Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (12): 1448-1460.DOI: 10.17521/cjpe.2021.0428
Special Issue: 生态系统碳水能量通量
• Special feature: Ecosystem carbon and water fluxes in ecological vulnerable areas of China • Previous Articles Next Articles
WANG Yan-Bing, YOU Cui-Hai, TAN Xing-Ru, CHEN Bo-Yu, XU Meng-Zhen, CHEN Shi-Ping()
Received:
2021-11-22
Accepted:
2022-04-22
Online:
2022-12-20
Published:
2023-01-13
Contact:
*CHEN Shi-Ping(Supported by:
WANG Yan-Bing, YOU Cui-Hai, TAN Xing-Ru, CHEN Bo-Yu, XU Meng-Zhen, CHEN Shi-Ping. Seasonal and interannual variations in energy balance closure over arid and semi-arid grasslands in northern China[J]. Chin J Plant Ecol, 2022, 46(12): 1448-1460.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0428
站点 Site | 地理位置 Geo-location | 海拔 Altitude (m) | 年平均气温 Mean annual air temperature (°C) | 年降水量 Mean annual precipitation (mm) | 土壤类型 Soil type | 草地类型 Grassland type | 优势种 Dominant species | 数据时段 Data period |
---|---|---|---|---|---|---|---|---|
四子王旗站 Siziwangqi station (SZ) | 111.90° E 41.78° N | 1 438 | 3.4 | 310 | 栗钙土 Kastanozem | 荒漠草原 Desert steppe | 短花针茅 Stipa breviflora 冷蒿 Artemisia frigida | 2011-2018 |
锡林浩特割草站 Xilinhot grazed station (XL1) | 116.67° E 43.56° N | 1 250 | 2.0 | 350 | 栗钙土 Kastanozem | 典型草原 Typical steppe | 大针茅 Stipa grandis 羊草 Leymus chinensis 冷蒿 Artemisia frigida | 2006-2018 |
锡林浩特围封站 Xilinhot fenced station (XL2) | 116.67° E 43.55° N | 1 250 | 2.0 | 350 | 栗钙土 Kastanozem | 典型草原 Typical steppe | 大针茅 Stipa grandis 羊草 Leymus chinensis 羽茅 Achnatherum sibiricum | 2006-2018 |
西乌珠穆沁旗站 Xi Ujimqin Qi station (XW) | 117.58° E 44.36° N | 1 148 | 1.5 | 330 | 栗钙土 Kastanozem | 典型草原 Typical steppe | 大针茅 Stipa grandis 羊草 Leymus chinensis | 2012-2018 |
多伦站 Duolun station (DL) | 116.28° E 42.05° N | 1 350 | 1.6 | 385 | 栗钙土 Kastanozem | 典型草原 Typical steppe | 西北针茅 Stipa sareptana var. krylovii 冷蒿 Artemisia frigida | 2005-2018 |
额尔古纳站 Ergun station (EG) | 119.39 °E 50.19° N | 521 | -2.5 | 355 | 黑钙土 Chernozem | 草甸草原 Meadow steppe | 狼针草 Stipa baicalensis 寸草 Carex duriuscula | 2012-2018 |
Table 1 Site information of different sites in Nei Mongol grasslands
站点 Site | 地理位置 Geo-location | 海拔 Altitude (m) | 年平均气温 Mean annual air temperature (°C) | 年降水量 Mean annual precipitation (mm) | 土壤类型 Soil type | 草地类型 Grassland type | 优势种 Dominant species | 数据时段 Data period |
---|---|---|---|---|---|---|---|---|
四子王旗站 Siziwangqi station (SZ) | 111.90° E 41.78° N | 1 438 | 3.4 | 310 | 栗钙土 Kastanozem | 荒漠草原 Desert steppe | 短花针茅 Stipa breviflora 冷蒿 Artemisia frigida | 2011-2018 |
锡林浩特割草站 Xilinhot grazed station (XL1) | 116.67° E 43.56° N | 1 250 | 2.0 | 350 | 栗钙土 Kastanozem | 典型草原 Typical steppe | 大针茅 Stipa grandis 羊草 Leymus chinensis 冷蒿 Artemisia frigida | 2006-2018 |
锡林浩特围封站 Xilinhot fenced station (XL2) | 116.67° E 43.55° N | 1 250 | 2.0 | 350 | 栗钙土 Kastanozem | 典型草原 Typical steppe | 大针茅 Stipa grandis 羊草 Leymus chinensis 羽茅 Achnatherum sibiricum | 2006-2018 |
西乌珠穆沁旗站 Xi Ujimqin Qi station (XW) | 117.58° E 44.36° N | 1 148 | 1.5 | 330 | 栗钙土 Kastanozem | 典型草原 Typical steppe | 大针茅 Stipa grandis 羊草 Leymus chinensis | 2012-2018 |
多伦站 Duolun station (DL) | 116.28° E 42.05° N | 1 350 | 1.6 | 385 | 栗钙土 Kastanozem | 典型草原 Typical steppe | 西北针茅 Stipa sareptana var. krylovii 冷蒿 Artemisia frigida | 2005-2018 |
额尔古纳站 Ergun station (EG) | 119.39 °E 50.19° N | 521 | -2.5 | 355 | 黑钙土 Chernozem | 草甸草原 Meadow steppe | 狼针草 Stipa baicalensis 寸草 Carex duriuscula | 2012-2018 |
时间 Time | 站点 Station | 最小二乘法线性回归 Linear regression from the ordinary least squares | 能量平衡比率 Energy balance ratio | ||
---|---|---|---|---|---|
斜率 Slope | 截距 Intercept | 决定系数 R2 | |||
全年 (1-12月) Whole year (January-December) | SZ | 0.97 ± 0.13 | 0.30 ± 0.41 | 0.90 ± 0.03 | 1.01 ± 0.07 |
XL1 | 0.94 ± 0.10 | -0.05 ± 0.44 | 0.88 ± 0.02 | 0.92 ± 0.09 | |
XL2 | 1.01 ± 0.07 | -1.15 ± 0.72 | 0.89 ± 0.04 | 0.86 ± 0.07 | |
XW | 0.96 ± 0.05 | -1.08 ± 0.13 | 0.94 ± 0.01 | 0.78 ± 0.06 | |
DL | 1.00 ± 0.07 | 0.09 ± 0.25 | 0.94 ± 0.02 | 1.02 ± 0.07 | |
EG | 0.88 ± 0.04 | -0.69 ± 0.52 | 0.91 ± 0.04 | 0.74 ± 0.04 | |
平均值 Average | 0.96 ± 0.04 | -0.43 ± 0.57 | 0.91 ± 0.02 | 0.89 ± 0.11 | |
非生长季 (10-次年3月) Non-growing season (October-March of next year) | SZ | 0.88 ± 0.21 | 0.42 ± 0.64 | 0.78 ± 0.08 | 1.01 ± 0.13 |
XL1 | 0.82 ± 0.14 | -0.02 ± 0.48 | 0.76 ± 0.10 | 0.80 ± 0.17 | |
XL2 | 0.90 ± 0.12 | -0.98 ± 0.78 | 0.77 ± 0.10 | 0.68 ± 0.15 | |
XW | 0.95 ± 0.09 | -1.10 ± 0.12 | 0.87 ± 0.04 | 0.58 ± 0.09 | |
DL | 0.98 ± 0.06 | 0.17 ± 0.24 | 0.91 ± 0.02 | 1.04 ± 0.10 | |
EG | 0.52 ± 0.21 | -0.69 ± 0.38 | 0.43 ± 0.22 | 0.35 ± 0.17 | |
平均值 Average | 0.84 ± 0.15 | -0.37 ± 0.58 | 0.75 ± 0.15 | 0.74 ± 0.24 | |
生长季 (4-9月) Growing season (April-September) | SZ | 0.94 ± 0.12 | 0.61 ± 1.11 | 0.76 ± 0.13 | 1.01 ± 0.09 |
XL1 | 0.86 ± 0.08 | 0.92 ± 0.52 | 0.71 ± 0.07 | 0.96 ± 0.09 | |
XL2 | 0.96 ± 0.07 | -0.13 ± 0.50 | 0.87 ± 0.06 | 0.95 ± 0.06 | |
XW | 0.94 ± 0.06 | -0.79 ± 0.24 | 0.89 ± 0.05 | 0.86 ± 0.06 | |
DL | 1.04 ± 0.08 | -0.26 ± 0.23 | 0.85 ± 0.03 | 1.01 ± 0.07 | |
EG | 0.81 ± 0.05 | 0.13 ± 0.66 | 0.79 ± 0.12 | 0.83 ± 0.05 | |
平均值 Average | 0.93 ± 0.07 | 0.08 ± 0.56 | 0.81 ± 0.06 | 0.94 ± 0.07 |
Table 2 Energy balance closure of the different sites in Nei Mongol grasslands (mean ± SD)
时间 Time | 站点 Station | 最小二乘法线性回归 Linear regression from the ordinary least squares | 能量平衡比率 Energy balance ratio | ||
---|---|---|---|---|---|
斜率 Slope | 截距 Intercept | 决定系数 R2 | |||
全年 (1-12月) Whole year (January-December) | SZ | 0.97 ± 0.13 | 0.30 ± 0.41 | 0.90 ± 0.03 | 1.01 ± 0.07 |
XL1 | 0.94 ± 0.10 | -0.05 ± 0.44 | 0.88 ± 0.02 | 0.92 ± 0.09 | |
XL2 | 1.01 ± 0.07 | -1.15 ± 0.72 | 0.89 ± 0.04 | 0.86 ± 0.07 | |
XW | 0.96 ± 0.05 | -1.08 ± 0.13 | 0.94 ± 0.01 | 0.78 ± 0.06 | |
DL | 1.00 ± 0.07 | 0.09 ± 0.25 | 0.94 ± 0.02 | 1.02 ± 0.07 | |
EG | 0.88 ± 0.04 | -0.69 ± 0.52 | 0.91 ± 0.04 | 0.74 ± 0.04 | |
平均值 Average | 0.96 ± 0.04 | -0.43 ± 0.57 | 0.91 ± 0.02 | 0.89 ± 0.11 | |
非生长季 (10-次年3月) Non-growing season (October-March of next year) | SZ | 0.88 ± 0.21 | 0.42 ± 0.64 | 0.78 ± 0.08 | 1.01 ± 0.13 |
XL1 | 0.82 ± 0.14 | -0.02 ± 0.48 | 0.76 ± 0.10 | 0.80 ± 0.17 | |
XL2 | 0.90 ± 0.12 | -0.98 ± 0.78 | 0.77 ± 0.10 | 0.68 ± 0.15 | |
XW | 0.95 ± 0.09 | -1.10 ± 0.12 | 0.87 ± 0.04 | 0.58 ± 0.09 | |
DL | 0.98 ± 0.06 | 0.17 ± 0.24 | 0.91 ± 0.02 | 1.04 ± 0.10 | |
EG | 0.52 ± 0.21 | -0.69 ± 0.38 | 0.43 ± 0.22 | 0.35 ± 0.17 | |
平均值 Average | 0.84 ± 0.15 | -0.37 ± 0.58 | 0.75 ± 0.15 | 0.74 ± 0.24 | |
生长季 (4-9月) Growing season (April-September) | SZ | 0.94 ± 0.12 | 0.61 ± 1.11 | 0.76 ± 0.13 | 1.01 ± 0.09 |
XL1 | 0.86 ± 0.08 | 0.92 ± 0.52 | 0.71 ± 0.07 | 0.96 ± 0.09 | |
XL2 | 0.96 ± 0.07 | -0.13 ± 0.50 | 0.87 ± 0.06 | 0.95 ± 0.06 | |
XW | 0.94 ± 0.06 | -0.79 ± 0.24 | 0.89 ± 0.05 | 0.86 ± 0.06 | |
DL | 1.04 ± 0.08 | -0.26 ± 0.23 | 0.85 ± 0.03 | 1.01 ± 0.07 | |
EG | 0.81 ± 0.05 | 0.13 ± 0.66 | 0.79 ± 0.12 | 0.83 ± 0.05 | |
平均值 Average | 0.93 ± 0.07 | 0.08 ± 0.56 | 0.81 ± 0.06 | 0.94 ± 0.07 |
Fig. 1 Energy balance closure across different grassland types and sites in Nei Mongol based on energy balance ratio (EBR)(A) and ordinary least squares (OLS) slope (B) method. Different uppercase and lowercase letters indicate significant differences among different grassland types and sites, respectively (p < 0.05); ns, p > 0.05. DL, EG, SZ, XL1, XL2 and XW represent Duolun site, Ergun site, Siziwangqi site, Xilinhot mowed site, Xilinhot fenced site and Xi Ujimqin Qi site, respectively.
Fig. 2 Relationships between ordinary least squares (OLS) slope and friction velocity (u*) across different sites in Nei Mongol grasslands. A, Daytime. B, Nighttime. DL, EG, SZ, XL1, XL2 and XW represent Duolun site, Ergun site, Siziwangqi site, Xilinhot mowed site, Xilinhot fenced site and Xi Ujimqin Qi site, respectively. ***, p < 0.001.
Fig. 3 Seasonal variations in energy balance ratio (EBR)(A), mean month air temperature (Ta)(B), vapor press deficit (VPD)(C), soil water content (SWC)(D) at 0-10 cm soil depth and Albedo (E) across different sites in Nei Mongol grasslands. The shallow green shaded area in the graph represents the growing season period (April to September). DL, EG, SZ, XL1, XL2 and XW represent Duolun site, Ergun site, Siziwangqi site, Xilinhot mowed site, Xiwuqi fenced site and Xi Ujimqin Qi site, respectively.
Fig. 4 Relationships among seasonal variations of energy balance ratio (EBR) with air temperature (Ta)(A), vapor pressure deficit (VPD)(B), soil water content (SWC)(C), and Albedo (D) across different sites in Nei Mongol grasslands. DL, EG, SZ, XL1, XL2 and XW represent Duolun site, Ergun site, Siziwangqi site, Xilinhot mowed site, Xilinhot fenced site and Xi Ujimqin Qi site, respectively. Each point represents the monthly mean value during observation multiple years in each site. The color lines represent the linear or nonlinear regression model results of each site, the thick black line represents the nonlinear mixed-effects model results for all sites when the site was considered as a random factor. The solid line represents significant relation (p < 0.05) and the dash line represents insignificant relation (p > 0.05). ns, p > 0.1; **, p < 0.01; ***, p < 0.001.
Fig. 5 Interannual variations in energy balance ratio (EBR)(A), turbulent energy fluxes (LE + H)(B) available energy fluxes (Rn - G0)(C) and Albedo (D) across different sites in Nei Mongol grasslands. The black lines represent the linear regression model results for all sites. DL, EG, SZ, XL1, XL2 and XW represent Duolun site, Ergun site, Siziwangqi site, Xilinhot mowed site, Xilinhot fenced site and Xi Ujimqin Qi site, respectively.
Fig. 6 Relationships among interannual variations of energy balance ration (EBR) with mean annual temperature (MAT)(A), latent heat fraction (LE/Rn)(B) and growing season Albedo (C) across different sites in Nei Mongol grasslands. DL, EG, SZ, XL1, XL2 and XW represent Duolun site, Ergun site, Siziwangqi site, Xilinhot mowed site, Xilinhot fenced site and Xi Ujimqin Qi site, respectively. The color lines represent the linear regression model results of each site, the thick black line represents the nonlinear mixed-effects model results for all sites when the site was considered as a random factor. The solid line represents significant relation (p < 0.05) and the dash line represents insignificant relation (p > 0.05). ns, p > 0.1; #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 7 Relative importance of individual environmental variable in explaining seasonal (A) and interannual (B) variations of energy balance ratio (EBR) in Nei Mongol grasslands. #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001. Albedo, MAT, LE, Rn, SWC, Ta, VPD represent growing season albedo, mean annual temperature, latent heat flux, net radiation, soil water content, mean monthly air temperature and vapor pressure deficit.
[1] | Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer Ch, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, et al. (2000). Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 114-175. |
[2] |
Blanken PD, Black TA, Neumann HH, Den Hartog G, Yang PC, Nesic Z, Staebler R, Chen W, Novak MD (1998). Turbulent flux measurements above and below the overstory of a boreal aspen forest. Boundary-Layer Meteorology, 89, 109-140.
DOI URL |
[3] |
Blonquist JM Jr, Tanner BD, Bugbee B (2009). Evaluation of measurement accuracy and comparison of two new and three traditional net radiometers. Agricultural and Forest Meteorology, 149, 1709-1721.
DOI URL |
[4] | Burnham KP, Anderson DR (2002). Model Selection Multimodel Inference: a Practical Information-Theoretic Approach. 2nd ed. Springer, New York. |
[5] |
Chen SP, Chen JQ, Lin GH, Zhang WL, Miao HX, Wei L, Huang JH, Han XG (2009). Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agricultural and Forest Meteorology, 149, 1800-1809.
DOI URL |
[6] |
Chen SP, You CH, Hu ZM, Chen Z, Zhang LM, Wang QF (2020). Eddy covariance technique and its applications in flux observations of terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 291-304.
DOI URL |
[ 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤 (2020). 涡度相关技术及其在陆地生态系统通量研究中的应用. 植物生态学报, 44, 291-304.]
DOI |
|
[7] |
Cheng Y, Sayde C, Li Q, Basara J, Selker J, Tanner E, Gentine P (2017). Failure of Taylor’s hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements. Geophysical Research Letters, 44, 4287-4295.
DOI URL |
[8] |
Cui WH, Chui TFM (2017). Subsurface lateral heat flux within the heterogeneous surface of a subtropical wetland and its potential contribution to energy imbalance. Journal of Hydrometeorology, 18, 3125-3144.
DOI URL |
[9] |
Cui WH, Chui TFM (2019). Temporal and spatial variations of energy balance closure across FLUXNET research sites. Agricultural and Forest Meteorology, 271, 12-21.
DOI URL |
[10] |
Duveiller G, Hooker J, Cescatti A (2018). The mark of vegetation change on Earth’s surface energy balance. Nature Communications, 9, 679. DOI: 10.1038/s41467-017-02810-8.
DOI PMID |
[11] |
Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, et al. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69.
DOI URL |
[12] |
Foken T (2008). The energy balance closure problem: an overview. Ecological Applications, 18, 1351-1367.
DOI URL |
[13] |
Foken T, Aubinet M, Finnigan JJ, Leclerc MY, Mauder M, Paw UKT (2011). Results of a panel discussion about the energy balance closure correction for trace gases. Bulletin of the American Meteorological Society, 92, ES13-ES18.
DOI URL |
[14] |
Franssen HJH, Stockli R, Lehner I, Rotenberg E, Seneviratne SI (2010). Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations. Agricultural and Forest Meteorology, 150, 1553-1567.
DOI URL |
[15] |
Hasi M, Zhang XY, Niu GX, Wang YL, Geng QQ, Quan Q, Chen SP, Han XG, Huang JH (2021). Soil moisture, temperature and nitrogen availability interactively regulate carbon exchange in a meadow steppe ecosystem. Agricultural and Forest Meteorology, 304-305, 108389. DOI: 10.1016/j.agrformet.2021.108389.
DOI URL |
[16] |
Kochendorfer J, Paw UKT (2011). Field estimates of scalar advection across a canopy edge. Agricultural and Forest Meteorology, 151, 585-594.
DOI URL |
[17] |
Leuning R, van Gorsel E, Massman WJ, Isaac PR (2012). Reflections on the surface energy imbalance problem. Agricultural and Forest Meteorology, 156, 65-74.
DOI URL |
[18] | Li ZQ, Yu GR, Wen XF, Zhang LM, Ren CY, Fu YL (2005). Energy balance closure at ChinaFLUX sites. Science in China Series D: Earth Sciences, 48(Supp. I),51-62. |
[19] |
Liu B, Cui YL, Luo YF, Shi YZ, Liu M, Liu FP (2019). Energy partitioning and evapotranspiration over a rotated paddy field in Southern China. Agricultural and Forest Meteorology, 276-277, 107626. DOI: 10.1016/j.agrformet.2019.107626.
DOI URL |
[20] |
Majozi NP, Mannaerts CM, Ramoelo A, Mathieu R, Nickless A, Verhoef W (2017). Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrology and Earth System Sciences, 21, 3401-3415.
DOI URL |
[21] |
McGloin R, Šigut L, Havránková K, Dušek J, Pavelka M, Sedlák P (2018). Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies. Agricultural and Forest Meteorology, 248, 418-431.
DOI URL |
[22] |
Michel D, Philipona R, Ruckstuhl C, Vogt R, Vuilleumier L (2008). Performance and uncertainty of CNR1 net radiometers during a one-year field comparison. Journal of Atmospheric and Oceanic Technology, 25, 442-451.
DOI URL |
[23] |
Oliphant AJ, Grimmond CSB, Zutter HN, Schmid HP, Su HB, Scott SL, Offerle B, Randolph JC, Ehman J (2004). Heat storage and energy balance fluxes for a temperate deciduous forest. Agricultural and Forest Meteorology, 126, 185-201.
DOI URL |
[24] |
Oncley SP, Foken T, Vogt R, Kohsiek W, Debruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007). The Energy Balance Experiment EBEX-2000. Part I: overview and energy balance. Boundary-Layer Meteorology, 123, 1-28.
DOI URL |
[25] |
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439.
DOI URL |
[26] |
Shao CL, Chen JQ, Li LH, Xu WT, Chen SP, Gwen T, Xu JY, Zhang WL (2008). Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems. Agricultural and Forest Meteorology, 148, 1433-1443.
DOI URL |
[27] |
Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, van Gorsel E, et al. (2013). A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agricultural and Forest Meteorology, 171-172, 137-152.
DOI URL |
[28] |
Teng DX, He XM, Qin L, Lv GH (2021). Energy balance closure in the Tugai forest in Ebinur Lake basin, northwest China. Forests, 12, 243. DOI: 10.3390/f1202043.
DOI URL |
[29] |
Webb EK, Pearman GI, Leuning R (1980). Correction of flux measurements for density effects due to heat and water- vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100.
DOI URL |
[30] |
Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, et al. (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243.
DOI URL |
[31] |
Wu ZT, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 17, 927-942.
DOI URL |
[32] |
Yue P, Zhang Q, Zhang L, Li HY, Yang Y, Zeng J, Wang S (2019). Long-term variations in energy partitioning and evapotranspiration in a semiarid grassland in the Loess Plateau of China. Agricultural and Forest Meteorology, 278, 107671. DOI: 10.1016/j.agrformet.2019.107671.
DOI URL |
[33] | Yu GR, Sun XM (2017). Principles of Flux Measurement in Terrestrial Ecosystems. 2nd ed. Higher Education Press, Beijing. |
[ 于贵瑞, 孙晓敏 (2017). 陆地生态系统通量观测的原理与方法. 2版. 高等教育出版社, 北京.] | |
[34] | Zhang LM, Luo YW, Liu M, Chen Z, Su W, He HL, Zhu ZL, Sun XM, Wang YF, Zhou GY, Zhao XQ, Han SJ, Ouyang Z, Zhang XZ, Zhang YP, et al. (2019). Carbon and water fluxes observed by the Chinese Flux Observation and Research Network (2003-2005). China Scientific Data, 4, 18-34. |
[ 张雷明, 罗艺伟, 刘敏, 陈智, 苏文, 何洪林, 朱治林, 孙晓敏, 王艳芬, 周国逸, 赵新全, 韩士杰, 欧阳竹, 张宪洲, 张一平, 等 (2019). 2003-2005年中国通量观测研究联盟(China FLUX)碳水通量观测数据集. 中国科学数据, 4, 18-34.] | |
[35] | Zhang Y, Peng CH, Li WZ, Tian LX, Zhu QA, Chen H, Fang XQ, Zhang GL, Liu GB, Mu XM, Li ZB, Li SQ, Yang YZ, Wang J, Xiao XM (2016). Multiple afforestation programs accelerate the greenness in the “Three North” region of China from 1982 to 2013. Ecological Indicators, 61, 404-412. |
[36] |
Zhang YS, Kadota T, Ohata T, Oyunbaatar D (2007). Environmental controls on evapotranspiration from sparse grassland in Mongolia. Hydrological Processes, 21, 2016-2027.
DOI URL |
[37] | Zuo JQ, Wang JM, Huang JP, Li WJ, Wang GY, Ren HL (2010). Estimation of ground heat flux for a semi-arid grassland and its impacts on the surface energy budget. Plateau Meteorology, 29, 840-848. |
[ 左金清, 王介民, 黄建平, 李维京, 王国印, 任宏利 (2010). 半干旱草地地表土壤热通量的计算及其对能量平衡的影响. 高原气象, 29, 840-848.] |
[1] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[2] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[3] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | HAN Cong, MU Yan-Mei, ZHA Tian-Shan, QIN Shu-Gao, LIU Peng, TIAN Yun, JIA Xin. A dataset of ecosystem fluxes in a shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012-2016) [J]. Chin J Plant Ecol, 2023, 47(9): 1322-1332. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[8] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[9] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[10] | MIAO Li-Juan, ZHANG Yu-Yang, CHUAI Xiao-Wei, BAO Gang, HE Yu, ZHU Jing-Wen. Effects of climatic factors and their time-lag on grassland NDVI in Asian drylands [J]. Chin J Plant Ecol, 2023, 47(10): 1375-1385. |
[11] | WANG De-Li, LIANG Cun-Zhu. Restoration state of degraded grasslands: climate climax or disturbance climax? [J]. Chin J Plant Ecol, 2023, 47(10): 1464-1470. |
[12] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[13] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[14] | DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(9): 1018-1026. |
[15] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn