Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (3): 348-358.DOI: 10.17521/cjpe.2016.0236
• Research Articles • Previous Articles Next Articles
Qi-Dan WANG1, Wen-Xin YANG1, Jie-Yu HUANG1, Kun XU1, Pei WANG1,2,*()
Online:
2017-03-10
Published:
2017-04-12
Contact:
Pei WANG
About author:
KANG Jing-yao(1991-), E-mail: Qi-Dan WANG, Wen-Xin YANG, Jie-Yu HUANG, Kun XU, Pei WANG. Shrub encroachment effect on the evapotranspiration and its component—A numerical simulation study of a shrub encroachment grassland in Nei Mongol, China[J]. Chin J Plant Ecol, 2017, 41(3): 348-358.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0236
输入变量 Input variables | 参数 Parameter | 参数物理意义 Physical meaning of parameters | 单位 Unit |
---|---|---|---|
气象数据 Meteorological data | Sd | 向下短波辐射 Downward short-wave radiation, | W·m-2 |
ha | 相对湿度 Relative humidity | % | |
Ld | 向下长波辐射 Downward long-wave radiation | W·m-2 | |
P | 大气压 Air pressure | hPa | |
Ta | 气温 Air temperature | ℃ | |
u | 水平风速 Horizontal wind speed | m·s-1 | |
植被属性 Vegetation property | LAI | 叶面积指数 Leaf area index | m-2·m-2 |
Zv | 植被高度 Vegetation height | m | |
土壤属性 Soil property | Tsoil | 土壤热通量测量深度土壤温度 Soil temperature at depth Zsoil | ℃ |
θ | 根系层土壤含水量 Volumetric soil water content of root layer | m-3·m-3 | |
常数 Constant | CLAI | 冠层集聚度 Clumping factor for permittivity of canopy | 无量纲 Dimensionless |
θs | 土壤饱和含水量 Saturated soil water content | m-3·m-3 | |
rst_min | 最小气孔阻抗 Minimum stomata resistance | s·m-1 | |
rst_max | 最大气孔阻抗 Maximum stomata resistance | s·m-1 | |
Zsoil | 土壤热通量测量深度 Depth of ground heat flux measurement | m | |
αG | 地表反照率 Albedo of ground surface | 无量纲 Dimensionless | |
αV | 植被冠层反照率 Albedo of vegetation canopy | 无量纲 Dimensionless | |
λss | 土壤表层热传导系数 Thermal conductivity of surface soil | W·m-1·K-1 | |
能量通量输出 Output energy flux | σ | 斯蒂芬玻尔兹曼常数 Stefan-Boltzmann constant | W·m-2·K-4 |
lET | 潜热通量 Latent heat flux | W·m-2 | |
植被冠层输出 Output vegetation canopy layer | TL | 植被冠层温度 Vegetation canopy temperature | ℃ |
T | 植物蒸散量 Plant evapotranspiration | kg·m-2·s-1 | |
土壤层输出 Output of soil layer | TG | 10 cm土壤温度 Soil temperature at 10 cm depth | ℃ |
E | 土壤蒸发量 Soil transpiration | kg·m-2·s-1 |
Table 1 List of input variables, parameters, and outputs for the two-source model
输入变量 Input variables | 参数 Parameter | 参数物理意义 Physical meaning of parameters | 单位 Unit |
---|---|---|---|
气象数据 Meteorological data | Sd | 向下短波辐射 Downward short-wave radiation, | W·m-2 |
ha | 相对湿度 Relative humidity | % | |
Ld | 向下长波辐射 Downward long-wave radiation | W·m-2 | |
P | 大气压 Air pressure | hPa | |
Ta | 气温 Air temperature | ℃ | |
u | 水平风速 Horizontal wind speed | m·s-1 | |
植被属性 Vegetation property | LAI | 叶面积指数 Leaf area index | m-2·m-2 |
Zv | 植被高度 Vegetation height | m | |
土壤属性 Soil property | Tsoil | 土壤热通量测量深度土壤温度 Soil temperature at depth Zsoil | ℃ |
θ | 根系层土壤含水量 Volumetric soil water content of root layer | m-3·m-3 | |
常数 Constant | CLAI | 冠层集聚度 Clumping factor for permittivity of canopy | 无量纲 Dimensionless |
θs | 土壤饱和含水量 Saturated soil water content | m-3·m-3 | |
rst_min | 最小气孔阻抗 Minimum stomata resistance | s·m-1 | |
rst_max | 最大气孔阻抗 Maximum stomata resistance | s·m-1 | |
Zsoil | 土壤热通量测量深度 Depth of ground heat flux measurement | m | |
αG | 地表反照率 Albedo of ground surface | 无量纲 Dimensionless | |
αV | 植被冠层反照率 Albedo of vegetation canopy | 无量纲 Dimensionless | |
λss | 土壤表层热传导系数 Thermal conductivity of surface soil | W·m-1·K-1 | |
能量通量输出 Output energy flux | σ | 斯蒂芬玻尔兹曼常数 Stefan-Boltzmann constant | W·m-2·K-4 |
lET | 潜热通量 Latent heat flux | W·m-2 | |
植被冠层输出 Output vegetation canopy layer | TL | 植被冠层温度 Vegetation canopy temperature | ℃ |
T | 植物蒸散量 Plant evapotranspiration | kg·m-2·s-1 | |
土壤层输出 Output of soil layer | TG | 10 cm土壤温度 Soil temperature at 10 cm depth | ℃ |
E | 土壤蒸发量 Soil transpiration | kg·m-2·s-1 |
日期 Date | 土壤水观测深度 Depth of observed soil moisture (cm) | 灌丛斑块观测土壤体积含水量 Observed multilayer volumetric soil moisture at the shrub patches (%) | 草地斑块观测土壤体积含水量 Observed multilayer volumetric soil moisture at the grass patches (%) | 灌丛可利用的土壤体积含水量 Available volumetric water content by shrub (%) | 草本可利用土 壤体积含水量 Available soil volumetric water content by grass (%) | 不同灌丛化情景下植被可利用土壤体积含水量 Available volumetric water content by plant under three scenarios of shrub encroachment (%) | ||
---|---|---|---|---|---|---|---|---|
5%盖度 5% coverage | 15%盖度 15% coverage | 30%盖度 30% coverage | ||||||
6月16日 June 16th | 0-10 | 30.1 | 30.0 | 18.1 | 22.6 | 22.42 | 21.97 | 21.30 |
10-20 | 22.2 | 22.6 | ||||||
20-40 | 10.0 | 8.8 | ||||||
40-60 | 10.7 | 9.8 | ||||||
60-100 | 17.7 | 15.5 | ||||||
7月14日 July 14th | 0-10 | 9.3 | 9.4 | 11.6 | 9.0 | 9.0 | 9.3 | 9.7 |
10-20 | 10.2 | 9.0 | ||||||
20-40 | 8.1 | 8.3 | ||||||
40-60 | 13.3 | 8.1 | ||||||
60-100 | 17.0 | 12.7 | ||||||
8月11日 Aug. 11th | 0-10 | 8.9 | 7.9 | 9.7 | 7.4 | 7.5 | 7.8 | 8.1 |
10-20 | 8.6 | 7.4 | ||||||
20-40 | 6.9 | 7.3 | ||||||
40-60 | 8.8 | 7.7 | ||||||
60-100 | 15.4 | 11.8 | ||||||
9月13日 Sept. 13th | 0-10 | 8.7 | 8.8 | 11.2 | 8.5 | 8.6 | 8.9 | 9.3 |
10-20 | 8.8 | 8.5 | ||||||
20-40 | 9.1 | 10.4 | ||||||
40-60 | 12.1 | 12.4 | ||||||
60-100 | 17.5 | 15.9 |
Table 2 Summary of measured soil moisture in shrub and grassland patches and representation of averaged soil water in each scenarios of shrub encroachment under each observation day
日期 Date | 土壤水观测深度 Depth of observed soil moisture (cm) | 灌丛斑块观测土壤体积含水量 Observed multilayer volumetric soil moisture at the shrub patches (%) | 草地斑块观测土壤体积含水量 Observed multilayer volumetric soil moisture at the grass patches (%) | 灌丛可利用的土壤体积含水量 Available volumetric water content by shrub (%) | 草本可利用土 壤体积含水量 Available soil volumetric water content by grass (%) | 不同灌丛化情景下植被可利用土壤体积含水量 Available volumetric water content by plant under three scenarios of shrub encroachment (%) | ||
---|---|---|---|---|---|---|---|---|
5%盖度 5% coverage | 15%盖度 15% coverage | 30%盖度 30% coverage | ||||||
6月16日 June 16th | 0-10 | 30.1 | 30.0 | 18.1 | 22.6 | 22.42 | 21.97 | 21.30 |
10-20 | 22.2 | 22.6 | ||||||
20-40 | 10.0 | 8.8 | ||||||
40-60 | 10.7 | 9.8 | ||||||
60-100 | 17.7 | 15.5 | ||||||
7月14日 July 14th | 0-10 | 9.3 | 9.4 | 11.6 | 9.0 | 9.0 | 9.3 | 9.7 |
10-20 | 10.2 | 9.0 | ||||||
20-40 | 8.1 | 8.3 | ||||||
40-60 | 13.3 | 8.1 | ||||||
60-100 | 17.0 | 12.7 | ||||||
8月11日 Aug. 11th | 0-10 | 8.9 | 7.9 | 9.7 | 7.4 | 7.5 | 7.8 | 8.1 |
10-20 | 8.6 | 7.4 | ||||||
20-40 | 6.9 | 7.3 | ||||||
40-60 | 8.8 | 7.7 | ||||||
60-100 | 15.4 | 11.8 | ||||||
9月13日 Sept. 13th | 0-10 | 8.7 | 8.8 | 11.2 | 8.5 | 8.6 | 8.9 | 9.3 |
10-20 | 8.8 | 8.5 | ||||||
20-40 | 9.1 | 10.4 | ||||||
40-60 | 12.1 | 12.4 | ||||||
60-100 | 17.5 | 15.9 |
Fig. 1 Weighted mean leaf area index, vegetation height and volumetric water content in soil of grassland ecosystem under three shrub encroachment scenarios.
Fig. 2 Comparison of evapotranspiration (express as latent heat flux) between measured by the energy balanced Bowen ratio system and predicted during measurement period.
参数符号 Parameter code | 参数名称 Parameter name | lET | T/ET |
---|---|---|---|
rst_min | 最小气孔阻抗 Minimum stomata resistance | -0.28 ± 0.14 | -0.08 ± 0.02 |
rst_max | 最大气孔阻抗 Maximum stomata resistance | -0.01 ± 0.08 | 0.00 ± 0.01 |
αV | 植被冠层反照率 Albedo of vegetation canopy | -0.17 ± 0.23 | -0.02 ± 0.03 |
αG | 地表反照率 Albedo of ground surface | -0.01 ± 0.06 | 0.01 ± 0.01 |
CLAI | 冠层集聚度 Clumping factor for permittivity of vegetation | 0.02 ± 0.01 | 0.06 ± 0.03 |
λss | 土壤表层热传导系数 Thermal conductivity of surface soil | -0.05 ± 0.02 | 0.06 ± 0.02 |
Sd | 向下短波辐射 Downward short-wave radiation, | 0.72 ± 0.31 | 0.00 ± 0.20 |
Ld | 向下长波辐射 Downward long-wave radiation | 0.84 ± 0.58 | -0.03 ± 0.04 |
u | 水平风速 Horizontal wind speed | 0.08 ± 0.15 | 0.00 ± 0.03 |
Ta | 气温 Air temperature | 0.74 ± 0.64 | 0.21 ± 0.19 |
ha | 相对湿度 Relative humidity | -1.31 ± 1.02 | 0.12 ± 0.22 |
P | 大气压 Air pressure | -0.04 ± 0.15 | -0.01 ± 0.03 |
LAI | 叶面积指数 Leaf area index | 0.42 ± 0.26 | 0.26 ± 0.25 |
Zv | 植被高度 Vegetation height | 0.23 ± 0.53 | 0.03 ± 0.09 |
Tsoil | 土壤热通量测量深度土壤温度 Soil temperature at depth Zsoil | 0.24 ± 0.14 | -0.17 ± 0.10 |
θ | 土壤体积含水量 Volumetric soil water content | 0.42 ± 0.43 | 0.12 ± 0.11 |
Table 3 Mean and standard deviation (SD) of the sensitivity coefficients (Si) of evapotranspiration (ET) and transpiration fraction (T/ET) to the assigned model parameters and measured parameters (mean ± SD)
参数符号 Parameter code | 参数名称 Parameter name | lET | T/ET |
---|---|---|---|
rst_min | 最小气孔阻抗 Minimum stomata resistance | -0.28 ± 0.14 | -0.08 ± 0.02 |
rst_max | 最大气孔阻抗 Maximum stomata resistance | -0.01 ± 0.08 | 0.00 ± 0.01 |
αV | 植被冠层反照率 Albedo of vegetation canopy | -0.17 ± 0.23 | -0.02 ± 0.03 |
αG | 地表反照率 Albedo of ground surface | -0.01 ± 0.06 | 0.01 ± 0.01 |
CLAI | 冠层集聚度 Clumping factor for permittivity of vegetation | 0.02 ± 0.01 | 0.06 ± 0.03 |
λss | 土壤表层热传导系数 Thermal conductivity of surface soil | -0.05 ± 0.02 | 0.06 ± 0.02 |
Sd | 向下短波辐射 Downward short-wave radiation, | 0.72 ± 0.31 | 0.00 ± 0.20 |
Ld | 向下长波辐射 Downward long-wave radiation | 0.84 ± 0.58 | -0.03 ± 0.04 |
u | 水平风速 Horizontal wind speed | 0.08 ± 0.15 | 0.00 ± 0.03 |
Ta | 气温 Air temperature | 0.74 ± 0.64 | 0.21 ± 0.19 |
ha | 相对湿度 Relative humidity | -1.31 ± 1.02 | 0.12 ± 0.22 |
P | 大气压 Air pressure | -0.04 ± 0.15 | -0.01 ± 0.03 |
LAI | 叶面积指数 Leaf area index | 0.42 ± 0.26 | 0.26 ± 0.25 |
Zv | 植被高度 Vegetation height | 0.23 ± 0.53 | 0.03 ± 0.09 |
Tsoil | 土壤热通量测量深度土壤温度 Soil temperature at depth Zsoil | 0.24 ± 0.14 | -0.17 ± 0.10 |
θ | 土壤体积含水量 Volumetric soil water content | 0.42 ± 0.43 | 0.12 ± 0.11 |
Fig. 3 The temporal series of evapotranspiration under three shrub encroachment scenarios. For each day, there is hourly- mean evapotranspiration from 9:00 to 16:00.
Fig. 4 The temporal series of evapotranspiration components (T/ET) under three shrub encroachment scenarios. For each day, there is hourly-mean T/ET from 9:00 to 16:00.
6月10日 June 10th | 6月11日 June 11th | 6月13日 June 13th | 7月8日 July 8th | 7月9日 July 9th | 7月13日 July 13th | 7月8日 July 8th | 8月13日 Aug. 13th | 8月17日 Aug. 17th | 9月3日 Sept. 3rd | |
---|---|---|---|---|---|---|---|---|---|---|
降水量 Precipitation (mm) | 6.6 | 6.6 | 6.6 | 14.4 | 14.4 | 1.2 | 6.2 | 1.2 | 6 | 0.2 |
降雨时间间隔 Interval between rainfall events (d) | 1 | 2 | 4 | 1 | 2 | 2 | 1 | 1 | 1 | 2 |
月降水量 Monthly precipitation (mm) | 135.6 | 135.6 | 135.6 | 142.3 | 142.3 | 142.3 | 80.9 | 80.9 | 80.9 | 51.3 |
蒸散比(平均值±日变化) Transpiration fraction (mean ± diurnal variation) | 0.41 ± 0.01 | 0.39 ± 0.01 | 0.47 ± 0.01 | 0.55 ± 0.02 | 0.57 ± 0.03 | 0.56 ± 0.02 | 0.42 ± 0.04 | 0.41 ± 0.05 | 0.40 ± 0.01 | 0.45 ± 0.03 |
Table 4 Statistics data of precipitation and transpiration fraction (T/ET) in each observation day
6月10日 June 10th | 6月11日 June 11th | 6月13日 June 13th | 7月8日 July 8th | 7月9日 July 9th | 7月13日 July 13th | 7月8日 July 8th | 8月13日 Aug. 13th | 8月17日 Aug. 17th | 9月3日 Sept. 3rd | |
---|---|---|---|---|---|---|---|---|---|---|
降水量 Precipitation (mm) | 6.6 | 6.6 | 6.6 | 14.4 | 14.4 | 1.2 | 6.2 | 1.2 | 6 | 0.2 |
降雨时间间隔 Interval between rainfall events (d) | 1 | 2 | 4 | 1 | 2 | 2 | 1 | 1 | 1 | 2 |
月降水量 Monthly precipitation (mm) | 135.6 | 135.6 | 135.6 | 142.3 | 142.3 | 142.3 | 80.9 | 80.9 | 80.9 | 51.3 |
蒸散比(平均值±日变化) Transpiration fraction (mean ± diurnal variation) | 0.41 ± 0.01 | 0.39 ± 0.01 | 0.47 ± 0.01 | 0.55 ± 0.02 | 0.57 ± 0.03 | 0.56 ± 0.02 | 0.42 ± 0.04 | 0.41 ± 0.05 | 0.40 ± 0.01 | 0.45 ± 0.03 |
[1] | Anderson MC, Norman JM, Mecikalski JR, Torn RD, Kustas WP, Basara JB (2004). A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. Journal of Hydrometeorology, 5, 343-363. |
[2] | Breshears DD, Barnes FJ (1999). Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: A unified conceptual model. Landscape Ecology, 4, 465-478. |
[3] | Beven K (1979). A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, 44, 169-190. |
[4] | Bowen IS (1926). The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27, 779-787. |
[5] | Brenner AJ, Incoll LD (1997). The effect of clumping and stomatal response on evaporation from sparsely vegetated shrublands. Agricultural and Forest Meteorology, 84, 187-205. |
[6] | Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005). Ecohydrological implications of woody plant encroach¬ment. Ecology, 86, 308-319. |
[7] | Gao Q, Liu T (2015). Causes and consequences of shrub encroachment in arid and semiarid region: A disputable issue. Arid Land Geography, 38, 1202-1212. (in Chinese with English abstract)[高琼, 刘婷 (2015). 干旱半干旱区草原灌丛化的原因及影响——争议与进展. 干旱区地理, 38, 1202-1212.] |
[8] | Chen LY, Shen HH, Fang JY (2014). Shrub-encroached grassland: A new vegetation type. Chinese Journal of Nature, 36, 391-396. (in Chinese with English abstract)[陈蕾伊, 沈海花, 方精云 (2014). 灌丛化草原: 一种新的植被景观. 自然杂志, 36, 391-396.] |
[9] | House JI, Archer S, Breshears DD, Scholes RJ (2003). Conundrums in mixed woody-herbaceous plant systems. Journal of Biogeography, 30, 1763-1777. |
[10] | Li S, Kang SZ, Zhang L, Li FS, Zhu ZL, Zhang BZ (2008). A comparison of three methods for determining vineyard evapotranspiration in the arid desert regions of northwest China. Hydrological Processes, 22, 4554-4564. |
[11] | Li XY, Zhang SY, Peng HY, Hu X, Ma YJ (2013). Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171-172, 20-30. |
[12] | Li ZC, Hu X (2015). Effects of shrub (Caragana microphylla) encroachment on soil porosity of degraded sandy grassland. Acta Pedologica Sinica, 52, 242-248. (in Chinese with English abstract)[李宗超, 胡霞 (2015). 小叶锦鸡儿灌丛化对退化沙质草地土壤孔隙特征的影响. 土壤学报, 52, 242-248.] |
[13] | Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004). A multi-scale perspective of water pulses in dryland ecosystems: Climatology and ecohydrology of the western USA. Oecologia, 141, 269-281. |
[14] | Moran MS, Scott RL, Keefer TO, Emmerich WE, Hernandez M, Nearing GS, Paige GB, Cosh MH, O’Neill PE (2009). Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. Agricultural and Forest Meteorology, 149, 59-72. |
[15] | Martens SN, Breshears DD, Meyer CW (2000). Spatial distributions of understory light along the grassland/forest continuum: Effects of cover, height, and spatial pattern of tree canopies. Ecological Modeling, 126, 79-93. |
[16] | Wang P, Yamanaka T (2014). Application of a two-source model for partitioning evapotranspiration and assessing its controls in temperate grasslands in central Japan. Ecohydrology, 7, 345-353. |
[17] | Wang P, Yamanaka T, Li XY, Wei ZW (2015). Partitioning evapotranspiration in a temperate grassland ecosystem: Numerical modeling with isotopic tracers. Agricultural and Forest Meteorology, 208, 16-31. |
[18] | Wang P, Li XY, Huang YM, Liu SM, Xu ZW, Wu XC, Ma YJ (2016). Numerical modeling the isotopic composition of evapotranspiration in an arid artificial oasis cropland ecosystem with high-frequency water vapor isotope measurement. Agricultural & Forest Meteorology, 230-231, 79-88. |
[19] | Walter H (1971). Ecology of Tropical and Subtropical Vegetation. Oliver and Boyd, Edinburgh. 207-236. |
[20] | Walker J, Bullen F, Williams BG (1993). Ecohydrological changes in the Murray-Darling Basin. I. The number of trees cleared over two centuries. Journal of Applied Ecology, 30, 265-273. |
[21] | Peng HY, Li XY, Li GY, Zhang ZH, Zhang SY, Li L, Zhao GQ, Jiang ZY, Ma YJ (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China. Catena, 109, 39-48. |
[22] | Peng HY, Li XY, Tong SY (2014). Advance in shrub encroachment in arid and semiarid region. Acta Prataculturae Sinica, 23(2), 313-322. (in Chinese with English abstract)[彭海英, 李小雁, 童绍玉 (2014). 干旱半干旱区草原灌丛化研究进展. 草业学报, 23(2), 313-322.] |
[23] | Peng HY (2012). Spatial Pattern of Shrub Patches and Its Ecohydrological Mechanism at the Typical Steppe in Inner Mongolia. PhD dissertation, Beijing Normal University, Beijing. (in Chinese with English abstract)[彭海英 (2012). 内蒙古典型草原小叶锦鸡儿灌丛空间分布格局及其生态水文机理. 博士学位论文, 北京师范大学, 北京.] |
[24] | Qiu GY, Yano T, Momii K (1998). An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface. Journal of Hydrology, 210, 93-105. |
[25] | Reynolds JF, Kemp PR, Tenhunen JD (2000). Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. Plant Ecology, 150, 145-159. |
[26] | Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990). Biological feedbacks in global desertification. Science, 247, 1043-1048. |
[27] | Scott RL, Huxman TE, Cable WL, Emmerich WE (2006). Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland. Hydrological Processes, 20, 3227-3243. |
[28] | van Auken OW (2000). Shrub invasions of North American semiarid grasslands. Annual Review of Ecology & Systematics, 31, 197-215. |
[29] | Yamanaka T (2009). Interdisciplinary perspectives on hydrological cycle in arid zones. Annals of Arid Zone, 48, 341-357. |
[30] | Zhang ZH, Li XY, Jiang ZY, Peng HY, Li L, Zhao GQ (2013). Changes in some soil properties induced by re-conversion of cropland into grassland in the semiarid steppe zone of Inner Mongolia, China. Plant & Soil, 373, 89-106. |
[31] | Zhang H, Shi PJ, Zheng QH (2001). Research progress in relationship between shrub invasion and soil heterogeneity in a natural semiarid grassland. Acta Phytoecologica Sinica, 25, 366-370. (in Chinese with English abstract)[张宏, 史培军, 郑秋红 (2001). 半干旱地区天然草地灌丛化与土壤异质性关系研究进展. 植物生态学报, 25, 366-370.] |
[32] | Zheng XR, Zhao GQ, Li XY, Li L, Wu HW, Zhang SY, Zhang ZH (2015). Application of stable hydrogen isotope in study of water sources for Caragana microphylla bushland in Inner Mongol. Chinese Journal of Plant Ecology, 39, 184-196. (in Chinese with English abstract)[郑肖然, 赵国琴, 李小雁, 李柳, 吴华武, 张思毅, 张志华 (2015). 氢同位素在内蒙古小叶锦鸡儿灌丛水分来源研究中的应用. 植物生态学报, 39, 184-196.] |
[1] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[2] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[3] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[4] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[5] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
[6] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[7] | LI Xin-Hao, TIAN Wen-Dong, LI Run-Dong, JIN Chuan, JIANG Yan, HAO Shao-Rong, JIA Xin, TIAN Yun, ZHA Tian-Shan. Responses of water vapor and heat fluxes to environmental factors in a deciduous broad- leaved forest ecosystem in Beijing [J]. Chin J Plant Ecol, 2021, 45(11): 1191-1202. |
[8] | DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43. |
[9] | Chao-Yang FENG, He-Song WANG, Jian-xin SUN. Temporal changes of vegetation water use efficiency and its influencing factors in Northern China [J]. Chin J Plant Ecol, 2018, 42(4): 453-465. |
[10] | LI Xu-Hua, SUN Osbert Jianxin. Testing parameter sensitivities and uncertainty analysis of Biome-BGC model in simulating carbon and water fluxes in broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2018, 42(12): 1131-1144. |
[11] | Xiao-Tao HUANG, Ge-Ping LUO. Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang [J]. Chin J Plan Ecolo, 2017, 41(5): 506-518. |
[12] | Tao-Yu LIU, Xia ZHAO, Hai-Hua SHEN, Hui-Feng HU, Wen-Jiang HUANG, Jing-Yun FANG. Spectral feature differences between shrub and grass communities and shrub coverage retri- eval in shrub-encroached grassland in Xianghuang Banner, Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(10): 969-979. |
[13] | MI Zhao-Rong,CHEN Li-Tong,ZHANG Zhen-Hua,HE Jin-Sheng. Alpine grassland water use efficiency based on annual precipitation, growing season precipitation and growing season evapotranspiration [J]. Chin J Plan Ecolo, 2015, 39(7): 649-660. |
[14] | SUN Dian-Chao,LI Yu-Lin,ZHAO Xue-Yong,ZUO Xiao-An,MAO Wei. Effects of enclosure and grazing on carbon and water fluxes of sandy grassland [J]. Chin J Plan Ecolo, 2015, 39(6): 565-576. |
[15] | TAN Zheng-Hong,YU Gui-Rui,ZHOU Guo-Yi,HAN Shi-Jie,HSIA Yue-Joe,MAEDA Takashi,KOSUGI Yoshiko,YAMANOI Katsumi,LI Sheng-Gong,OHTA Takeshi,HIRATA Ryuichi,YASUDA Yukio,NAKANO Takashi,KOMINAMI Yuji,KITAMURA Kenzo,MIZOGUCHI Yasuko,LIAO Zhi-Yong,ZHAO Jun-Fu,YANG Lian-Yan. Microclimate of forests across East Asia biomes: 1. Radiation and energy balance [J]. Chin J Plan Ecolo, 2015, 39(6): 541-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn