Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (3): 288-296.doi: 10.17521/cjpe.2017.0068

• Research Articles • Previous Articles     Next Articles

Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China

YANG Hao-Tian,WANG Zeng-Ru*(),JIA Rong-Liang   

  1. Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Online:2017-06-16 Published:2018-03-20
  • Contact: Zeng-Ru WANG E-mail:wangzengru2@163.com
  • Supported by:
    Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05050406-1);the National Natural Science Foundation of China(41501110);the West Light Program for Talent Cultivation of Chinese Academy of Sciences.(41401112)

Abstract:

Aims The complexity of environments and high spatial heterogeneity of desert ecosystems are important factors contributing to the uncertainty in the estimation of soil organic carbon storage.

Methods Ten types of desert grassland communities in the southeastern fringe of the Tengger Desert, China were investigated. The content and vertical distribution of soil organic carbon (SOC) content in seven soil depths (0-5, 5-10, 10-20, 20-30, 30-50, 50-70 and 70-100 cm) and the underlying drivers were examined. Soil organic carbon density (SOCD) of four soil profiles (0-5, 0-20, 0-50 and 0-100 cm) were quantified.

Important findings We found significant differences in SOC content among the 10 vegetation communities, and the shrub community type was an important factor affecting SOC content. Two types of trends in SOC content changes with soil depth were observed: 1) monotonic decrease, 2) increase followed by decrease. The SOC content was significantly positively correlated with clay content, total N, total P and conductivity, but negatively correlated with sand content. There were significant differences in SOCD for soil profiles of 0-5, 0-20, 0-50 and 0-100 cm among different communities, of which the mean values of SOCD were 0.118, 0.478, 1.159 and 1.936 kg·m-2, respectively. Our results show that SOCD is far below the mean value of global or national grasslands. Using the average values of SOCD across either global or national grasslands (including the grassland in this study) to estimate the SOC storage of desert ecosystems may lead to the overestimation or underestimation. Using the SOCD of specific communities may greatly increase the accuracy of SOC storage estimation in desert grasslands.

Key words: the Tengger Desert, desert grassland, soil organic carbon content, soil organic carbon density

Table 1

Soil organic carbon content (g·kg-1) of different communities (mean ± SD)"

群落类型
Community type
土壤深度 Soil depth (cm)
0-5 5-10 10-20 20-30 30-50 50-70 70-100
AM 1.014 ± 0.186de 0.951 ± 0.183de 0.846 ± 0.154fg 0.913 ± 0.463de 0.663 ± 0.140d 0.591 ± 0.471e 0.649 ± 0.470bc
CLA 3.440 ± 1.312bc 2.411 ± 1.104bc 1.962 ± 0.738de 1.796 ± 0.922cd 1.469 ± 0.443cd 0.912 ± 0.199de 1.288 ± 0.533b
KF 2.960 ± 1.050c 3.700 ± 1.667a 4.660 ± 1.228a 5.460 ± 2.281a 4.040 ± 1.504a 4.080 ± 1.270a 2.420 ± 1.240a
NT 1.200 ± 0.346de 1.350 ± 0.311cde 1.200 ± 0.245ef 0.960 ± 0.288de 0.880 ± 0.295d 0.900 ± 0.361de 0.760 ± 0.114bc
OAL 0.439 ± 0.113e 0.278 ± 0.050e 0.254 ± 0.057g 0.300 ± 0.101e 0.438 ± 0.122d 0.323 ± 0.075e 0.393 ± 0.157c
PM 1.720 ± 0.396d 2.880 ± 0.814ab 3.720 ± 0.444b 3.780 ± 0.476b 2.280 ± 0.228bc 1.780 ± 0.311bc 1.180 ± 0.476b
RS 0.838 ± 0.094e 1.700 ± 1.144cd 2.445 ± 1.094cd 3.376 ± 0.255b 2.959 ± 0.313ab 2.227 ± 0.213b 2.322 ± 0.200a
RSK 4.660 ± 0.720a 3.760 ± 1.064a 2.980 ± 0.268bc 2.180 ± 0.192c 2.580 ± 1.972bc 1.180 ± 0.217cde 1.080 ± 0.444bc
SP 3.860 ± 0.684ab 2.880 ± 0.676ab 3.180 ± 0.756bc 2.800 ± 1.037bc 2.400 ± 1.384bc 1.400 ± 0.447cd 1.100 ± 0.728bc
ZX 0.887 ± 0.265e 1.301 ± 0.404cde 1.511 ± 0.416ef 1.703 ± 0.129cd 1.571 ± 0.197cd 1.352 ± 0.228cd 1.166 ± 0.193b

Fig. 1

The relationships between soil organic carbon content and pH value, conductivity, sand content, clay and silt content, total nitrogen (N) and total phosphorus (P) content."

Fig. 2

Soil organic carbon density in different depth for different community types (mean ± SD). The abbreviations of community types are the same as in Table 1. Different superscript letters indicate significant difference of soil organic carbon density between different communities (p < 0.05)."

Table 2

The ratio of soil organic carbon density of 0-5, 0-20, and 0-50 cm soil profile to soil organic carbon density of 0-100 cm soil profile"

群落类型
Community type
土层
Soil layer
0-5 0-20 0-50
AM 0.071 0.256 0.562
CLA 0.104 0.306 0.622
KF 0.036 0.197 0.535
NT 0.063 0.248 0.541
OAL 0.062 0.174 0.500
PM 0.046 0.284 0.674
RS 0.018 0.151 0.520
RSK 0.113 0.348 0.715
SP 0.089 0.299 0.682
ZX 0.033 0.193 0.543
平均值 Mean 0.061 0.247 0.599
[1] Bao SD ( 2000). Agricultural Chemistry Analysis of Soil. China Agriculture Press, Beijing.
鲍士旦 ( 2000). 土壤农化分析. 中国农业出版社, 北京.
[2] Batjes NH ( 1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163.
doi: 10.1111/ejs.1996.47.issue-2
[3] Davidson EA, Trumbore SE, Amundson R ( 2000). Biogeochemistry: Soil warming and organic carbon content. Nature, 408, 789-790.
doi: 10.1038/35048672 pmid: 11130707
[4] Ding YK, Yang J, Song BY, Hu GJLT, Zhang L ( 2012). Effect of different vegetation types on soil organic carbon in Mu Us Desert. Acta Prataculturae Sinica, 21(2), 18-25.
doi: 10.11686/cyxb20120203
丁越岿, 杨劼, 宋炳煜, 呼格吉勒图, 张琳 ( 2012). 不同植被类型对毛乌素沙地土壤有机碳的影响. 草业学报, 21(2), 18-25.
doi: 10.11686/cyxb20120203
[5] Evans RD, Koyama A, Sonderegger DL, Chen X, Maisupova B, Madaminov AA, Han Q, Djenbaev BM ( 2014). Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nature Climate Change, 4, 394-397.
doi: 10.1038/NCLIMATE2184
[6] Fang JY, Yang YH, Ma WH, Mohhamot A, Shen HH ( 2010). Ecosystem carbon stocks and their changes in China’s grasslands. Scientia Sinica Vitae, 40, 566-576.
方精云, 杨元合, 马文红, 安尼瓦尔·买买提, 沈海花 ( 2010). 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 40, 566-576.
[7] Gao YH, Li XR, Liu LC, Jia RL, Yang HT, Li G, Wei Y ( 2012). Seasonal variation of carbon exchange from a revegetation area in a Chinese desert. Agricultural and Forest Meteorology, 156, 134-142.
doi: 10.1016/j.agrformet.2012.01.007
[8] Hastings SJ, Oechel WC, Muhlia-Melo A ( 2005). Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global Change Biology, 11, 927-939.
doi: 10.1111/j.1365-2486.2005.00951.x
[9] Hou XY ( 1982). Vegetation Map of the People’s Republic of China and Its Illustration. China Cartographic Publishing House, Beijing.
侯学煜 ( 1982). 中华人民共和国植被图简要说明. 地图出版社, 北京.
[10] Janzen HH ( 2004). Carbon cycling in earth systems—A soil science perspective. Agriculture Ecosystems & Environment, 104, 399-417.
doi: 10.1016/j.agee.2004.01.040
[11] Jasoni RL, Smith SD, Arnone JA ( 2005). Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 11, 749-756.
doi: 10.1111/j.1365-2486.2005.00948.x
[12] Jobbágy EG, Sala OE ( 2000). Controls of grass and shrub aboveground production in the Patagonian steppe. Ecological Applications, 10, 541-549.
doi: 10.2307/2641113
[13] Kirschbaum MUF ( 2000). Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 48, 21-51.
doi: 10.1023/A:1006238902976
[14] Li C, Zhang C, Luo G, Chen X, Maisupova B, Madaminov AA, Han Q, Djenbaev BM ( 2015). Carbon stock and its responses to climate change in Central Asia. Global Change Biology, 21, 1951-1967.
doi: 10.1111/gcb.12846 pmid: 25626071
[15] Li D, Huang Y, Wu Q, Ming Z, Jin DY ( 2010). Modeling dynamics of soil organic carbon in an alpine meadow ecosystem on Qinghai-Tibetan Plateau using the Century model. Acta Prataculturae Sinica, 19(2), 160-168.
doi: 10.11686/cyxb20100223
李东, 黄耀, 吴琴, 明珠, 靳代樱 ( 2010). 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究. 草业学报, 19(2), 160-168.
doi: 10.11686/cyxb20100223
[16] Li XR ( 2012). Eco-hydrology of Biological Soil Crusts in Desert Regions of China. Higher Education Press, Beijing.
李新荣 ( 2012). 荒漠生物土壤结皮生态与水文学研究. 高等教育出版社, 北京.
[17] Li XR, He MZ, Duan ZH, Xiao HL, Jia XH ( 2007a ). Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, northern China. Geomorphology, 88, 254-265.
doi: 10.1016/j.geomorph.2006.11.009
[18] Li XR, Kong DS, Tan HJ, Wang XP ( 2007b ). Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the Tengger Desert, China. Plant and Soil, 300, 221-231.
doi: 10.1007/s11104-007-9407-1
[19] Li XR, Zhang ZS, Liu YB, Li XJ, Yang HT ( 2016). Fundamental Ecohydrology of Ecological Restoration and Recovery in Sandy Desert Regions of China. Science Press, Beijing.
李新荣, 张志山, 刘玉冰, 李小军, 杨昊天 ( 2016). 中国沙区生态重建与恢复的生态水文学基础. 科学出版社, 北京.
[20] Luyssaert S, Ingliina I, Jung M, Richardson A, Reichstein M, Papale D, Piao S, Schulze ED, Wingate L, Matteucci G ( 2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509-2537.
doi: 10.1111/gcb.2007.13.issue-12
[21] Ma WH ( 2006). Carbon Storage of Grasslands in Inner Mongolia. PhD dissertation, Peking University, Beijing.
马文红 ( 2006). 内蒙古温带草地碳储量. 博士学位论文, 北京大学, 北京.
[22] Men XH ( 2013). The Spatial Distribution Characteristics of Biomass and Carbon Density of Temperate Desert Grassland in Northern Xinjiang. Master degree dissertation, Xinjiang Agricultural University, ürümqi.
门学慧 ( 2013). 北疆温性荒漠类草地生物量与碳密度空间分布特征. 硕士学位论文, 新疆农业大学, 乌鲁木齐. ]
[23] Mohhamot A ( 2006). Carbon and Nitrogen Storage of Grassland Ecosystem in Xinjiang. PhD dissertation, Peking University, Beijing.
安尼瓦尔·买买提 ( 2006). 新疆草地生态系统碳、氮储量的研究. 博士学位论文, 北京大学, 北京.]
[24] Post WM, Emanuel WR, Zinke PJ, Stangenberger AG ( 1982). Soil carbon pools and world life zones. Nature, 298, 156-159.
doi: 10.1038/298156a0
[25] Post WM, Peng TH, Emanuel WR, King AW, Dale VH, DeAngelis DL ( 1990). The global carbon cycle. American Scientist, 78, 310-326.
[26] Rotenberg E, Yakir D ( 2010). Contribution of semi-arid forests to the climate system. Science, 327, 451-454.
doi: 10.1126/science.1179998 pmid: 20093470
[27] Schlesinger WH, Belnap J, Marion G ( 2009). On carbon sequestration in desert ecosystems. Global Change Biology, 15, 1488-1490.
doi: 10.1111/j.1365-2486.2008.01763.x
[28] Stone R ( 2008). Have desert researchers discovered a hidden loop in the carbon cycle? Science, 320, 1409-1410.
doi: 10.1126/science.320.5882.1409 pmid: 18556524
[29] Wang M ( 2014). Vegetation Biomass and Soil Organic Carbon Storage in Desert Grasslands of Hexi Corridor. PhD dissertation, University of Chinese Academy of Sciences, Beijing.
王敏 ( 2014). 河西走廊荒漠草地生物量和土壤有机碳储量. 博士学位论文, 中国科学院大学, 北京.
[30] Wohlfahrt Q, Fenstermaker LF, Arnone JA ( 2008). Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biology, 14, 1475-1487.
doi: 10.1111/j.1365-2486.2008.01593.x
[31] Xie J, Li Y, Zhai C, Li C, Lan Z ( 2009). CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environmental Geology, 56, 953-961.
doi: 10.1007/s00254-008-1197-0
[32] Yang HT, Li XR, Wang ZR, Jia RL, Liu LC, Chen YL, Wei YP, Gao YH, Li G ( 2014). Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China. Science of the Total Environment, 478, 1-11.
doi: 10.1016/j.scitotenv.2014.01.063 pmid: 24530579
[33] Yang TT ( 2013). Study on Biomass Dynamics and Carbon Storage Distribution in Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Huhhot.
杨婷婷 ( 2013). 荒漠草原生物量动态及碳储量空间分布研究. 博士学位论文, 内蒙古农业大学, 呼和浩特. ]
[34] Yang YH ( 2008). Carbon and Nitrogen Storage in Alpine Grasslands on the Tibetan Plateau. PhD dissertation, Peking University, Beijing.
杨元合 ( 2008). 青藏高原高寒草地生态系统碳氮储量. 博士学位论文, 北京大学, 北京.
[35] Zhao YY, Long RJ, Lin HL, Ren JZ ( 2008). Study on pastoral security and its assessment. Acta Prataculturae Sinica, 17(2), 143-150.
doi: 10.3321/j.issn:1004-5759.2008.02.020
赵有益, 龙瑞军, 林慧龙, 任继周 ( 2008). 草地生态系统安全及其评价研究. 草业学报, 17(2), 143-150.
doi: 10.3321/j.issn:1004-5759.2008.02.020
[1] WU Xiu-Zhi, YAN Xin, WANG Bo, LIU Ren-Tao, AN Hui. Effects of desertification on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland [J]. Chin J Plant Ecol, 2018, 42(10): 1022-1032.
[2] Lu-Cun YANG, Chang-Bin LI, Yi NING, Xiu-Qing NIE, Wen-Hua XU, Guo-Ying ZHOU. Carbon density and its spatial distribution in the Potentilla fruticosa dominated alpine shrub in Qinghai, China [J]. Chin J Plan Ecolo, 2017, 41(1): 62-70.
[3] Wen-Ting LIU, Zhi-Jun WEI, Shi-Jie LÜ, Shi-Xian SUN, Li-Juan JIA, Shuang ZHANG, Tian-Le WANG, Jing-Zhong DAI, Zhi-Hong LU. Response mechanism of plant diversity to herbivore foraging in desert grassland [J]. Chin J Plan Ecolo, 2016, 40(6): 564-573.
[4] Huai YANG, Yi-De LI, Hai REN, Tu-Shou LUO, Ren-Li CHEN, Wen-Jie LIU, De-Xiang CHEN, Han XU, Zhang ZHOU, Ming-Xian LIN, Qiu YANG, Hai-Rong YAO, Guo-Yi ZHOU. Soil organic carbon density and influencing factors in tropical virgin forests of Hainan Island, China [J]. Chin J Plan Ecolo, 2016, 40(4): 292-303.
[5] ZHAO Xin-Feng, XU Hai-Liang, ZHANG Peng, TU Wen-Xia, and ZHANG Qing-Qing. Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands [J]. Chin J Plan Ecolo, 2014, 38(2): 167-177.
[6] ZHAO Xin-Feng, XU Hai-Liang, ZHANG Peng, and ZHANG Qing-Qing. Influence of nutrient and water additions on functional traits of Salsola nitraria in desert grassland [J]. Chin J Plan Ecolo, 2014, 38(2): 134-146.
[7] WANG Min, SU Yong-Zhong, YANG Rong, and YANG Xiao. Allocation patterns of above- and belowground biomass in desert grassland in the middle reaches of Heihe River, Gansu Province, China [J]. Chin J Plan Ecolo, 2013, 37(3): 209-219.
[8] Xu Peng, An Sha-zhou. Principles and Ecologically Optimal Model for Desert Grassland Management [J]. Chin J Plan Ecolo, 1996, 20(5): 389-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Gao Xin-zeng. Several Promblems in the Teaching of Botany[J]. Chin Bull Bot, 1990, 7(01): 67 -69 .
[2] Chen Yin-shuo. Review and Prospect of Palynology[J]. Chin Bull Bot, 1992, 9(02): 16 -20 .
[3] Chang Jie Ge Ying. On the Methodology of Plant Physioecology[J]. Chin Bull Bot, 1995, 12(专辑2): 224 -229 .
[4] Yang Ying-gen Zhang Li-jun Li Yu. Studies on the Posthar Vest Physiological Properties of Apricot Fruit[J]. Chin Bull Bot, 1995, 12(02): 54 -56 .
[5] WU Shun-Qing. Early Cretaceous Plants from Hong Kong[J]. Chin Bull Bot, 2000, 17(专辑): 218 -228 .
[6] Zengfang Yin Ruwen Fan. Developmental Inherent Rhythm and Dynamic Changes in Cell Ergastic Substances of Secondary Vascular Tissues in Populus deltoids[J]. Chin Bull Bot, 2006, 23(3): 262 -268 .
[7] HE Xin-Qiang CUI Ke-Ming. Progress in Study of Secondary Wall Formation in Plants[J]. Chin Bull Bot, 2002, 19(05): 513 -522 .
[8] Xu Ke-zhang. The Anatomical Studies of Cucumis sativas Leaves With Melon and Without Melon[J]. Chin Bull Bot, 1985, 3(04): 36 -38 .
[9] Ruan Ji-hua and Liu Kui. Frelinary Studies on Regeneration of Thallus Frangments of Centroceras clavatum[J]. Chin Bull Bot, 1990, 7(04): 40 -42 .
[10] Zhang Jing-tan. [J]. Chin Bull Bot, 1988, 5(03): 134 .