Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (3): 374-388.DOI: 10.17521/cjpe.2022.0032
Special Issue: 光合作用
• Research Articles • Previous Articles Next Articles
LIU Jian-Xin(), LIU Rui-Rui, LIU Xiu-Li, JIA Hai-Yan, BU Ting, LI Na
Received:
2022-01-19
Accepted:
2022-07-06
Online:
2023-03-20
Published:
2022-07-15
Contact:
LIU Jian-Xin
Supported by:
LIU Jian-Xin, LIU Rui-Rui, LIU Xiu-Li, JIA Hai-Yan, BU Ting, LI Na. Regulation of exogenous hydrogen sulfide on photosynthetic carbon metabolism in Avena nude under saline-alkaline stress[J]. Chin J Plant Ecol, 2023, 47(3): 374-388.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0032
Fig. 1 Effect of exogenous H2S on the SPAD value (A) and Hill’s reaction activity (B) in Avena nude leaves under saline-alkali stress (mean ± SD). CK, control; NaHS, spraying NaHS only; SA, spraying water under salt-alkali stress; SA + NaHS, spraying NaHS under salt-alkali stress. Different lowercase letters indicate significant differences among treatments for the same time (p < 0.05).
Fig. 2 Effect of exogenous H2S on photosynthetic gas exchange parameters in Avena nude leaves under saline-alkali stress (mean ± SD). CK, control; NaHS, spraying NaHS only; SA, spraying water under salt-alkali stress; SA + NaHS, spraying NaHS under salt-alkali stress. Ci, intercellular CO2 concentration; CUE, apparent CO2 utility efficiency; Gs, stomatal conductance; Ls, stomatal limitation value; Pn, net photosynthetic rate; Tr, transpiration rate. Different lowercase letters indicate significant differences among treatments at the same time (p < 0.05).
Fig. 3 Effect of exogenous H2S on the activities of key enzymes in Calvin cycle in Avena nude leaves under saline-alkali stress (mean ± SD). CK, control; NaHS, spraying NaHS only; SA, spraying water under salt-alkali stress; SA + NaHS, spraying NaHS under salt-alkali stress. FBA, fructose-1,6-bisphosphate aldolase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; RCA, Rubisco activase; Rubisco, ribulose-1,5-bisphophate carboxylase; SBPase, sedoheptulose-1,7-bisphosphatase; TK, transketolase. Different lowercase letters indicate significant differences among treatments at the same time (p < 0.05).
Fig. 4 Effect of exogenous H2S on the metabolic enzyme activities of starch and sucrose in Avena nude leaves under saline-alkali stress (mean ± SD). ADPG, adenosine diphosphate glucose. CK, control; NaHS, spraying NaHS only; SA, spraying water under salt-alkali stress; SA + NaHS, spraying NaHS under salt-alkali stress. Different lowercase letters indicate significant differences among treatments at the same time (p < 0.05).
Fig. 5 Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) score plot of photosynthetic carbon metabolism in leaves of Avena nude under different treatments and 200 permutation tests of the model. CK, control; NaHS, spraying NaHS only; SA, spraying water under salt-alkali stress; SA + NaHS, spraying NaHS under salt-alkali stress.
Fig. 6 Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) score plot (A, B, C) and varibale importance for the projection (VIP)-plot (mean ± SD) (D, E, F) of photosynthetic carbon metabolism in leaves of Avena nude under different treatment. CK, control; NaHS, spraying NaHS only; SA, spraying water under salt-alkali stress; SA + NaHS, spraying NaHS under salt-alkali stress. Acid inver, acid invertase; ADPG pyrop, adenosine diphosphate glucose pyrophosphorylase; α+β-amylas, (α+β)-amylase; Ci, intercellular CO2 concentration; CUE, apparent CO2 utility efficiency; ETR, electron transport rate; FBA, fructose-1,6-bisphosphate aldolase; Fm, maximum fluorescence; Fo, initial fluorescence; Fru, fructose; Fuc, fucose; Fv/Fm, maximum photochemical efficiency; Fv′/Fm′, effective light quantum yield; Gal, galactose; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Glc, glucose; Gs, stomatal conductance; Hill, Hill’s reaction activity; Ls, stomatal limitation value; Neutral in, neutral invertase; NPQ, non-photochemical quenching coefficient; Pn, net photosynthetic rate; qL, photochemical quenching coefficient; Raf, raffinose; RCA, Rubisco activase; Reducing s, reducing sugar; Rubisco, ribulose-1,5-bisphophate carboxylase; SBPase, sedoheptulose-1,7-bisphosphatase; Soluble su, soluble sugar; SPAD, chlorophyll relative content; Starch pho, starch phosphorylase; Suc, sucrose; Sucrose sy, sucrose synthase; Sucrose ph, sucrose phosphate synthase; TK, transketolase; Tr, transpiration rate; Tre, trehalose; Y(NO), non-adjusting energy dissipation quantum yield; Y(NPQ), adjusting energy dissipation quantum yield; Y(II), actual photochemical quantum yield. 7 and 14 represent the 7th and 14th day, respectively.
[1] |
Andersson I (1996). Large structures at high resolution: the 1.6 Å crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexed with 2-carboxyarabinitol bisphosphate. Journal of Molecular Biology, 259, 160-174.
PMID |
[2] | Che T, Zhang LP, Jin ZP, Pei YX (2019). Hydrogen sulfide regulates the photosynthetic physiology of Brassica pekinensis (Lour.) Rupr. under cadmium stress. Journal of Agro-Environment Science, 38, 1008-1016. |
[车涛, 张丽萍, 金竹萍, 裴雁曦 (2019). 硫化氢对镉胁迫下大白菜幼苗光合生理的影响. 农业环境科学学报, 38, 1008-1016.] | |
[3] |
Chen J, Wang WH, Wu FH, He EM, Liu X, Shangguan ZP, Zheng HL (2015). Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Scientific Reports, 5, 12516. DOI: 10.1038/srep12516.
DOI |
[4] |
Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, He JX, Pei ZM, Zheng HL (2011). Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany, 62, 4481-4493.
DOI URL |
[5] |
Demmig-Adams B, AdamsIII WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253-264.
DOI URL |
[6] |
Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345.
DOI URL |
[7] | Gao JF (2006). Plant Physiology Experiment Guide. Higher Education Press, Beijing. 107-108. |
[高俊凤 (2006). 植物生理学实验指导. 高等教育出版社, 北京. 107-108.] | |
[8] |
Gao WY, Feng Z, Bai QQ, He JJ, Wang YJ (2019). Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. International Journal of Molecular Sciences, 20, 1176-1193.
DOI URL |
[9] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92. |
[10] |
Huang H, Guo SS, Chen LC, Xiao B (2017). Effects of exogenous hydrogen sulfide on the antioxidant characteristics of tea plant (Camellia sinensis) under salt stress. Plant Physiology Journal, 53, 497-504.
DOI URL |
[黄菡, 郭莎莎, 陈良超, 肖斌 (2017). 外源硫化氢对盐胁迫下茶树抗氧化特性的影响. 植物生理学报, 53, 497-504.] | |
[11] |
Jia XM, Wang H, Svetla S, Zhu YF, Hu Y, Cheng L, Zhao T, Wang YX (2019). Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Scientia Horticulturae, 245, 154-162.
DOI URL |
[12] |
Jin ZP, Pei YX (2015). Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxidative Medicine and Cellular Longevity, 2015, 397502. DOI: 10.1155/2015/397502.
DOI |
[13] |
Khan MN, Mukherjee S, Al-Huqail AA, Basahi RA, Ali HM, Al-Munqedhi BMA, Siddiqui MH, Kalaji HM (2021). Exogenous potassium (K+) positively regulates Na+/H+ antiport system, carbohydrate metabolism, and ascorbate-glutathione cycle in H2S-dependent manner in NaCl-stressed tomato seedling roots. Plants, 10, 948. DOI: 10.3390/PLANTS10050948.
DOI |
[14] |
Lai DW, Mao Y, Zhou H, Li F, Wu MZ, Zhang J, He ZY, Cui WT, Xie YJ (2014). Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science, 225, 117-129.
DOI URL |
[15] | Li D, Shen HT, Wang YF, Wang LJ, Zhao SM, Liu L (2019). Effect of exogenous hydrogen sulfide on photosynthetic fluorescence parameters and antioxidant system of flue-cured tobacco seedlings under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 39, 1609-1617. |
[李冬, 申洪涛, 王艳芳, 王丽君, 赵世民, 刘领 (2019). 干旱胁迫下外源硫化氢对烤烟幼苗光合荧光参数及抗氧化系统的影响. 西北植物学报, 39, 1609-1617.] | |
[16] | Li XF, Zhang ZL (2016). Guidance of Plant Physiology Experiments. Higher Education Press, Beijing. 59-60, 91-104. |
[李小方, 张志良 (2016). 植物生理学实验指导. 高等教育出版社, 北京. 59-60, 91-104.] | |
[17] | Liu JX, Liu RR, Jia HY, Bu T, Li N (2021a). Effects of exogenous hydrogen sulfide on growth and physiological characteristics of naked oat seedlings under saline-alkali mixed stress. Journal of Triticeae Crops, 41, 245-253. |
[刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜 (2021a). 外源H2S对盐碱胁迫下裸燕麦幼苗生长和生理特性的影响. 麦类作物学报, 41, 245-253.] | |
[18] | Liu JX, Liu RR, Jia HY, Liu XL, Bu T, Li N (2021b). Regulation effects of hydrogen sulfide on ascorbate-glutathione cycle in naked oat leavesunder saline-alkali stress. Chinese Journal of Applied Ecology, 32, 3988-3996. |
[刘建新, 刘瑞瑞, 贾海燕, 刘秀丽, 卜婷, 李娜 (2021b). 硫化氢对盐碱胁迫下裸燕麦叶片抗坏血酸-谷胱甘肽循环的调控效应. 应用生态学报, 32, 3988-3996.] | |
[19] | Liu JX, Liu RR, Liu XL, Jia HY, Bu T, Li N (2021c). Effects of spraying NaHSat different growth stages on osmotic adjustment substance and antioxidant activity in leaves of naked oat under saline-alkali stress. Chinese Journal of Ecology, 40, 3620-3632. |
[刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜 (2021c). 不同时期喷施NaHS对盐碱胁迫下裸燕麦叶片渗透调节物质和抗氧化活性的影响. 生态学杂志, 40, 3620-3632.] | |
[20] | Liu JX, Wang JC, Wang RJ, Liu XL (2017). Effect of complex saline-alkali stress on the mineral ions absorption and photosynthetic characteristics of oat seedlings. Agricultural Research in the Arid Areas, 35(1), 178-184. |
[刘建新, 王金成, 王瑞娟, 刘秀丽 (2017). 混合盐碱胁迫对燕麦幼苗矿质离子吸收和光合特性的影响. 干旱地区农业研究, 35(1), 178-184.] | |
[21] | Mei YD, Jin XX, Huang LQ (2018). S-sulfhydration: a new post-translational modification of proteins. Chinese Journal of Biochemistry and Molecular Biology, 34, 911-920. |
[梅玉东, 金欣欣, 黄丽琴 (2018). 硫巯基化:一种新的蛋白质翻译后修饰. 中国生物化学与分子生物学报, 34, 911-920.] | |
[22] |
Mostofa MG, Saegusa D, Fujita M, Tran LSP (2015). Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Frontiers in Plant Science, 6, 1055. DOI: 10.3389/fpls.2015.01055.
DOI |
[23] |
Ozfidan-Konakci C, Yildiztugay E, Elbasan F, Kucukoduk M, Turkan I (2020). Hydrogen sulfide (H2S) and nitric oxide (NO) alleviate cobalt toxicity in wheat (Triticum aestivum L.) by modulating photosynthesis, chloroplastic redox and antioxidant capacity. Journal of Hazardous Materials, 388, 122061. DOI: 10.1016/j.jhazmat.2020.122061.
DOI |
[24] | Pan DY, Fu X, Zhang XW, Liu FJ, Bi HG, Ai XZ (2020). Hydrogen sulfide acted as a downstream signal was involved in the regulation of salicylic acid on photosynthesis of cucumber seedlings under low temperature and low light intensity. Chinese Journal of Applied Ecology, 31, 3023-3032. |
[潘东云, 付鑫, 张晓伟, 刘丰娇, 毕焕改, 艾希珍 (2020). H2S作为下游信号参与SA对低温弱光下黄瓜幼苗光合作用的调控. 应用生态学报, 31, 3023-3032.]
DOI |
|
[25] |
Raines CA (2003). The Calvin cycle revisited. Photosynthesis Research, 75, 1-10.
DOI PMID |
[26] |
Shan C, Liu H, Zhao L, Wang X (2014). Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress. Biologia Plantarum, 58, 169-173.
DOI URL |
[27] |
Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Almohisen IAA (2021). Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Reports, 40, 1543-1564.
DOI PMID |
[28] |
Steffens B, Sauter M (2009). Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. The Plant Cell, 21, 184-196.
DOI URL |
[29] | Sun LM, Jin ZP, Qian JH, Pei YX (2017). H2S enhanced photosynthesis in response to drought stress. Chinese Journal of Cell Biology, 39, 1583-1591. |
[孙丽敏, 金竹萍, 钱嘉航, 裴雁曦 (2017). 干旱胁迫下H2S信号增强植物叶片的光合作用. 中国细胞生物学学报, 39, 1583-1591.] | |
[30] | Wang HJ, Zhang LP, Liu ZQ, Liu DM, Jin ZP, Pei YX (2015). Influence of H2S on growth and photosynthesis of Brassica rapa var. pekinensis under chilling stress. Acta Botanica Boreali-Occidentalia Sinica, 35, 780-786. |
[王鸿蕉, 张丽萍, 刘志强, 刘旦梅, 金竹萍, 裴雁曦 (2015). 外源硫化氢对冷胁迫下白菜幼苗生长和光合作用的影响. 西北植物学报, 35, 780-786.] | |
[31] | Wu GX, Li SL, Li Y, Li YM, Bi HG, Ai XZ (2020). Effects of hydrogen sulfide, nitric oxide and their interaction on photosynthesis of cucumber seedlings under chilling stress. Plant Physiology Journal, 56, 2221-2232. |
[吴帼秀, 李胜利, 李阳, 李严曼, 毕焕改, 艾希珍 (2020). H2S和NO及其互作对低温胁迫下黄瓜幼苗光合作用的影响. 植物生理学报, 56, 2221-2232.] | |
[32] | Wu XH, Feng JM (2018). SNP on the seed germination and photosynthetic carbon metabolism of pumpkin seedlings under NaCl stress. Seed, 37, 100-103. |
[吴旭红, 冯晶旻 (2018). SNP对盐胁迫下南瓜种子萌发和幼苗光合碳代谢的影响. 种子, 37, 100-103.] | |
[33] | Yadav SP, Bharadwaj R, Nayak H, Mahto R, Prasad SK (2019). Impact of salt stress on growth, productivity and physicochemical properties of plants: a review. International Journal of Chemical Studies, 7, 1793-1798. |
[34] | Yan YQ, Wang WJ, Zhu H, Shi XC, Liu XL, Zu YG (2009). Effects of salt-alkali stress on osmoregulation substance and active oxygen metabolism of Qingshan poplar (Populus pseudo-cathayana × P. deltoides). Chinese Journal of Applied Ecology, 20, 2085-2091. |
[闫永庆, 王文杰, 朱虹, 石溪婵, 刘兴亮, 祖元刚 (2009). 混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响. 应用生态学报, 20, 2085-2091.] | |
[35] |
Zhao ZJ, Zhang HL, Wang MJ, Zhang XM, Li LX (2020). Salt stress-related regulation mechanism of intracellular pH and ion homeostasis in plants. Plant Physiology Journal, 56, 337-344.
DOI URL |
[赵振杰, 张海龙, 王明晶, 张小萌, 李立新 (2020). 植物耐盐性相关细胞内pH和离子稳态的调控机制. 植物生理学报, 56, 337-344.] | |
[36] | Zheng DS, Zhang ZW (2011). Discussion on the origin and taxonomy of naked oat (Avena nuda L.). Journal of Plant Genetic Resources, 12, 667-670. |
[郑殿升, 张宗文 (2011). 大粒裸燕麦(莜麦) (Avena nuda L.) 起源及分类问题的探讨. 植物遗传资源学报, 12, 667-670.] | |
[37] | Zheng ZY, Lin HR, Cui HM (2017). Effect of exogenous hydrogen sulfide on photosynthesis parameters and chlorophyll fluorescence characteristics of processing tomato (Lycopersicon esculentum Mill ssp. subspontaneum Brezh) seedlings under NaCl stress. Journal of Nuclear Agricultural Sciences, 31, 1426-1435. |
[郑州元, 林海荣, 崔辉梅 (2017). 外源硫化氢对盐胁迫下加工番茄幼苗光合参数及叶绿素荧光特性的影响. 核农学报, 31, 1426-1435.]
DOI |
|
[38] | Zhou CF, Wu CT, Li DD, Zhang XW, Bi HG, Ai XZ (2018). Hydrogen sulfide promotes chilling tolerance of cucumber seedlings by alleviating low-temperature photoinhibition. Plant Physiology Journal, 54, 411-420. |
[周超凡, 吴春涛, 李丹丹, 张晓伟, 毕焕改, 艾希珍 (2018). 外源H2S通过减轻低温光抑制增强黄瓜幼苗耐冷性. 植物生理学报, 54, 411-420.] | |
[39] | Zhou CF, Wu GX, Li T, Bi HG, Li QM, Ai XZ (2016). Effect of exogenous hydrogen sulfide on photosynthesis and antioxidant system of cucumber leaves under low temperature in solar-greenhouse. Acta Horticulturae Sinica, 43, 462-472. |
[周超凡, 吴帼秀, 李婷, 毕焕改, 李清明, 艾希珍 (2016). 外源H2S对低温下日光温室黄瓜光合作用及抗氧化系统的影响. 园艺学报, 43, 462-472.]
DOI |
[1] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[2] | ZHOU Jie, YANG Xiao-Dong, WANG Ya-Yun, LONG Yan-Xin, WANG Yan, LI Bo-Rui, SUN Qi-Xing, SUN Nan. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought [J]. Chin J Plant Ecol, 2022, 46(9): 1064-1076. |
[3] | LIN Yong, CHEN Zhi, YANG Meng, CHEN Shi-Ping, GAO Yan-Hong, LIU Ran, HAO Yan-Bin, XIN Xiao-Ping, ZHOU Li, YU Gui-Rui. Temporal and spatial variations of ecosystem photosynthetic parameters in arid and semi-arid areas of China and its influencing factors [J]. Chin J Plant Ecol, 2022, 46(12): 1461-1472. |
[4] | Li Yi-Bo, SONG He, ZHOU Li, XU Zhen-Zhu, ZHOU Guang-Sheng. Modeling study on photosynthetic-light response curves of a C4 plant, maize [J]. Chin J Plant Ecol, 2017, 41(12): 1289-1300. |
[5] | FENG Han-Qing, JIAO Qing-Song, TIAN Wu-Ying, SUN Kun, JIA Ling-Yun. Effects of extracellular ATP on the characteristics of photochemical reaction in bean (Phaseolus vulgaris) leaves under different light intensities [J]. Chin J Plant Ecol, 2014, 38(10): 1117-1123. |
[6] | WANG Rong-Rong, XIA Jiang-Bao, YANG Ji-Hua, ZHAO Yan-Yun, LIU Jing-Tao, SUN Jing-Kuan. Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells [J]. Chin J Plant Ecol, 2013, 37(2): 111-121. |
[7] | WANG Hui, ZHOU Guang-Sheng, JIANG Yan-Ling, SHI Yao-Hui, XU Zhen-Zhu. Interactive effects of changing precipitation and elevated CO2 concentration on photosynthetic parameters of Stipa breviflora [J]. Chin J Plant Ecol, 2012, 36(7): 597-606. |
[8] | GENG Yun-Xia, LI Yi-Ling, ZHU Sha, ZHU Jing-Jing, JIANG Jun-Cheng, NIU Hong-Hao, JIE Dong-Mei. Morphological changes of phytoliths in Leymus chinensis under saline-alkali stress [J]. Chin J Plant Ecol, 2011, 35(11): 1148-1155. |
[9] | ZHANG Xiang-Ying, FAN Da-Yong, XIE Zong-Qiang, XIONG Gao-Ming, LI Zhao-Jia. Clonal integration enhances performance of Cynodon dactylon subjected to submergence [J]. Chin J Plant Ecol, 2010, 34(9): 1075-1083. |
[10] | YAN Yong-Qing, LIU Xing-Liang, WANG Kun, FAN Jin-Ping, SHI Xi-Chan. Effect of complex saline-alkali stress on physiological parameters of Nitratia tangutorum [J]. Chin J Plant Ecol, 2010, 34(10): 1213-1219. |
[11] | ZHAO Ping, SUN Gu-Chou, ZENG Xiao-Ping. PHOTOSYNTHETIC RATES AND PARTITIONING OF ABSORBED LIGHT ENERGY IN LEAVES OF SUBTROPICAL BROAD-LEAF TREES UNDER MODERATELY HIGH-TEMPERATURE [J]. Chin J Plant Ecol, 2008, 32(2): 413-423. |
[12] | PENG Chang-Lian, WEN Xue, LIN Zhi-Fang, ZHOU Hou-Cheng, CHEN Shao-Wei, LIN Gui-Zhu. RESPONSE OF GRACILARIA LEMANEIFORMIS TO NITROGEN AND PHOSPHORUS EUTROPHIC SEAWATER [J]. Chin J Plant Ecol, 2007, 31(3): 505-512. |
[13] | SHI Sheng-Bo, LI He-Ping, WANG Xue-Ying, LI Hui-Mei, HAN Fa. UTILIZATION AND DISSIPATION OF STRONG SOLAR RADIATION IN TWO ALPINE PLANTS, ANISODUS TANGUTICUS AND RHEUM TANGUTICUM [J]. Chin J Plant Ecol, 2007, 31(1): 129-137. |
[14] | CHANG Si-Min, MA Xin-Ming, ZHANG Gui-Long, XIONG Shu-Ping, ZHAN Ke-Hui, LIU Guo-Shun. EFFECTS OF ARSENIC TOXICITY ON CARBON AND NITROGEN METABOLISM AND THE YIELD AND QUALITY OF FLUE-CURED TOBACCO [J]. Chin J Plant Ecol, 2006, 30(4): 682-688. |
[15] | SUN Gu-Chou, ZHAO Ping, ZENG Xiao-Ping, PENG Shao-Lin. Changes of Leaf Photosynthetic Parameters in Leaves of Woonyoungia septentrionaLis and Tsoongiodendron lotungensis Under Different Growth-Irradiation [J]. Chin J Plan Ecolo, 2002, 26(3): 355-362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn