Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (7): 753-765.DOI: 10.17521/cjpe.2021.0254
• Research Articles • Previous Articles Next Articles
CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu()
Received:
2021-07-07
Accepted:
2021-09-27
Online:
2022-07-20
Published:
2021-12-16
Contact:
CHEN Xiao-Qiu
Supported by:
CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu. Process-based simulation of autumn phenology of trees and the regional differentiation attribution in northern China[J]. Chin J Plant Ecol, 2022, 46(7): 753-765.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0254
物候期 Phenophase | 物种 species | TPMp (%) | TPMt (%) | RMSE平均值 Average RMSE | RMSE < 8 d比例 Proportion of RMSE < 8 d (%) | r > 0.6 (p < 0.05)比例 Proportion of r > 0.6 (p < 0.05) (%) |
---|---|---|---|---|---|---|
叶始变色期 First leaf coloration | 刺槐 Robinia pseudoacacia | 50.0 | 50.0 | 7.6 | 60.7 | 14.3 |
旱柳 Salix matsudana | 66.0 | 34.0 | 6.6 | 74.5 | 51.9 | |
杏 Armeniaca vulgaris | 75.0 | 25.0 | 6.9 | 83.3 | 41.7 | |
榆树 Ulmus pumila | 68.6 | 31.4 | 7.0 | 71.4 | 31.4 | |
毛白杨 Populus tomentosa | 54.5 | 45.5 | 7.6 | 63.6 | 31.8 | |
小叶杨 Populus simonii | 69.0 | 31.0 | 6.4 | 75.9 | 44.8 | |
落叶末期 Leaf fall end | 刺槐 Robinia pseudoacacia | 56.7 | 43.3 | 6.4 | 70.0 | 30.0 |
旱柳 Salix matsudana | 59.6 | 40.4 | 6.0 | 80.9 | 44.7 | |
杏 Armeniaca vulgaris | 58.3 | 41.7 | 5.3 | 95.8 | 50.0 | |
榆树 Ulmus pumila | 62.9 | 37.1 | 5.5 | 88.6 | 51.4 | |
毛白杨 Populus tomentosa | 60.9 | 39.1 | 6.1 | 73.9 | 43.5 | |
小叶杨 Populus simonii | 56.7 | 43.3 | 6.6 | 73.3 | 33.3 |
Table 1 Comparison of proportions and evaluation indicators of autumn phenology optimum models among different tree species in northern China
物候期 Phenophase | 物种 species | TPMp (%) | TPMt (%) | RMSE平均值 Average RMSE | RMSE < 8 d比例 Proportion of RMSE < 8 d (%) | r > 0.6 (p < 0.05)比例 Proportion of r > 0.6 (p < 0.05) (%) |
---|---|---|---|---|---|---|
叶始变色期 First leaf coloration | 刺槐 Robinia pseudoacacia | 50.0 | 50.0 | 7.6 | 60.7 | 14.3 |
旱柳 Salix matsudana | 66.0 | 34.0 | 6.6 | 74.5 | 51.9 | |
杏 Armeniaca vulgaris | 75.0 | 25.0 | 6.9 | 83.3 | 41.7 | |
榆树 Ulmus pumila | 68.6 | 31.4 | 7.0 | 71.4 | 31.4 | |
毛白杨 Populus tomentosa | 54.5 | 45.5 | 7.6 | 63.6 | 31.8 | |
小叶杨 Populus simonii | 69.0 | 31.0 | 6.4 | 75.9 | 44.8 | |
落叶末期 Leaf fall end | 刺槐 Robinia pseudoacacia | 56.7 | 43.3 | 6.4 | 70.0 | 30.0 |
旱柳 Salix matsudana | 59.6 | 40.4 | 6.0 | 80.9 | 44.7 | |
杏 Armeniaca vulgaris | 58.3 | 41.7 | 5.3 | 95.8 | 50.0 | |
榆树 Ulmus pumila | 62.9 | 37.1 | 5.5 | 88.6 | 51.4 | |
毛白杨 Populus tomentosa | 60.9 | 39.1 | 6.1 | 73.9 | 43.5 | |
小叶杨 Populus simonii | 56.7 | 43.3 | 6.6 | 73.3 | 33.3 |
Fig. 2 Correlation and regression analyses and root-mean-square errors (RMSE) between optimum model simulated dates and observed dates for six tree species in each year at each station in northern China. A, First leaf coloration. B, Leaf fall end. 1, Robinia pseudoacacia. 2,Salix matsudana. 3, Armeniaca vulgaris. 4, Ulmus pumila. 5, Populus tomentosa. 6, Populus simonii.
Fig. 3 Comparison between spatial ranges of simulated and observed dates for six tree species in each year in northern China. A, First leaf coloration. B, Leaf fall end. 1, Robinia pseudoacacia. 2, Salix matsudana. 3, Armeniaca vulgaris. 4, Ulmus pumila. 5, Populus tomentosa. 6, Populus simonii.
Fig. 4 Comparison between interannual ranges of simulated and observed dates for six tree species at each station in northern China. A, First leaf coloration. B, Leaf fall end. 1, Robinia pseudoacacia. 2, Salix matsudana. 3, Armeniaca vulgaris. 4, Ulmus pumila. 5, Populus tomentosa. 6, Populus simonii.
干湿区 Arid-humid region | 叶始变色期 First leaf coloration | 落叶末期 Leaf fall end | ||
---|---|---|---|---|
TPMp比例 Proportion of TPMp (%) | TPMt比例 Proportion of TPMt (%) | TPMp比例 Proportion of TPMp (%) | TPMt比例 Proportion of TPMt (%) | |
干旱区 Arid region | 74.3 | 25.7 | 56.8 | 43.2 |
半干旱区 Semi-arid region | 68.2 | 31.8 | 63.6 | 36.4 |
半湿润区 Semi-humid region | 60.0 | 40.0 | 63.4 | 36.6 |
湿润区 Humid region | 57.7 | 42.3 | 42.3 | 57.7 |
Table 2 Proportions of optimum models for first leaf coloration date and leaf fall end date across different arid-humid regions in northern China
干湿区 Arid-humid region | 叶始变色期 First leaf coloration | 落叶末期 Leaf fall end | ||
---|---|---|---|---|
TPMp比例 Proportion of TPMp (%) | TPMt比例 Proportion of TPMt (%) | TPMp比例 Proportion of TPMp (%) | TPMt比例 Proportion of TPMt (%) | |
干旱区 Arid region | 74.3 | 25.7 | 56.8 | 43.2 |
半干旱区 Semi-arid region | 68.2 | 31.8 | 63.6 | 36.4 |
半湿润区 Semi-humid region | 60.0 | 40.0 | 63.4 | 36.6 |
湿润区 Humid region | 57.7 | 42.3 | 42.3 | 57.7 |
干湿区 Arid-humid region | 叶始变色期 First leaf coloration | 落叶末期 Leaf fall end | ||
---|---|---|---|---|
RMSE < 8 d的比例 Proportion of RMSE < 8 d (%) | 显著正相关比例 Proportion of significantly positive correlation (%) | RMSE < 8 d所占比例 Proportion of RMSE < 8 d (%) | 显著正相关比例 Proportion of significantly positive correlation (%) | |
干旱区 Arid region | 62.9 | 62.9 | 83.8 | 89.2 |
半干旱区 Semi-arid region | 77.3 | 72.7 | 79.5 | 75.0 |
半湿润区 Semi-humid region | 66.3 | 71.3 | 80.5 | 81.7 |
湿润区 Humid region | 92.3 | 80.8 | 76.9 | 96.2 |
Table 3 Comparison of simulation effects of optimum models for first leaf coloration date and leaf fall end date in different arid-humid regions in northern China
干湿区 Arid-humid region | 叶始变色期 First leaf coloration | 落叶末期 Leaf fall end | ||
---|---|---|---|---|
RMSE < 8 d的比例 Proportion of RMSE < 8 d (%) | 显著正相关比例 Proportion of significantly positive correlation (%) | RMSE < 8 d所占比例 Proportion of RMSE < 8 d (%) | 显著正相关比例 Proportion of significantly positive correlation (%) | |
干旱区 Arid region | 62.9 | 62.9 | 83.8 | 89.2 |
半干旱区 Semi-arid region | 77.3 | 72.7 | 79.5 | 75.0 |
半湿润区 Semi-humid region | 66.3 | 71.3 | 80.5 | 81.7 |
湿润区 Humid region | 92.3 | 80.8 | 76.9 | 96.2 |
指标 Indicator | Lang等( Results from Lang et al. ( | 本研究结果 Results of this study |
---|---|---|
TPMp拟合的时间序列比例 Proportion of time series fitted by TPMp (%) | 61.9 | 64.3 |
TPMt拟合的时间序列比例 Proportion of time series fitted by TPMt (%) | 38.1 | 35.7 |
RMSE的数值范围 Range of RMSE (d) | 4.1-18.9 | 2.6-16.9 |
RMSE平均值 Average RMSE (d) | 8.2 | 6.9 |
RMSE ≤ 10 d的时间序列比例 Proportions of time series for RMSE ≤ 10 d (%) | 85.7 | 88.1 |
模拟与观测日期显著正相关的时间序列比例 Proportion of time series with significantly positive correlation between simulated and observed first leaf coloration dates (%) | 76.2 | 71.4 |
Table 4 Comparison of optimum models and simulation results of trees' first leaf coloration dates between Qingzang Plateau and temperate northern China
指标 Indicator | Lang等( Results from Lang et al. ( | 本研究结果 Results of this study |
---|---|---|
TPMp拟合的时间序列比例 Proportion of time series fitted by TPMp (%) | 61.9 | 64.3 |
TPMt拟合的时间序列比例 Proportion of time series fitted by TPMt (%) | 38.1 | 35.7 |
RMSE的数值范围 Range of RMSE (d) | 4.1-18.9 | 2.6-16.9 |
RMSE平均值 Average RMSE (d) | 8.2 | 6.9 |
RMSE ≤ 10 d的时间序列比例 Proportions of time series for RMSE ≤ 10 d (%) | 85.7 | 88.1 |
模拟与观测日期显著正相关的时间序列比例 Proportion of time series with significantly positive correlation between simulated and observed first leaf coloration dates (%) | 76.2 | 71.4 |
Fig. 5 Correlation and regression analyses between observed standard deviation and simulated root mean squared error (RMSE) for first leaf coloration and leaf fall end dates of six tree species in northern China. A, First leaf coloration. B, Leaf fall end.
[1] | Aikio S, Taulavuori K, Hurskainen S, Taulavuori E, Tuomi J (2019). Contributions of day length, temperature and individual variability on the rate and timing of leaf senescence in the common lilac Syringa vulgaris. Tree Physiology, 39, 961-970. |
[2] |
Archetti M, Richardson AD, O'Keefe J, Delpierre N (2013). Predicting climate change impacts on the amount and duration of autumn colors in a New England forest. PLOS ONE, 8, e57373. DOI: 10.1371/journal.pone.0057373.
DOI URL |
[3] | Chen XQ (2013). East Asia//Schwartz MD. Phenology: An Integrative Environmental Science. 2nd ed. Springer, Dordrecht, the Netherlands. 9-22. |
[4] | Chen XQ (2017). Spatiotemporal Processes of Plant Phenology: Simulation and Prediction. Springer, Berlin. |
[5] | Editorial Board of Climate Atlas of the Peopleʼs Republic of China (1979). Climate Atlas of the People's Republic of China. China Meterological Press, Beijing. |
[《中华人民共和国气候图集》编委会 (1979). 中华人民共和国气候图集. 气象出版社, 北京.] | |
[6] | China Meterological Administration (1993). Observation Criterion of Agicultural Meteorology. China Meterological Press, Beijing. |
[国家气象局 (1993). 农业气象观测规范. 气象出版社, 北京.] | |
[7] |
Chuine I (2000). A unified model for budburst of trees. Journal of Theoretical Biology, 207, 337-347.
PMID |
[8] | Chuine I, Cour P, Rousseau DD (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell & Environment, 21, 455-466. |
[9] |
Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 103, 13740-13744.
PMID |
[10] |
Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, Boé J, François C (2009). Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149, 938-948.
DOI URL |
[11] |
Dufrêne E, Davi H, François C, Maire GI, Dantec VL, Granier A (2005). Modelling carbon and water cycles in a beech forest. Ecological Modelling, 185, 407-436.
DOI URL |
[12] |
Estiarte M, Peñuelas J (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21, 1005-1017.
DOI PMID |
[13] |
Forsythe WC, Rykiel Jr EJ, Stahl RS, Wu H, Schoolfield RM (1995). A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80, 87-95.
DOI URL |
[14] |
Fracheboud Y, Luquez V, Björkén L, Sjödin A, Tuominen H, Jansson S (2009). The control of autumn senescence in European aspen. Plant Physiology, 149, 1982-1991.
DOI PMID |
[15] | Fu YSH, Campioli M, Vitasse Y, de Boeck HJ, van den Berge J, AbdElgawad H, Asard H, Piao S, Deckmyn G, Janssens IA (2014). Variation in leaf flushing date influences autumnal senescence and next yearʼs flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 111, 7355-7360. |
[16] |
Garonna I, de Jong R, de Wit AJW, Mücher CA, Schmid B, Schaepman ME (2014). Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982-2011). Global Change Biology, 20, 3457-3470.
DOI PMID |
[17] |
Hogg EH, Price DT, Black TA (2000). Postulated feedbacks of deciduous forest phenology on seasonal climate patterns in the western Canadian interior. Journal of Climate, 13, 4229-4243.
DOI URL |
[18] |
Keenan TF, Richardson AD (2015). The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Global Change Biology, 21, 2634-2641.
DOI URL |
[19] |
Lang WG, Chen XQ, Qian SW, Liu GH, Piao SL (2019). A new process-based model for predicting autumn phenology: How is leaf senescence controlled by photoperiod and temperature coupling? Agricultural and Forest Meteorology, 268, 124-135.
DOI URL |
[20] |
Liu GH, Chen XQ, Zhang QH, Lang WG, Delpierre N (2018). Antagonistic effects of growing season and autumn temperatures on the timing of leaf coloration in winter deciduous trees. Global Change Biology, 24, 3537-3545.
DOI URL |
[21] |
Liu GH, Chen XQ, Fu YS, Delpierre N (2019). Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecological Modelling, 394, 34-43.
DOI URL |
[22] | Matos FS, de Oliveria LR, de Freitas RG, Evaristo AB, Missio RF, Oliva Cano MA, Dias LADS (2012). Physiological characterization of leaf senescence of Jatropha curcas L. populations. Biomass & Bioenergy, 45, 57-64. |
[23] |
Menzel A, Fabian P (1999). Growing season extended in Europe. Nature, 397, 659.
DOI URL |
[24] |
Morin X, Roy J, Sonié L, Chuine I (2010). Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 186, 900-910.
DOI URL |
[25] |
Nash JE, Sutcliffe JV (1970). River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10, 282-290.
DOI URL |
[26] |
Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003). Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology, 9, 1792-1801.
DOI URL |
[27] |
Parmesan C (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
DOI URL |
[28] |
Piao S, Wang X, Wang K, Li X, Bastos A, Canadell JG, Ciais P, Friedlingstein P, Sitch S (2020). Interannual variation of terrestrial carbon cycle: issues and perspectives. Global Change Biology, 26, 300-318.
DOI URL |
[29] | Pilegaard K, Ibrom A (2020). Net carbon ecosystem exchange during 24 years in the Sorø Beech Forest-Relations to phenology and climate. Tellus B: Chemical and Physical Meteorology, 72, 1-17. |
[30] |
Pudas E, Leppälä M, Tolvanen A, Poikolainen J, Venäläinen A, Kubin E (2008). Trends in phenology of Betula pubescens across the boreal zone in Finland. International Journal of Biometeorology, 52, 251-259.
DOI PMID |
[31] |
Richardson AD, Andy Black T, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, William Munger J, Moors E, Piao S, et al. (2010). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B, 365, 3227-3246.
DOI URL |
[32] |
Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156-173.
DOI URL |
[33] |
Ryu Y, Baldocchi DD, Ma S, Hehn T (2008). Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. Journal of Geophysical Research, 113, D9104. DOI: 10.1029/2007JD009263.
DOI URL |
[34] | Soolanayakanahally RY, Guy RD, Silim SN, Song MH (2013). Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). Plant, Cell & Environment, 36, 116-127. |
[35] |
Tao Z, Wang H, Dai J, Alatalo J, Ge Q (2018). Modeling spatiotemporal variations in leaf coloring date of three tree species across China. Agricultural and Forest Meteorology, 249, 310-318.
DOI URL |
[36] | Worrall J (1998). Autumn leaf colouration. The Forestry Chronicle, 74, 668-669. |
[37] |
Wu CY, Chen JM, Black TA, Price DT, Kurz WA, Desai AR, Gonsamo A, Jassal RS, Gough CM, Bohrer G, Dragoni D, Herbst M, Gielen B, Berninger F, Vesala T, et al. (2013). Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Global Ecology and Biogeography, 22, 994-1006.
DOI URL |
[38] | Xie Y, Wang X, Silander Jr JA (2015). Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proceedings of the National Academy of Sciences of the United States of America, 112, 13585-13590. |
[39] |
Zani D, Crowther TW, Mo L, Renner SS, Zohner CM (2020). Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science, 370, 1066-1071.
DOI URL |
[40] |
Zhang Y, Chen HYH, Reich PB (2012). Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology, 100, 742-749.
DOI URL |
[41] |
Zhu WQ, Tian HQ, Xu XF, Pan YZ, Chen GS, Lin WP (2012). Extension of the growing season due to delayed autumn over mid and high latitudes in north America during 1982-2006. Global Ecology and Biogeography, 21, 260-271.
DOI URL |
[1] | YAN Han, ZHANG Yun-Ling, MA Song-Mei, WANG Chun-Cheng, ZHANG Dan. Suitable distribution simulation and local environmental adaptability differentiation of Lycium ruthenicum in Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(11): 1221-1230. |
[2] | Qi-Dan WANG, Wen-Xin YANG, Jie-Yu HUANG, Kun XU, Pei WANG. Shrub encroachment effect on the evapotranspiration and its component—A numerical simulation study of a shrub encroachment grassland in Nei Mongol, China [J]. Chin J Plant Ecol, 2017, 41(3): 348-358. |
[3] | XU Shi-Qin,JI Xi-Bin,JIN Bo-Wen. Dynamics and responses of sap flow of typical sand binding plants Haloxylon ammodendron to environmental variables [J]. Chin J Plan Ecolo, 2015, 39(9): 890-900. |
[4] | SAYRAN• Waley,LI Bing-Bai,ZHANG Jia-Hua,YANG Shen-Bin. Application of a rice simulation model in high temperature sensitivity study [J]. Chin J Plant Ecol, 2014, 38(5): 515-528. |
[5] | WANG Yan-Zhe, SHAO Li-Wei, LIU Xiu-Wei, ZHANG Xiao-Yu, ZHANG Xi-Ying. Optimization of root sampling sites and modeling root length density distribution for wheat and maize [J]. Chin J Plant Ecol, 2013, 37(4): 365-372. |
[6] | CHEN Jie, TANG Liang, LIU Xiao-Jun, CAO Wei-Xing, ZHU Yan. Modeling rice grain starch accumulation based on plant carbon flow [J]. Chin J Plant Ecol, 2011, 35(4): 431-440. |
[7] | BAO Fang, ZHOU Guang-Sheng. Review of research advances in soil respiration of grassland in China [J]. Chin J Plant Ecol, 2010, 34(6): 713-726. |
[8] | ZHANG Wen-Li, LIU Ju, WANG Jian-Zhu, CHEN Fang-Qing. Soil heterotrophic respiration and its temperature sensitivity in different-aged orange plantations in Three Gorges Reservoir area of China [J]. Chin J Plant Ecol, 2010, 34(11): 1265-1273. |
[9] | WANG Juan, NI Jian. MODELLING THE DISTRIBUTION OF FIVE CARAGANA SPECIES IN TEMPERATE NORTHERN CHINA [J]. Chin J Plant Ecol, 2009, 33(1): 12-24. |
[10] | YANG Pei-Guo, LI Bao-Guo, LÜ Yi-Zhong, WU Shao-Hong, LI Jing. SIMULATION OF NET PRIMARY PRODUCTION IN KAOKAOLAIGOU WATERSHED, CHINA [J]. Chin J Plant Ecol, 2007, 31(5): 787-793. |
[11] | TANG Liang, ZHU Yan, CAO Wei-Xing. A SIMULATION MODEL FOR DYNAMIC GREEN AREA INDEX IN WINTER RAPESEED (BRASSICA NAPUS) [J]. Chin J Plant Ecol, 2007, 31(5): 897-902. |
[12] | ZHU Wen-Quan, PAN Yao-Zhong, ZHANG Jin-Shui. ESTIMATION OF NET PRIMARY PRODUCTIVITY OF CHINESE TERRESTRIAL VEGETATION BASED ON REMOTE SENSING [J]. Chin J Plant Ecol, 2007, 31(3): 413-424. |
[13] | LI Yong-Xiu, LUO Wei-Hong, NI Ji-Heng, CHEN Yong-Shan, XU Guo-Bin, JIN Liang, DAI Jian-Feng, CHEN Chun-Hong, BU Chong-Xing. SIMULATION OF GREENHOUSE CUCUMBER LEAF AREA BASED ON RADIATION AND THERMAL EFFECTIVENESS [J]. Chin J Plant Ecol, 2006, 30(5): 861-867. |
[14] | JIA Hai-Kun, LIU Ying-Hui, XU Xia, WANG Kun, GAO Qiong. SIMULATION OF SOIL WATER DYNAMICS IN A CARAGANA INTERMEDIA WOODLAND IN HUANGFUCHUAN WATERSHED: RELATIONSHIPS AMONG SLOPE, ASPECT, PLANT DENSITY AND SOIL WATER CONTENT [J]. Chin J Plant Ecol, 2005, 29(6): 910-917. |
[15] | MA Yu-Ping, WANG Shi-Li, ZHANG Li, HOU Ying-Yu. A PRELIMINARY STUDY ON THE RE-INITIALIZATION/RE-PARAMETERIZATION OF A CROP MODEL BASED ON REMOTE SENSING DATA [J]. Chin J Plant Ecol, 2005, 29(6): 918-926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn