂性 Canopy structural complexity | 1 | 0.020 | 0 | 1 308.25 | 0.720 | ||
树冠垂直分层 Canopy vertical stratification | 1 | 0.019 | 0 | 1 295.63 | 0.568 | ||
树冠可塑性 Canopy plasticity | 1 | 0.021 | 0 | 1 346.06 | 0.755 |
Table 3 Results of the best-fit structural equation models (SEMs) testing the relationships between forest productivity and diversity in a typical mixed broadleaved-Korean pine forest
模型 Model | CFI | SRMR | RMSEA | AIC | p | ||
---|---|---|---|---|---|---|---|
树冠结构复杂性 Canopy structural complexity | 1 | 0.020 | 0 | 1 308.25 | 0.720 | ||
树冠垂直分层 Canopy vertical stratification | 1 | 0.019 | 0 | 1 295.63 | 0.568 | ||
树冠可塑性 Canopy plasticity | 1 | 0.021 | 0 | 1 346.06 | 0.755 |
Fig. 3 Structural equation models (SEMs) for linking multivariate relationships among canopy structural complexity, evenness index, stand basal area, environmental factor (a latent variable of soil total phosphorus (P) and slope), and productivity in typical mixed broadleaved-Korean pine forest. A, Considering canopy structural complexity. B, Considering canopy vertical stratification. C, Considering canopy plasticity in the structural equation model. Solid lines indicate significant paths, and dash lines indicate insignificant paths. Standardized regression coefficients and significance are shown next to the arrow for each path. R2 indicates the total variation in a dependent variable explained by the combined independent variables. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
预测因子 Predictor | 直接效应 Direct effect | 间接效应途径 Pathways of indirect effect | 间接效应 Indirect effect | 总效应 Total effect |
---|---|---|---|---|
环境因子 Environmental factor | -0.201 (p > 0.05) | 总计 Summed | 0.042 (p > 0.05) | -0.159 (p > 0.05) |
通过均匀度指数 Via EI | -0.093 (p > 0.05) | |||
通过树冠结构复杂性 Via CSC | -0.001 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | 0.137 (p= 0.021) | |||
均匀度指数 EI | 0.284 (p= 0.006) | 总计 Summed | -0.077 (p > 0.05) | 0.207 (p= 0.036) |
通过树冠结构复杂性 Via CSC | 0.082 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | -0.158 (p= 0.008) | |||
树冠结构复杂性CSC | 0.229 (p= 0.045) | 总计 Summed | 0.227 (p= 0.004) | 0.455 (p< 0.001) |
通过林分胸高断面积 Via SBA | 0.227 (p= 0.004) | |||
林分胸高断面积 SBA | 0.379 (p= 0.002) | 0.379 (p= 0.002) |
Table 4 Direct, indirect, and total standardized effects of evenness index (EI), canopy structural complexity (CSC), stand basal area (SBA) and environmental factor on productivity in a typical mixed broadleaved-Korean pine forest
预测因子 Predictor | 直接效应 Direct effect | 间接效应途径 Pathways of indirect effect | 间接效应 Indirect effect | 总效应 Total effect |
---|---|---|---|---|
环境因子 Environmental factor | -0.201 (p > 0.05) | 总计 Summed | 0.042 (p > 0.05) | -0.159 (p > 0.05) |
通过均匀度指数 Via EI | -0.093 (p > 0.05) | |||
通过树冠结构复杂性 Via CSC | -0.001 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | 0.137 (p= 0.021) | |||
均匀度指数 EI | 0.284 (p= 0.006) | 总计 Summed | -0.077 (p > 0.05) | 0.207 (p= 0.036) |
通过树冠结构复杂性 Via CSC | 0.082 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | -0.158 (p= 0.008) | |||
树冠结构复杂性CSC | 0.229 (p= 0.045) | 总计 Summed | 0.227 (p= 0.004) | 0.455 (p< 0.001) |
通过林分胸高断面积 Via SBA | 0.227 (p= 0.004) | |||
林分胸高断面积 SBA | 0.379 (p= 0.002) | 0.379 (p= 0.002) |
预测因子 Predictor | 直接效应 Direct effect | 间接效应途径 Pathways of indirect effect | 间接效应 Indirect effect | 总效应 Total effect |
---|---|---|---|---|
环境因子 Environmental factor | 0.177 (p > 0.05) | 总计 Summed | 0.064 (p > 0.05) | -0.146 (p > 0.05) |
通过均匀度指数 Via EI | -0.080 (p > 0.05) | |||
通过树冠垂直分层 Via CVS | 0.036 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | 0.137 (p= 0.021) | |||
均匀度指数 EI | 0.244 (p= 0.007) | 总计 Summed | -0.067 (p > 0.05) | 0.263 (p= 0.006) |
通过树冠垂直分层 Via CVS | 0.020 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | 0.086 (p > 0.05) | |||
树冠垂直分层 CVS | 0.434 (p< 0.001) | 总计 Summed | 0.126 (p > 0.05) | 0.560 (p< 0.001) |
通过林分胸高断面积 Via SBA | 0.126 (p > 0.05) | |||
林分胸高断面积 SBA | 0.208 (p > 0.05) | 0.208 (p > 0.05) |
Table 5 Direct, indirect, and total standardized effects of evenness index (EI), canopy vertical stratification (CVS), stand basal area (SBA) and environmental factor on productivity in a typical mixed broadleaved-Korean pine forest
预测因子 Predictor | 直接效应 Direct effect | 间接效应途径 Pathways of indirect effect | 间接效应 Indirect effect | 总效应 Total effect |
---|---|---|---|---|
环境因子 Environmental factor | 0.177 (p > 0.05) | 总计 Summed | 0.064 (p > 0.05) | -0.146 (p > 0.05) |
通过均匀度指数 Via EI | -0.080 (p > 0.05) | |||
通过树冠垂直分层 Via CVS | 0.036 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | 0.137 (p= 0.021) | |||
均匀度指数 EI | 0.244 (p= 0.007) | 总计 Summed | -0.067 (p > 0.05) | 0.263 (p= 0.006) |
通过树冠垂直分层 Via CVS | 0.020 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | 0.086 (p > 0.05) | |||
树冠垂直分层 CVS | 0.434 (p< 0.001) | 总计 Summed | 0.126 (p > 0.05) | 0.560 (p< 0.001) |
通过林分胸高断面积 Via SBA | 0.126 (p > 0.05) | |||
林分胸高断面积 SBA | 0.208 (p > 0.05) | 0.208 (p > 0.05) |
Fig. 4 Bivariate relationships between productivity (ln transformed) and explanatory variables in a typical mixed broadleaved- Korean pine forest. Fitted regression is significant at p < 0.05 and the relationships without fitted lines are insignificant at p > 0.05.
预测因子 Predictor | 直接效应 Direct effect | 间接效应途径 Pathways of indirect effect | 间接效应 Indirect effect | 总效应 Total effect |
---|---|---|---|---|
环境因子 Environmental factor | -0.264 (p= 0.024) | 总计 Summed | 0.073 (p > 0.05) | -0.191 (p > 0.05) |
通过均匀度指数 Via EI | -0.136 (p= 0.011) | |||
通过树冠可塑性 Via CP | 0.004 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | 0.205 (p= 0.006) | |||
均匀度指数 EI | 0.417 (p< 0.001) | 总计 Summed | -0.195 (p= 0.014) | 0.222 (p= 0.030) |
通过树冠可塑性 Via CP | -0.017 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | -0.178 (p= 0.005) | |||
树冠可塑性CP | -0.045 (p > 0.05) | 总计 Summed | 0.171 (p= 0.005) | 0.126 (p > 0.05) |
通过林分胸高断面积 Via SBA | 0.171 (p= 0.005) | |||
林分胸高断面积 SBA | 0.544 (p < 0.001) | 0.544 (p < 0.001) |
Table 6 Direct, indirect, and total standardized effects of evenness index (EI), canopy plasticity (CP), stand basal area (SBA) and environmental factors on productivity in a typical mixed broadleaved-Korean pine forest
预测因子 Predictor | 直接效应 Direct effect | 间接效应途径 Pathways of indirect effect | 间接效应 Indirect effect | 总效应 Total effect |
---|---|---|---|---|
环境因子 Environmental factor | -0.264 (p= 0.024) | 总计 Summed | 0.073 (p > 0.05) | -0.191 (p > 0.05) |
通过均匀度指数 Via EI | -0.136 (p= 0.011) | |||
通过树冠可塑性 Via CP | 0.004 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | 0.205 (p= 0.006) | |||
均匀度指数 EI | 0.417 (p< 0.001) | 总计 Summed | -0.195 (p= 0.014) | 0.222 (p= 0.030) |
通过树冠可塑性 Via CP | -0.017 (p > 0.05) | |||
通过林分胸高断面积 Via SBA | -0.178 (p= 0.005) | |||
树冠可塑性CP | -0.045 (p > 0.05) | 总计 Summed | 0.171 (p= 0.005) | 0.126 (p > 0.05) |
通过林分胸高断面积 Via SBA | 0.171 (p= 0.005) | |||
林分胸高断面积 SBA | 0.544 (p < 0.001) | 0.544 (p < 0.001) |
[1] |
Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS (2019). Tree crown complementarity links positive functional diversity and aboveground biomass along large-scale ecological gradients in tropical forests. Science of the Total Environment, 656,45-54.
DOI URL |
[2] |
Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016). Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 13,4627-4635.
DOI URL |
[3] |
Bartoń K (2016). Multi-model inference. Sociological Methods and Research, 33,261-304.
DOI URL |
[4] | Bayer D, Seifert S, Pretzsch H (2013). Structural crown properties of Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) in mixed versus pure stands revealed by terrestrial laser scanning. Trees, 27, 1035- 1047. |
[5] |
Bohn FJ, Huth A (2017). The importance of forest structure to biodiversity-productivity relationships. Royal Society Open Science, 4,160521. DOI: 10.1098/rsos.160521.
DOI URL |
[6] |
Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP (2003). Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology, 91,240-252.
DOI URL |
[7] | Chen CG, Zhu JF (1989). A Handbook for Main Tree Species Biomass in Northeast China. China Forestry Press, Beijing. |
[ 陈传国, 朱俊凤 (1989). 东北主要林木生物量手册. 中国林业出版社, 北京.] | |
[8] |
Dănescu A, Albrecht AT, Bauhus J (2016). Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182,319-333.
DOI PMID |
[9] |
Fahey RT, Fotis AT, Woods KD (2015). Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests. Ecological Applications, 25,834-847.
DOI URL |
[10] |
Forrester DI (2014). The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. Forest Ecology and Management, 312,282-292.
DOI URL |
[11] | Fotis AT, Morin TH, Fahey RT, Hardiman BS, Bohrer G, Curtis PS (2018). Forest structure in space and time: biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agricultural and Forest Meteorology, 250-251,181-191. |
[12] |
Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, et al. (2016). Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529,390-393.
DOI URL |
[13] |
Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Wen SJ, Li DX, He YL, Li XK (2016). Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 24,30-39.
DOI URL PMID |
[ 郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先琨 (2016). 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应. 生物多样性, 24,30-39.]
DOI PMID |
|
[14] |
Hardiman BS, Gough CM, Halperin A, Hofmeister KL, Nave LE, Bohrer G, Curtis PS (2013). Maintaining high rates of carbon storage in old forests: a mechanism linking canopy structure to forest function. Forest Ecology and Management, 298,111-119.
DOI URL |
[15] |
Hillebrand H, Bennett DM, Cadotte MW (2008). Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89,1510-1520.
PMID |
[16] | Howard AL (2013). Handbook of structural equation modeling. Structural Equation Modeling: a Multidisciplinary Journal, 20,354-360. |
[17] |
Jucker T, Bouriaud O, Coomes DA (2015). Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Functional Ecology, 29,1078-1086.
DOI URL |
[18] | Klute A (1986). Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy, Soil Science Society of America, Madison, USA. |
[19] |
Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009). Partitioning beta diversity in a subtropical broad- leaved forest of China. Ecology, 90,663-674.
PMID |
[20] |
Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E-D, David McGuire A, Bozzato F, Pretzsch H, de Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, et al. (2016). Positive biodiversity-productivity relationship predominant in global forests. Science, 354,aaf8957. DOI: 10.1126/science.aaf8957.
DOI URL |
[21] |
Lin F, Comita LS, Wang XG, Bai XJ, Yuan ZQ, Xing DL, Hao ZQ (2014). The contribution of understory light availability and biotic neighborhood to seedling survival in secondary versus old-growth temperate forest. Plant Ecology, 215,795-807.
DOI URL |
[22] |
Muth CC, Bazzaz FA (2003). Tree canopy displacement and neighborhood interactions. Canadian Journal of Forest Research, 33,1323-1330.
DOI URL |
[23] |
Pretzsch H (2014). Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Forest Ecology and Management, 327,251-264.
DOI URL |
[24] |
Purves DW, Lichstein JW, Pacala SW (2007). Crown plasticity and competition for canopy space: a new spatially implicit model parameterized for 250 North American tree species. PLOS ONE, 2,e870. DOI: 10.1371/journal.pone.0000870.
DOI URL |
[25] |
Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, et al. (2012). Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9,2203-2246.
DOI URL |
[26] |
Rissanen K, Martin-Guay MO, Riopel-Bouvier AS, Paquette A (2019). Light interception in experimental forests affected by tree diversity and structural complexity of dominant canopy. Agricultural and Forest Meteorology, 278,107655. DOI: 10.1016/j.agrformet.2019.107655.
DOI URL |
[27] |
Rosseel Y (2012). lavaan: an R package for structural equation modeling. Journal of Statistical Software, 48,2. DOI: 10.18637/jss.v048.i02.
DOI |
[28] |
Sapijanskas J, Paquette A, Potvin C, Kunert N, Loreau M (2014). Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology, 95,2479-2492.
DOI URL |
[29] |
Seidel D, Leuschner C, Müller A, Krause B (2011). Crown plasticity in mixed forests—Quantifying asymmetry as a measure of competition using terrestrial laser scanning. Forest Ecology and Management, 261,2123-2132.
DOI URL |
[30] |
Sterba H, Dirnberger G, Ritter T (2019). Vertical distribution of leaf area of European larch (Larix decidua Mill.) and Norway spruce (Picea abies L. Karst.) in pure and mixed stand. Forests, 10,570. DOI: 10.3390/f10070570.
DOI URL |
[31] |
Toïgo M, Perot T, Courbaud B, Castagneyrol B, Gégout JC, Longuetaud F, Jactel H, Vallet P (2018). Difference in shade tolerance drives the mixture effect on oak productivity. Journal of Ecology, 106,1073-1082.
DOI URL |
[32] |
Vockenhuber EA, Scherber C, Langenbruch C, Meißner M, Seidel D, Tscharntke T (2011). Tree diversity and environmental context predict herb species richness and cover in Germanyʼs largest connected deciduous forest. Perspectives in Plant Ecology, Evolution and Systematics, 13,111-119.
DOI URL |
[33] | Wang YQ (1995). The Mixed Broadleaved-Korean Pine Forest. Northeast Forestry University Press, Harbin. |
[ 王业蘧 (1995). 阔叶红松林. 东北林业大学出版社, 哈尔滨.] | |
[34] | Wen PY, Jin GZ (2019). Effects of topography on species diversity in a typical mixed broadleaved-Korean pine forest. Acta Ecologica Sinica, 39,945-956. |
[ 温佩颖, 金光泽 (2019). 地形对阔叶红松林物种多样性的影响. 生态学报, 39,945-956.] | |
[35] |
Williams LJ, Paquette A, Cavender-Bares J, Messier C, Reich PB (2017). Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology & Evolution, 1,0063. DOI: 10.1038/s41559-016-0063.
DOI |
[36] |
Xu LN, Jin GZ (2012). Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China. Biodiversity Science, 20,470-481.
DOI URL PMID |
[ 徐丽娜, 金光泽 (2012). 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构. 生物多样性, 20,470-481.]
DOI PMID |
|
[37] |
Yuan Z, Ali A, Wang S, Gazol A, Freckleton R, Wang X, Lin F, Ye J, Zhou L, Hao Z, Loreau M (2018). Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of the Total Environment, 630,422-431.
DOI URL |
[38] |
Zeller L, Liang J, Pretzsch H (2018). Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America. Forest Ecosystems, 5,4. DOI: 10.1186/s40663-017-0127-6.
DOI URL |
[39] |
Zhang Y, Chen HYH, Reich PB (2012). Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology, 100,742-749.
DOI URL |
[40] |
Zheng LT, Chen HYH, Yan ER (2019). Tree species diversity promotes litterfall productivity through crown complementarity in subtropical forests. Journal of Ecology, 107,1852-1861.
DOI URL |
[41] |
Zhu Y, Cai HY, Jiang F, Jin GZ (2017). Variation of the biotic neighbourhood and topographic effects on tree survival in an old-growth temperate forest. Journal of Vegetation Science, 28,1166-1177.
DOI URL |
[1] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[2] | YANG Yu-Meng, LAI Quan, LIU Xin-Yi. Quantitative analysis of climate change and human activities on vegetation gross primary productivity in Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(3): 306-316. |
[3] | ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction [J]. Chin J Plant Ecol, 2023, 47(7): 895-911. |
[4] | YANG Jia-Rong, DAI Dong, CHEN Jun-Fang, WU Xian, LIU Xiao-Lin, LIU Yu. Insight into recent studies on the diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species [J]. Chin J Plant Ecol, 2023, 47(6): 745-755. |
[5] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[6] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[7] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[8] | LIU Pei-Rong, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru, YU Pei-Yang, ZHOU Yu. Effect of diffuse radiation on gross primary productivity of typical planted forests in eastern China [J]. Chin J Plant Ecol, 2022, 46(8): 904-918. |
[9] | MA He-Ping, WANG Rui-Hong, QU Xing-Le, YUAN Min, MU Jin-Yong, LI Jin-Hang. Effects of different habitats on the diversity and biomass of ground moss in the southeast Xizang, China [J]. Chin J Plant Ecol, 2022, 46(5): 552-560. |
[10] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[11] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[12] | HAN Cong, LIU Peng, MU Yan-Mei, YUAN Yuan, HAO Shao-Rong, TIAN Yun, ZHA Tian-Shan, JIA Xin. Response of ecosystem carbon balance to asymmetric daytime vs nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
[13] | ZANG Yong-Xin, MA Jian-Ying, ZHOU Xiao-Bing, TAO Ye, YIN Ben-Feng, Shayaguli JIGEER, ZHANG Yuan-Ming. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes [J]. Chin J Plant Ecol, 2022, 46(12): 1537-1550. |
[14] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[15] | TIAN Jia-Yu, WANG Bin, ZHANG Zhi-Ming, LIN Lu-Xiang. Application of spectral diversity in plant diversity monitoring and assessment [J]. Chin J Plant Ecol, 2022, 46(10): 1129-1150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn