Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (5): 506-518.DOI: 10.17521/cjpe.2016.0142
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
Xiao-Tao HUANG1,2, Ge-Ping LUO1,*
Online:
2017-05-10
Published:
2017-06-22
Contact:
Ge-Ping LUO
About author:
KANG Jing-yao(1991-), E-mail:
Xiao-Tao HUANG, Ge-Ping LUO. Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang[J]. Chin J Plan Ecolo, 2017, 41(5): 506-518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0142
Fig. 1 Sketch map of study areas. A, Topography and regional classification. B, Grassland types. C, Mean annual precipitation in grasslands. D, Average annual temperature in grasslands.
参数 Parameter | 盐生草甸、平原荒漠草原和平原沼泽草甸 Saline meadow, plain desert grassland and plain swamp meadow | 典型草原和低山沼泽草甸 Typical grassland and low mountain swamp meadow | 中山草甸和中山沼泽草甸 Mid-mountain meadow and mid-mountain swamp meadow | 高山草甸、高山荒漠草原和高山沼泽草甸 Alpine meadow, alpine desert grassland and alpine swamp meadow |
---|---|---|---|---|
一年中开始生长的年序日 Day of the year to start new growth | 80 | 85 | 100 | 112 |
一年中结束生长的年序日 Day of the year to end litter fall | 310 | 317 | 300 | 270 |
新根与新叶中碳分配比例 Ratio of C allocation to new fine roots over new leaves | 4.0 | 3.0 | 2.0 | 2.5 |
冠层平均比叶面积 Canopy-average specific leaf area (m2·kg-1) | 12.5 | 12.0 | 30.0 | 25.0 |
Table 1 Parameters of the Biome-BGC model calibrated based on previous studies
参数 Parameter | 盐生草甸、平原荒漠草原和平原沼泽草甸 Saline meadow, plain desert grassland and plain swamp meadow | 典型草原和低山沼泽草甸 Typical grassland and low mountain swamp meadow | 中山草甸和中山沼泽草甸 Mid-mountain meadow and mid-mountain swamp meadow | 高山草甸、高山荒漠草原和高山沼泽草甸 Alpine meadow, alpine desert grassland and alpine swamp meadow |
---|---|---|---|---|
一年中开始生长的年序日 Day of the year to start new growth | 80 | 85 | 100 | 112 |
一年中结束生长的年序日 Day of the year to end litter fall | 310 | 317 | 300 | 270 |
新根与新叶中碳分配比例 Ratio of C allocation to new fine roots over new leaves | 4.0 | 3.0 | 2.0 | 2.5 |
冠层平均比叶面积 Canopy-average specific leaf area (m2·kg-1) | 12.5 | 12.0 | 30.0 | 25.0 |
Fig. 2 Validation of simulated daily evapotranspiration (ET) by Biome-BGC model. A, Validation site in typical grassland of Ürümqi County. B, Validation site in alpine meadow of Aksu. RMSE, root mean squared error.
Fig. 3 Validation of simulated aboveground net primary productivity (ANPP) and net primary productivity (NPP) by Biome-BGC model. A, ANPP validation. B, NPP validation. RMSE, root mean squared error.
Fig. 4 Spatio-temporal distribution of evapotranspiration (ET) in grasslands of study area during 1979-2012. A, Spatial distribution of annual average ET. B, Interannual variability of ET across different seasons.
Fig. 5 Changes in evapotranspiration (ET), precipitation and air temperature in grasslands of Xinjiang during 1979-2012. A, Annual. B, Spring. C, Summer. D, Autumn. E, Winter.
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 年 Year | |
---|---|---|---|---|---|
南疆 South Xinjiang | 35.7 | 107.5 | 33.5 | 6.5 | 183.2 |
北疆 North Xinjiang | 44.9 | 121.2 | 39.7 | 15.5 | 221.3 |
天山 Tianshan Mountains | 67.0 | 213.3 | 63.0 | 14.6 | 357.9 |
Table 3 Regional statistics of evapotranspiration (ET) in grasslands of Xinjiang (unit: mm)
春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 年 Year | |
---|---|---|---|---|---|
南疆 South Xinjiang | 35.7 | 107.5 | 33.5 | 6.5 | 183.2 |
北疆 North Xinjiang | 44.9 | 121.2 | 39.7 | 15.5 | 221.3 |
天山 Tianshan Mountains | 67.0 | 213.3 | 63.0 | 14.6 | 357.9 |
类型 Type | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 年 Year |
---|---|---|---|---|---|
高山草甸 Alpine meadow | 47.2 | 134.8 | 40.2 | 7.5 | 229.7 |
中山草甸 Mid-mountain meadow | 72.4 | 231.9 | 64.8 | 18.5 | 387.7 |
典型草原 Typical grassland | 64.7 | 202.3 | 59.6 | 17.3 | 343.9 |
荒漠草原 Desert grassland | 45.1 | 136.1 | 43.0 | 11.9 | 236.2 |
盐生草甸 Saline meadow | 32.3 | 87.0 | 28.8 | 6.5 | 154.7 |
沼泽草甸 Swamp meadow | 68.3 | 212.3 | 60.1 | 17.7 | 358.3 |
Table 4 The statistics of evapotranspiration (ET) for different grassland types in Xinjiang (unit: mm)
类型 Type | 春 Spring | 夏 Summer | 秋 Autumn | 冬 Winter | 年 Year |
---|---|---|---|---|---|
高山草甸 Alpine meadow | 47.2 | 134.8 | 40.2 | 7.5 | 229.7 |
中山草甸 Mid-mountain meadow | 72.4 | 231.9 | 64.8 | 18.5 | 387.7 |
典型草原 Typical grassland | 64.7 | 202.3 | 59.6 | 17.3 | 343.9 |
荒漠草原 Desert grassland | 45.1 | 136.1 | 43.0 | 11.9 | 236.2 |
盐生草甸 Saline meadow | 32.3 | 87.0 | 28.8 | 6.5 | 154.7 |
沼泽草甸 Swamp meadow | 68.3 | 212.3 | 60.1 | 17.7 | 358.3 |
Fig. 6 Spatio-temporal distribution of water use efficiency (WUE) in grasslands of study area during 1979-2012. A, Spatial distribution of annual average WUE. B, Interannual variability of WUE across different seasons.
春 Spring | 夏 Summer | 秋 Autumn | 年 Year | |
---|---|---|---|---|
南疆 South Xinjiang | 0.24 | 0.29 | 0.24 | 0.26 |
北疆 North Xinjiang | 0.67 | 0.92 | 0.66 | 0.73 |
天山 Tianshan Mountains | 0.56 | 0.82 | 0.65 | 0.69 |
Table 5 Regional statistics of water use efficiency (WUE) in grasslands of Xinjiang (unit: g·kg-1)
春 Spring | 夏 Summer | 秋 Autumn | 年 Year | |
---|---|---|---|---|
南疆 South Xinjiang | 0.24 | 0.29 | 0.24 | 0.26 |
北疆 North Xinjiang | 0.67 | 0.92 | 0.66 | 0.73 |
天山 Tianshan Mountains | 0.56 | 0.82 | 0.65 | 0.69 |
类型 Type | 春 Spring | 夏 Summer | 秋 Autumn | 年 Year |
---|---|---|---|---|
高山草甸 Alpine meadow | 0.23 | 0.44 | 0.38 | 0.37 |
中山草甸 Mid-mountain meadow | 0.62 | 1.05 | 0.81 | 0.86 |
典型草原 Typical grassland | 0.70 | 1.01 | 0.76 | 0.84 |
荒漠草原 Desert grassland | 0.36 | 0.41 | 0.31 | 0.34 |
盐生草甸 Saline meadow | 0.50 | 0.63 | 0.47 | 0.52 |
沼泽草甸 Swamp meadow | 0.56 | 0.92 | 0.73 | 0.77 |
Table 6 The statistics of water use efficiency (WUE) for different grassland types in Xinjiang (unit: g·kg-1)
类型 Type | 春 Spring | 夏 Summer | 秋 Autumn | 年 Year |
---|---|---|---|---|
高山草甸 Alpine meadow | 0.23 | 0.44 | 0.38 | 0.37 |
中山草甸 Mid-mountain meadow | 0.62 | 1.05 | 0.81 | 0.86 |
典型草原 Typical grassland | 0.70 | 1.01 | 0.76 | 0.84 |
荒漠草原 Desert grassland | 0.36 | 0.41 | 0.31 | 0.34 |
盐生草甸 Saline meadow | 0.50 | 0.63 | 0.47 | 0.52 |
沼泽草甸 Swamp meadow | 0.56 | 0.92 | 0.73 | 0.77 |
[1] | Bai J, Chen X, Li LH, Luo GP, Yu Q (2014). Quantifying the contributions of agricultural oasis expansion, management practices and climate change to net primary production and evapotranspiration in croplands in arid northwest China.Journal of Arid Environments, 100, 31-41. doi: 10.1016/j.jaridenv.2013.10.004. |
[2] | Beer C, Ciais P, Reichstein M, Baldocchi D, Law BE, Papale D, Soussana JF, Ammann C, Buchmann N, Frank D, Gianelle D, Janssens IA, Knohl A, Köstner B, Moors E, Roupsard O, Verbeeck H, Vesala T, Williams CA, Wohlfahrt G (2009). Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 23, GB2018. doi: 10.1029/ 2008GB003233. |
[3] | Ben BL, Stith TG, Douglas EA, Peter ET (2005). Reimplementation-of-the-biome-bgc-model.Tree Physiology, 25, 413-424. |
[4] | Bing LF, Su HB, Shao QQ, Liu JY (2012). Changing characteristic of land surface evapotranspiration and soil moisture in China during the past 30 years.Journal of Geo-Information Science, 14(1), 1-13. (in Chinese with English abstract)[邴龙飞, 苏红波, 邵全勤, 刘纪远 (2012). 近30年来中国陆地蒸散量和土壤水分变化特征分析. 地球信息科学进展, 14(1), 1-13.] |
[5] | Cao SK, Feng Q, Si JH, Chang ZQ, Xi HY, Zhuo MC (2009). Summary on research methods of water use efficiency in plant.Journal of Desert Research, 29, 853-858. (in Chinese with English abstract)[曹生奎, 冯起, 司建华, 常宗强, 席海洋, 卓玛错 (2009). 植物水分利用效率研究方法综述. 中国沙漠, 29, 853-858.] |
[6] | Chang B, Liu XD, Wang SL, Zhang YZ, Zhang XL, Sun YB (2014). Study on grassland evapotranspiration at different slope orientation and its impact factors in Qilian Mountains.Journal of Central South University of Forestry & Technology, 34, 90-95. (in Chinese with English abstract)[常博, 刘贤德, 王顺利, 张玉珍, 张学龙, 孙于卜 (2014). 祁连山不同坡向草地蒸散量及其影响因子的分析. 中南林业科技大学学报, 34, 90-95.] |
[7] | Chen X (2012). Retrieval and Analysis of Evapotranspiration in Central Areas of Asia. China Meteorological Press, Beijing, 103. (in Chinese)[陈曦 (2012). 亚洲中部干旱区蒸散发研究. 中国气象出版社, 北京, 103.] |
[8] | Dorigo WA, Zurita-Milla R, de Wit AJW, Brazile J, Singh R, Schaepman ME (2007). A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling.International Journal of Applied Earth Observation and Geoinformation, 9, 165-193. |
[9] | Fan YJ, Hou XY, Shi HX, Shi SL (2012). Effect of carbon cycling in grassland ecosystems on climate warming.Acta Prataculturae Sinica, 21, 294-302. (in Chinese with English abstract)[范月君, 侯向阳, 石红霄, 师尚礼 (2012). 气候变暖对草地生态系统碳循环的影响. 草业学报, 21, 294-302.] |
[10] | Fang JY, Wang W (2007). Soil respiration as a key belowground process: Issues and perspectives.Journal of Plant Ecology (Chinese Version), 31, 345-347. (in Chinese)[方精云, 王娓 (2007). 作为地下过程的土壤呼吸: 我们理解了多少? 植物生态学报, 31, 345-347.] |
[11] | Farquhar GD, Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.Planta, 149, 78-90. |
[12] | Gao YH, Niu JY, Xu R, Wang Y, Li CJ, Qi D (2012). Effects of different film mulching on photosynthesis, transpiration rate and leaf water use efficiency of maize.Acta Prataculturae Sinica, 21, 178-184. (in Chinese with English abstract)[高玉红, 牛俊义, 徐锐, 王彦, 李长江, 祁迪 (2012). 不同覆膜方式对玉米叶片光合、蒸腾及水分利用效率的影响. 草业学报, 21, 178-184.] |
[13] | Guo SH, Yang GJ, Li QF, Zhao CC (2015). Observation and estimation of the evapotranspiration of alpine meadow in the upper reaches of the Aksu River, Xinjiang.Journal of Glaciology and Geocryology, 37, 241-248. (in Chinese with English abstract)[郭淑海, 杨国靖, 李清峰, 赵传成 (2015). 新疆阿克苏河上游高寒草甸蒸散发观测与估算. 冰川冻土, 37, 241-248.] |
[14] | Hamerlynck EP, Scott RL, Cavanaugh ML, Barron-Gafford G (2014). Water use efficiency of annual-dominated and bunchgrass-dominated savanna intercanopy space.Ecohydrology, 7, 1208-1215. |
[15] | Han QF, Luo GP, Li CF, Asanov S, Wu M, Abdusattor S (2016). Simulated grazing effects on carbon emission in Central Asia.Agricultural and Forest Meteorology, 216, 203-214.Han QF, Luo GP, Li CF, Ye H, Chen YL (2013). Modeling grassland net primary productivity and water-use efficiency along an elevational gradient of the Northern Tianshan Mountains. Journal of Arid Land, 5, 354-365. |
[16] | He JY, Zhang MJ, Wang P, Xin H, Huang XY (2011). New progress of the study on climate change in Xinjiang.Arid Zone Research, 28, 499-508. (in Chinese with English abstract)[贺晋云, 张明军, 王鹏, 辛宏, 黄小燕 (2011). 新疆气候变化研究进展. 干旱区研究, 28, 499-508.] |
[17] | Hu RJ, Jiang FQ, Wang YJ, Fan ZL (2002). A study on signals and effects of climatic pattern change from warm-dry to warm-wet in Xinjiang.Arid Land Geography, 25, 194-200. (in Chinese with English abstract)[胡汝骥, 姜逢清, 王亚俊, 樊自立 (2002). 新疆气候由暖干向暖湿转变的信号及影响. 干旱区地理, 25, 194-200.] |
[18] | Hu ZM, Yu GR, Wang QF, Zhao FH (2009). Ecosystem level water use efficiency: A review.Acta Ecologica Sinica, 29, 1498-1507. (in Chinese with English abstract)[胡中民, 于贵瑞, 王秋凤, 赵风华 (2009). 生态系统水分利用效率研究进展. 生态学报, 29, 1498-1507.] |
[19] | Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004). Convergence across biomes to a common rain-use efficiency.Nature, 429, 651-654. |
[20] | Laniak GF, Olchin G, Goodall J, Voinov A, Hill M, Glynn P, Whelan G, Geller G, Quinn N, Blind M, Peckham S, Reaney S, Gaber N, Kennedy R, Hughes A (2013). Integrated environmental modeling: A vision and roadmap for the future.Environmental Modelling & Software, 39, 3-23. |
[21] | Li HD, Guan DX, Yuan FH, Wang AZ, Jin CJ, Wu JB, Li Z, Jing YL (2015). Water use efficiency and its influential factor over Horqin Meadow.Acta Ecologica Sinica, 35, 478-488. (in Chinese with English abstract)[李辉东, 关德新, 袁凤辉, 王安志, 金昌杰, 吴家兵, 李峥, 井艳丽 (2015). 科尔沁草甸生态系统水分利用效率及影响因素. 生态学报, 35, 478-488.] |
[22] | Li HQ, Qiao XL, Zhang YL, Zhang FW, Li YN (2015). Effects of fencing on the soil water conversation in Maduo alpine grassland-source of Yellow River.Journal of Water and Soil Conversation, 29, 195-200. (in Chinese with English abstract)[李红琴, 乔小龙, 张镒理, 张法伟, 李英年 (2015). 封育对黄河源头玛多高寒草原水源涵养的影响. 水土保持学报, 29, 195-200.] |
[23] | Li JM, Cai H, Cheng Q, Qiao CL, Chu H, Chen DD, Xu SX, Zhao XQ, Zhao L (2012). Characterizing the evapotranspiration of a degraded grassland in the Sanjiangyuan Region of Qinghai Province.Acta Prataculturae Sinica, 21, 223-233. (in Chinese with English abstract)[李婧梅, 蔡海, 程茜, 乔春连, 褚晖, 陈懂懂, 徐世晓, 赵新全, 赵亮 (2012). 青海省三江源地区退化草地蒸散特征. 草业学报, 21, 223-233.] |
[24] | Li SG, Asanuma J, Kotani A, Davaa G, Oyunbaatar D (2007). Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints.Journal of Hydrology, 333, 133-143. |
[25] | Li Z, Yang D, Hong Y (2013). Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River.Journal of Hydrology, 500, 157-169. |
[26] | Mi ZR, Chen LT, Zhang ZH, He JS (2015). Alpine grassland water use efficiency based on annual precipitation, growing season precipitation and growing season evapotranspiration.Chinese Journal of Plant Ecology, 39, 649-660. (in Chinese with English abstract)[米兆荣, 陈立同, 张振华, 贺金生 (2015). 基于年降水、生长季降水和生长季蒸散的高寒草地水分利用效率. 植物生态学报, 39, 649-660.] |
[27] | Miyazaki S, Yasunari T, Miyamoto T, Kaihotsu I, Davaa G, Oyunbaatar G, Natsagdorj L, Oki T (2004). Agrometeorological conditions of grassland vegetation in central Mongolia and their impact for leaf area growth.Journal of Geophysical Research, 109, D22106. doi: 10.1029/2004JD 005658.005179. |
[28] | Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011). Water-use efficiency in response to climate change, from leaf to ecosystem in a temperate steppe.Global Change Biology, 17, 1073-1082. |
[29] | Petritsch R, Hasenauer H, Pietsch SA (2007). Incorporating forest growth response to thinning within Biome-BGC.Forest Ecology and Management, 242, 324-336. |
[30] | Ren JZ, Liang TG, Lin HL, Feng QS, Huang XD, Hou FJ, Zou DF, Wang C (2011).Study on grassland’s responses to global climate change and its carbon sequestration potentials.Acta Prataculturae Sinica, 20, 1-22. (in Chinese with English abstract)[任继周, 梁天刚, 林慧龙, 冯琦胜, 黄晓东, 侯扶江, 邹德富, 王翀 (2011). 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 20, 1-22.] |
[31] | Running SW, Coughlan JC (1988). A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes.Ecological Modelling, 42, 125-154. |
[32] | Ryan MG (1991). Effects of climate change on plant respiration.Ecological Applications, 1, 157-167. |
[33] | Sandor R, Barcza Z, Hidy D, Lellei-Kovacs E, Ma S, Bellocchi G (2016). Modelling of grassland fluxes in Europe: Evaluation of two biogeochemical models.Agriculture Ecosystems & Environment, 215, 1-19. |
[34] | Sun HL, Chen YN, Li WH, Li F, Ayoupu M (2011). Study on types and ecological services values of the grassland in the Ili River Basin, Xinjiang, China.Journal of Desert Research, 31, 1273-1277. (in Chinese with English abstract)[孙慧兰, 陈亚宁, 李卫红, 黎枫, 木巴热克·阿尤普 (2011). 新疆伊犁河流域草地类型特征及其生态服务价值研究. 中国沙漠, 31, 1273-1277.] |
[35] | Sun Y, Li DL (2014). Features and response to climate-driven factors of the runoff in the upper reaches of the Weihe River during 1975-2011.Journal of Glaciology and Geocryology, 36, 413-423. (in Chinese with English abstract)[孙悦, 李栋梁 (2014). 1975-2011年渭河上游径流演变规律及对气候驱动因子的响应. 冰川冻土, 36, 413-423.] |
[36] | Thornton PE, Law BE, Henry LG, Kenneth LC, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002). Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests.Agricultural and Forest Meteorology, 113, 185-222. |
[37] | Tong X, Liu TX, Yang DW, Duan LM, Wu Y, Wang TS, Wang HY, Gao XY (2015). Simulating evaporation from a water surface for the sand-meadow ecotone of the semiarid region in North China.Arid Land Geography, 38, 10-17. (in Chinese with English abstract)[童新, 刘廷玺, 杨大文, 段利民, 吴尧, 王天帅, 王海燕, 高肖彦 (2015). 半干旱沙地-草甸区水面蒸发模拟及其影响因子辨识. 干旱区地理, 38, 10-17.] |
[38] | Vicente-Serrano SM, Camarero JJ, Zabalza J, Sanguesa- Barreda G, Lopez-Moreno JI, Tague CL (2015). Evapotranspiration deficit controls net primary production and growth of silver fir: Implications for Circum-Mediterranean forests under forecasted warmer and drier conditions.Agricultural and Forest Meteorology, 206, 45-54. |
[39] | Wang KC, Dickinson RE (2012). A review on global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 50, RG2005. doi: 10.1029/2011rg000373. |
[40] | Wang QX, Watanabe M, Zhu QY (2005). Simulation of water and carbon fluxes using BIOME-BGC model over crops in China.Agricultural and Forest Meteorology, 131, 209-224. |
[41] | Xi JB, Zhang FS, Mao DR, Tian CY, Dong ZC, Wang KF (2006). Species diversity and distribution of halophytic vegetation in Xinjiang.Scientia Silvae Sinicae, 42(10), 6-12. (in Chinese with English abstract)[郗金标, 张福锁, 毛达如, 田长彦, 董振成, 王开芳 (2006). 新疆盐生植物群落物种多样性及其分布规律的初步研究. 林业科学, 42(10), 6-12.] |
[42] | Yan HM, Zhan JY, Jiang QO, Yuan YW, Li ZH (2015). Multilevel modeling of NPP change and impacts of water resources in the Lower Heihe River Basin. Physics and Chemistry of the Earth, 79-82, 29-39. |
[43] | Yan RH, Xiong HG, Zhang F (2013). The evapotranspiration and energy budget of anAchnatherum splendens grassland in the Oasis-desert Ecotone in Xinjiang, China, during Summer and Autumn. Journal of Desert Research, 33, 133-140. (in Chinese with English abstract)[闫人华, 熊黑钢, 张芳 (2013). 夏秋季绿洲—荒漠过渡带芨芨草地蒸散及能量平衡特征研究. 中国沙漠, 33, 133-140.] |
[44] | Yan ZQ, Qi YC, Dong YS, Peng Q, Sun LJ, Jia JQ, Cao CC, Guo SF, He YL (2014). Nitrogen cycling in grassland ecosystems in response to climate change and human activities.Acta Prataculturae Sinica, 23, 279-292. (in Chinese with English abstract)[闫钟清, 齐玉春, 董云社, 彭琴, 孙良杰, 贾军强, 曹丛丛, 郭树芳, 贺云龙 (2014). 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制. 草业学报, 23, 279-292.] |
[45] | Yang YH, Fang JY, Fay PA, Bell JE, Ji CJ (2010). Rain use efficiency across a precipitation gradient on the Tibetan Plateau.Geophysical Research Letters, 37, L15702. doi: 10.1029/2010GL043920. |
[46] | Zhang CM, Liang C, Long XJ, Wei RJ (2013). Estimating and dynamic change of vegetation water use efficiency in Yangtze and Yellow River headwater regions.Transactions of the Chinese Society of Agricultural Engineering, 29, 146-155. (in Chinese with English abstract)[张春敏, 梁川, 龙训建, 卫仁娟 (2013). 江河源区植被水分利用效率遥感估算及动态变化. 农业工程学报, 29, 146-155.] |
[47] | Zhang XF, Niu JM, Zhang Q, Dong JJ, Zhang J (2016). Spatial pattern of water conservation function in grassland ecosystem in the Xilin River Basin, Inner Mongolia.Arid Zone Research, 33, 814-822. (in Chinese with English abstract)[张雪峰, 牛建明, 张庆, 董建军, 张靖 (2016). 内蒙古锡林河流域草地生态系统水源涵养功能空间格局. 干旱区研究, 33, 814-822.] |
[48] | Zhang YD, Pang R, Gu FX, Liu SR (2016). Temporal-spatial variations ofWUE and its response to climate change in alpine area of southwestern China. Acta Ecologica Sinica, 36, 1-11. (in Chinese with English abstract)[张远东, 庞瑞, 顾峰雪, 刘世荣 (2016). 西南高山地区水分利用效率时空动态及其对气候变化的响应. 生态学报, 36, 1-11.] |
[49] | Zhao LL, Xia J, Xu CY, Wang ZG, Su L (2013). A review of evapotranspiration estimation methods in hydrological models.Acta Geographica Sinica, 68, 127-136. (in Chinese with English abstract)[赵玲玲, 夏军, 许崇育, 王中根, 苏磊 (2013). 水文循环模拟中蒸散发估算方法综述. 地理学报, 68, 127-136.] |
[50] | Zhou DC, Luo GP, Han QF, Yin CY, Li LH, Hu YK (2012). Impacts of grazing and climate change on the aboveground net primary productivity of mountainous grassland ecosystems along altitudinal gradients over the Northern Tianshan Mountains, China.Acta Ecologica Sinica, 32, 81-92. (in Chinese with English abstract)[周德成, 罗格平, 韩其飞, 尹昌应, 李龙辉, 胡玉昆 (2012). 天山北坡不同海拔梯度山地草原生态系统地上净初级生产力对气候变化及放牧的响应. 生态学报, 32, 81-92.] |
[51] | Zhou W, Gang CC, Li JL, Zhang CB, Mu SJ, Sun ZG (2014). Spatial-temporal dynamics of grassland coverage and its response to climate change in China during 1982-2010.Acta Geographica Sinica, 69, 15-30. (in Chinese with English abstract)[周伟, 刚成诚, 李建龙, 章超斌, 穆少杰, 孙政国 (2014). 1982-2010年中国草地覆盖度的时空动态及其对气候变化的响应. 地理学报, 69, 15-30.] |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[3] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[7] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[8] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[9] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[10] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[11] | ZHANG Zhi-Shan, HAN Gao-Ling, HUO Jian-Qiang, HUANG Ri-Hui, XUE Shu-Wen. Response of xylem hydraulic conductivity and leaf photosynthetic capacity of sand-binding shrubs Caragana korshinskii and C. liouana to soil water [J]. Chin J Plant Ecol, 2023, 47(10): 1422-1431. |
[12] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[13] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[14] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[15] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn