Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (3): 300-310.DOI: 10.17521/cjpe.2021.0292
Special Issue: 生态学研究的方法和技术; 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua*(), QIU Guo-Yu*()
Received:
2021-08-12
Accepted:
2021-10-30
Online:
2022-03-20
Published:
2022-01-05
Contact:
YAN Chun-Hua,QIU Guo-Yu
Supported by:
HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration[J]. Chin J Plant Ecol, 2022, 46(3): 300-310.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0292
生态系统类型 Ecosystem type | 通量站 Flux station | 下垫面类型 Underlying surface type | 气候类型 Climate type | 海拔 Altitude (m) | 经纬度 Longitude and latitude | 干旱系数 Aridity index | 研究年限 Research time |
---|---|---|---|---|---|---|---|
森林 Forest | 鼎湖山 Dinghushan | 常绿阔叶林 Evergreen broadleaf forest | 亚热带季风湿润气候 Subtropical monsoon humid climate | 300 | 112.32° E 23.10° N | 0.85 | 2003-01-2010-12 |
西双版纳 Xishuangbanna | 热带雨林 Tropical rainforest | 热带季风气候 Tropical monsoon climate | 756 | 101.15° E 21.55° N | 0.73 | 2003-01-2010-12 | |
千烟洲 Qianyanzhou | 人工林 Artificial forest | 亚热带季风气候 Subtropical monsoon climate | 100 | 115.03° E 26.44° N | 1.02 | 2003-01- 2010-12 | |
长白山 Changbaishan | 针阔混交林 Mixed needleleaf and broadleaf forest | 温带大陆性气候 Temperate continental climate | 738 | 128.05° E 42.24° N | 1.92 | 2003-01-2010-12 | |
九寨沟 Jiuzhaigou | 针叶林 Coniferous forest | 高原温带季风气候 Plateau temperate monsoon climate | 2 478 | 103.87° E 33.15° N | 1.00 | 2013-08-2015-12 | |
草地 Grassland | 内蒙古 Nei Mongol | 温带典型草原 Typical temperate grassland | 温带半干旱草原气候 Temperate semi-arid steppe climate | 1 200 | 116.24° E 43.19° N | 3.96 | 2004-01-2010-12 |
海北 Haibei | 高寒草甸 Alpine meadow | 高原大陆性气候 Plateau continental climate | 3 190 | 101.19° E 37.39° N | 1.58 | 2003-01-2010-12 | |
农田 Farmland | 禹城 Yucheng | 旱作农田 Dry farmland | 温带季风半湿润气候 Temperate monsoon semi-humid climate | 28 | 116.34° E 36.49° N | 2.28 | 2003-01-2010-12 |
Table 1 Basic information table of the China flux sites
生态系统类型 Ecosystem type | 通量站 Flux station | 下垫面类型 Underlying surface type | 气候类型 Climate type | 海拔 Altitude (m) | 经纬度 Longitude and latitude | 干旱系数 Aridity index | 研究年限 Research time |
---|---|---|---|---|---|---|---|
森林 Forest | 鼎湖山 Dinghushan | 常绿阔叶林 Evergreen broadleaf forest | 亚热带季风湿润气候 Subtropical monsoon humid climate | 300 | 112.32° E 23.10° N | 0.85 | 2003-01-2010-12 |
西双版纳 Xishuangbanna | 热带雨林 Tropical rainforest | 热带季风气候 Tropical monsoon climate | 756 | 101.15° E 21.55° N | 0.73 | 2003-01-2010-12 | |
千烟洲 Qianyanzhou | 人工林 Artificial forest | 亚热带季风气候 Subtropical monsoon climate | 100 | 115.03° E 26.44° N | 1.02 | 2003-01- 2010-12 | |
长白山 Changbaishan | 针阔混交林 Mixed needleleaf and broadleaf forest | 温带大陆性气候 Temperate continental climate | 738 | 128.05° E 42.24° N | 1.92 | 2003-01-2010-12 | |
九寨沟 Jiuzhaigou | 针叶林 Coniferous forest | 高原温带季风气候 Plateau temperate monsoon climate | 2 478 | 103.87° E 33.15° N | 1.00 | 2013-08-2015-12 | |
草地 Grassland | 内蒙古 Nei Mongol | 温带典型草原 Typical temperate grassland | 温带半干旱草原气候 Temperate semi-arid steppe climate | 1 200 | 116.24° E 43.19° N | 3.96 | 2004-01-2010-12 |
海北 Haibei | 高寒草甸 Alpine meadow | 高原大陆性气候 Plateau continental climate | 3 190 | 101.19° E 37.39° N | 1.58 | 2003-01-2010-12 | |
农田 Farmland | 禹城 Yucheng | 旱作农田 Dry farmland | 温带季风半湿润气候 Temperate monsoon semi-humid climate | 28 | 116.34° E 36.49° N | 2.28 | 2003-01-2010-12 |
方法 Method | 月份 Month | 鼎湖山 Dinghushan | 西双版纳 Xishuangbanna | 千烟洲 Qianyanzhou | 长白山 Changbaishan | 九寨沟 Jiuzhaigou | 海北 Haibei | 内蒙古 Nei Mongol | 禹城 Yucheng | |
---|---|---|---|---|---|---|---|---|---|---|
校准法(年值) Calibration method (annual αe) | 1.03 | 1.16 | 1.07 | 1.11 | 1.11 | 1.04 | 0.92 | 1.42 | ||
Liu法 Liu method | 1.18 | 1.20 | 1.15 | 1.05 | 1.15 | 1.08 | 0.95 | 1.02 | ||
Brutsaert法 Brutsaert method | 1.07 | 1.10 | 1.03 | 0.89 | 1.04 | 0.94 | 0.71 | 0.85 | ||
校准法(月值) Calibration method (monthly αe) | 1 | 1.02 | 1.24 | 1.06 | - | 1.10 | 0.93 | - | - | |
2 | 0.96 | 1.29 | 1.07 | - | 1.06 | 0.86 | - | - | ||
3 | 0.96 | 1.16 | 1.06 | - | 1.00 | 0.85 | - | - | ||
4 | 1.04 | 1.06 | 1.08 | - | 1.00 | 0.92 | - | - | ||
5 | 1.04 | 1.06 | 1.09 | - | 1.15 | 0.92 | - | - | ||
6 | 1.01 | 1.17 | 1.12 | - | 1.15 | 1.04 | - | - | ||
7 | 0.98 | 1.19 | 1.09 | - | 1.11 | 1.16 | - | - | ||
8 | 1.00 | 1.19 | 1.03 | - | 1.10 | 1.17 | - | - | ||
9 | 1.04 | 1.13 | 1.02 | - | 1.20 | 1.08 | - | - | ||
10 | 1.11 | 1.14 | 1.05 | - | 1.19 | 0.90 | - | - | ||
11 | 1.18 | 1.16 | 1.07 | - | 1.20 | 0.89 | - | - | ||
12 | 1.18 | 1.18 | 1.08 | - | 1.20 | 0.99 | - | - |
Table 2 Comparison of αe value of different methods
方法 Method | 月份 Month | 鼎湖山 Dinghushan | 西双版纳 Xishuangbanna | 千烟洲 Qianyanzhou | 长白山 Changbaishan | 九寨沟 Jiuzhaigou | 海北 Haibei | 内蒙古 Nei Mongol | 禹城 Yucheng | |
---|---|---|---|---|---|---|---|---|---|---|
校准法(年值) Calibration method (annual αe) | 1.03 | 1.16 | 1.07 | 1.11 | 1.11 | 1.04 | 0.92 | 1.42 | ||
Liu法 Liu method | 1.18 | 1.20 | 1.15 | 1.05 | 1.15 | 1.08 | 0.95 | 1.02 | ||
Brutsaert法 Brutsaert method | 1.07 | 1.10 | 1.03 | 0.89 | 1.04 | 0.94 | 0.71 | 0.85 | ||
校准法(月值) Calibration method (monthly αe) | 1 | 1.02 | 1.24 | 1.06 | - | 1.10 | 0.93 | - | - | |
2 | 0.96 | 1.29 | 1.07 | - | 1.06 | 0.86 | - | - | ||
3 | 0.96 | 1.16 | 1.06 | - | 1.00 | 0.85 | - | - | ||
4 | 1.04 | 1.06 | 1.08 | - | 1.00 | 0.92 | - | - | ||
5 | 1.04 | 1.06 | 1.09 | - | 1.15 | 0.92 | - | - | ||
6 | 1.01 | 1.17 | 1.12 | - | 1.15 | 1.04 | - | - | ||
7 | 0.98 | 1.19 | 1.09 | - | 1.11 | 1.16 | - | - | ||
8 | 1.00 | 1.19 | 1.03 | - | 1.10 | 1.17 | - | - | ||
9 | 1.04 | 1.13 | 1.02 | - | 1.20 | 1.08 | - | - | ||
10 | 1.11 | 1.14 | 1.05 | - | 1.19 | 0.90 | - | - | ||
11 | 1.18 | 1.16 | 1.07 | - | 1.20 | 0.89 | - | - | ||
12 | 1.18 | 1.18 | 1.08 | - | 1.20 | 0.99 | - | - |
生态系统类型 Ecosystem type | 通量站 Flux station | 校准法(年值) Calibration method (annual value) | 校准法(月值) Calibration method (monthly value) | Brutsaert法 Brutsaert method (Brutsaert et al., | Liu法 Liu method (Liu et al., | ||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
森林 Forest | 鼎湖山 Dinghushan | 0.81 | 0.67 | 0.81 | 0.64 | 0.81 | 0.68 | 0.81 | 0.82 |
西双版纳 Xishuangbanna | 0.73 | 0.51 | 0.75 | 0.49 | 0.73 | 0.55 | 0.73 | 0.54 | |
千烟洲 Qianyanzhou | 0.92 | 0.55 | 0.92 | 0.54 | 0.91 | 0.60 | 0.91 | 0.64 | |
长白山 Changbaishan | 0.80 | 0.78 | - | - | 0.81 | 1.02 | 0.81 | 0.79 | |
九寨沟 Jiuzhaigou | 0.85 | 0.59 | 0.87 | 0.53 | 0.85 | 0.63 | 0.85 | 0.61 | |
草地 Grassland | 海北 Haibei | 0.92 | 0.45 | 0.96 | 0.34 | 0.92 | 0.54 | 0.92 | 0.46 |
内蒙古 Nei Mongol | 0.67 | 0.75 | - | - | 0.64 | 0.93 | 0.63 | 0.75 | |
农田 Farmland | 禹城 Yucheng | 0.78 | 0.97 | - | - | 0.76 | 1.82 | 0.77 | 1.45 |
Table 3 Root mean square error (RMSE) and determinate coefficient (R2) of different calculation methods
生态系统类型 Ecosystem type | 通量站 Flux station | 校准法(年值) Calibration method (annual value) | 校准法(月值) Calibration method (monthly value) | Brutsaert法 Brutsaert method (Brutsaert et al., | Liu法 Liu method (Liu et al., | ||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
森林 Forest | 鼎湖山 Dinghushan | 0.81 | 0.67 | 0.81 | 0.64 | 0.81 | 0.68 | 0.81 | 0.82 |
西双版纳 Xishuangbanna | 0.73 | 0.51 | 0.75 | 0.49 | 0.73 | 0.55 | 0.73 | 0.54 | |
千烟洲 Qianyanzhou | 0.92 | 0.55 | 0.92 | 0.54 | 0.91 | 0.60 | 0.91 | 0.64 | |
长白山 Changbaishan | 0.80 | 0.78 | - | - | 0.81 | 1.02 | 0.81 | 0.79 | |
九寨沟 Jiuzhaigou | 0.85 | 0.59 | 0.87 | 0.53 | 0.85 | 0.63 | 0.85 | 0.61 | |
草地 Grassland | 海北 Haibei | 0.92 | 0.45 | 0.96 | 0.34 | 0.92 | 0.54 | 0.92 | 0.46 |
内蒙古 Nei Mongol | 0.67 | 0.75 | - | - | 0.64 | 0.93 | 0.63 | 0.75 | |
农田 Farmland | 禹城 Yucheng | 0.78 | 0.97 | - | - | 0.76 | 1.82 | 0.77 | 1.45 |
Fig. 1 Comparison of estimated daily evapotranspiration (E) calculated by the nonlinear complementary principle and observed E. Liu method refers to Liu et al. (2016), Brutsaert method refers to Brutsaert et al. (2020). RMSE, root mean square error.
Fig. 2 Root mean square error (RMSE) and determinate coefficient (R2) boxplot between the estimated evapotranspiration (E) with different calculation methods and observed E at all stations. Liu method refers to Liu et al. (2016), Brutsaert method refers to Brutsaert et al. (2020).
Fig. 6 Comparison of monthly estimated evapotranspiration (E) calculated by Brutsaert method and observed E. Brutsaert method refers to Brutsaert et al. (2020)
[1] |
Ai ZP, Wang QX, Yang YH, Manevski K, Zhao X, Eer DN (2017). Estimation of land-surface evaporation at four forest sites across Japan with the new nonlinear complementary method. Scientific Reports, 7, 17793. DOI: 10.1038/s41598-017-17473-0.
DOI URL |
[2] | Allen RG, Pereira LS, Raes D, Smith M (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO, Rome. |
[3] |
Brutsaert W (2015). A generalized complementary principle with physical constraints for land-surface evaporation. Water Resources Research, 51, 8087-8093.
DOI URL |
[4] |
Brutsaert W, Li W, Takahashi A, Hiyama T, Zhang L, Liu WZ (2017). Nonlinear advection-aridity method for landscape evaporation and its application during the growing season in the southern Loess Plateau of the Yellow River basin. Water Resources Research, 53, 270-282.
DOI URL |
[5] |
Brutsaert W, Cheng L, Zhang L (2020). Spatial distribution of global landscape evaporation in the early twenty-first century by means of a generalized complementary approach. Journal of Hydrometeorology, 21, 287-298.
DOI URL |
[6] |
Han SJ, Hu HP, Tian FQ (2012). A nonlinear function approach for the normalized complementary relationship evaporation model. Hydrological Processes, 26, 3973-3981.
DOI URL |
[7] |
Han SJ, Tian FQ (2018). Derivation of a sigmoid generalized complementary function for evaporation with physical constraints. Water Resources Research, 54, 1734-1736.
DOI URL |
[8] |
Hu ZY, Wang GX, Sun XY, Zhu MZ, Song CL, Huang KW, Chen XP (2018). Spatial-temporal patterns of evapotranspiration along an elevation gradient on mount Gongga, southwest China. Water Resources Research, 54, 4180-4192.
DOI URL |
[9] | Jian DN, Li XC, Tao H, Huang JL, Su BD (2016). Spatio- temporal variation of actual evapotranspiration and its influence factors in the Tarim River basin based on the complementary relationship approach. Journal of Glaciology and Geocryology, 38, 750-760. |
[蹇东南, 李修仓, 陶辉, 黄金龙, 苏布达 (2016). 基于互补相关理论的塔里木河流域实际蒸散发时空变化及影响因素分析. 冰川冻土, 38, 750-760.] | |
[10] |
Li TS, Xia J, Zhang L, She DX, Wang GS, Cheng L (2021). An improved complementary relationship for estimating evapotranspiration attributed to climate change and revegetation in the Loess Plateau, China. Journal of Hydrology, 592, 125516. DOI: 10.1016/j.jhydrol.2020.125516.
DOI URL |
[11] | Li Q, Cheng L, Ye LY, Liu P, Xiong LH (2020). Long-term land surface evaporation and its changes estimated by the generalized complementary principle in China. Journal of Water Resources Research, 9, 259-269. |
[李曲, 程磊, 叶林媛, 刘攀, 熊立华 (2020). 基于广义蒸发互补关系的中国长期陆面蒸发量及其变化分析. 水资源研究, 9, 259-269.] | |
[12] | Liu X, Liu C, Brutsaert W (2018). Investigation of a generalized nonlinear form of the complementary principle for evaporation estimation. Journal of Geophysical Research, 123, 3933-3942. |
[13] |
Liu XM, Liu CM, Brutsaert W (2016). Regional evaporation estimates in the eastern monsoon region of China: assessment of a nonlinear formulation of the complementary principle. Water Resources Research, 52, 9511-9521.
DOI URL |
[14] | Penman HL (1948). Natural Evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 193, 120-145. |
[15] | Slatyer RO, Mcilroy IC (1961). Practical Microclimatology. CSIRO, Melbourne. |
[16] | Szilagyi J, Crago R, Qualls R (2017). A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology. Journal of Geophysical Research, 122, 264-278. |
[17] |
Wang LM, Han SJ, Tian FQ (2021). At which timescale does the complementary principle perform best in evaporation estimation? Hydrology and Earth System Sciences, 25, 375-386.
DOI URL |
[18] | Wen SS, Jiang T, Li XC, Wang TF, Wang YJ, Fischer T (2014). Changes of actual evapotranspiration over the Songhua River basin from 1961 to 2010. Climate Change Research, 10(2), 79-86. |
[温姗姗, 姜彤, 李修仓, 王腾飞, 王艳君, Fischer T (2014). 1961-2010年松花江流域实际蒸散发时空变化及影响要素分析. 气候变化研究进展, 10(2), 79-86.] | |
[19] |
Yan CH, Zhao WL, Wang Y, Yang QX, Zhang QT, Qiu GY (2017). Effects of forest evapotranspiration on soil water budget and energy flux partitioning in a subalpine valley of China. Agricultural and Forest Meteorology, 246, 207-217.
DOI URL |
[20] |
Yang DW, Shao WW, Yeh PJF, Yang HB, Kanae S, Oki T (2009). Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resources Research, 45, W00A14. DOI: 10.1029/2008WR006948.
DOI |
[21] |
Yang HB, Yang DW, Lei ZD (2013). Seasonal variability of the complementary relationship in the Asian monsoon region. Hydrological Processes, 27, 2736-2741.
DOI URL |
[22] | Zhang L, Cheng L, Brutsaert W (2017). Estimation of land surface evaporation using a generalized nonlinear complementary relationship. Journal of Geophysical Research, 122, 1475-1487. |
[23] | Zhao YM (2019). Analysis of Estimating and Driving Force of Actual Evapotranspiration in Watershed Based on Generalized Complementary Relationship. Nanjing University of Information Science & Technology, Nanjing. |
[赵宇铭 (2019). 基于广义互补相关理论的流域实际蒸散发估算及驱动力分析. 南京信息工程大学, 南京.] |
[1] | HAN Cong, MU Yan-Mei, ZHA Tian-Shan, QIN Shu-Gao, LIU Peng, TIAN Yun, JIA Xin. A dataset of ecosystem fluxes in a shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012-2016) [J]. Chin J Plant Ecol, 2023, 47(9): 1322-1332. |
[2] | WANG Yan-Bing, YOU Cui-Hai, TAN Xing-Ru, CHEN Bo-Yu, XU Meng-Zhen, CHEN Shi-Ping. Seasonal and interannual variations in energy balance closure over arid and semi-arid grasslands in northern China [J]. Chin J Plant Ecol, 2022, 46(12): 1448-1460. |
[3] | LI Hong-Qin, ZHANG Ya-Ru, ZHANG Fa-Wei, MA Wen-Jing, LUO Fang-Lin, WANG Chun-Yu, YANG Yong-Sheng, ZHANG Lei-Ming, LI Ying-Nian. Application of boosted regression trees for the gap-filling to flux dataset in an alpine scrubland of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1437-1447. |
[4] | LUO Yuan-Lin, MA Wen-Hong, ZHANG Xin-Yu, SU Chuang, SHI Ya-Bo, ZHAO Li-Qing. Variation of functional traits of alternative distribution of Caragana species along environmental gradients in Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(11): 1364-1375. |
[5] | CHEN Shi-Ping, YOU Cui-Hai, HU Zhong-Min, CHEN Zhi, ZHANG Lei-Ming, WANG Qiu-Feng. Eddy covariance technique and its applications in flux observations of terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(4): 291-304. |
[6] | CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19. |
[7] | Ke-Qing WANG, He-Song WANG, Osbert Jianxin SUN. Application and comparison of remote sensing GPP models with multi-site data in China [J]. Chin J Plant Ecol, 2017, 41(3): 337-347. |
[8] | QUAN Xian-Kui,WANG Chuan-Kuan. Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao’ershan area [J]. Chin J Plan Ecolo, 2015, 39(4): 352-361. |
[9] | WANG Yu-Hui, JING Chang-Qing, BAI Jie, LI Long-Hui, CHEN Xi, LUO Ge-Ping. Characteristics of water and carbon fluxes during growing season in three typical arid ecosystems in central Asia [J]. Chin J Plant Ecol, 2014, 38(8): 795-808. |
[10] | ZHANG Feng, ZHOU Guang-Sheng. Estimating canopy photosynthetic parameters in maize field based on multi-spectral remote sensing [J]. Chin J Plant Ecol, 2014, 38(7): 710-719. |
[11] | YANG Li-Qiong,HAN Guang-Xuan,YU Jun-Bao,WU Li-Xin,ZHU Min,XING Qing-Hui,WANG Guang-Mei,MAO Pei-Li. Effects of reclamation on net ecosystem CO2 exchange in wetland in the Yellow River Delta, China [J]. Chin J Plant Ecol, 2013, 37(6): 503-516. |
[12] | ZHANG Fa-Wei, LI Ying-Nian, CAO Guang-Min, LI Feng-Xia, YE Guang-Ji, LIU Ji-Hong, WEI Yong-Lin, ZHAO Xin-Quan. CO2 fluxes and their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai Lake, China [J]. Chin J Plant Ecol, 2012, 36(3): 187-198. |
[13] | WU Li-Bo, GU Song, ZHAO Liang, XU Shi-Xiao, ZHOU Hua-Kun, FENG Chao, Xu Wei-Xin, LI Ying-Nian, ZHAO Xin-Quan, TANG Yan-Hong. Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China [J]. Chin J Plant Ecol, 2010, 34(7): 770-780. |
[14] | LIU Chen-Feng, ZHANG Zhi-Qiang, SUN Ge, ZHA Tong-Gang, ZHU Jin-Zhao, SHEN Li-Hua, CHEN Jun, FANG Xian-Rui, CHEN Ji-Quan. QUANTIFYING EVAPOTRANSPIRATION AND BIOPHYSICAL REGULATIONS OF A POPLAR PLANTATION ASSESSED BY EDDY COVARIANCE AND SAP-FLOW METHODS [J]. Chin J Plant Ecol, 2009, 33(4): 706-718. |
[15] | GU Feng-Xue, YU Gui-Rui, WEN Xue-Fa, TAO Bo, LI Ke-Rang, LIU Yun-Fen. DROUGHT EFFECTS ON CARBON EXCHANGE IN A SUBTROPICAL CONIFEROUS PLANTATION IN CHINA [J]. Chin J Plant Ecol, 2008, 32(5): 1041-1051. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn