Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (3): 337-347.DOI: 10.17521/cjpe.2016.0182
Special Issue: 生态遥感及应用
• Research Articles • Previous Articles Next Articles
Ke-Qing WANG, He-Song WANG*(), Osbert Jianxin SUN
Online:
2017-03-10
Published:
2017-04-12
Contact:
He-Song WANG
About author:
KANG Jing-yao(1991-), E-mail: Ke-Qing WANG, He-Song WANG, Osbert Jianxin SUN. Application and comparison of remote sensing GPP models with multi-site data in China[J]. Chin J Plant Ecol, 2017, 41(3): 337-347.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0182
植被类型 Vegetation type | 站点名称 Site name | 地理位置 Geo-location | 数据时段 Data period |
---|---|---|---|
灌丛 Shrubland | 海北高寒草甸生态系统通量观测站 Haibei Alpine Meadow Ecosystem Flux Observation Site | 37.67° N, 101.33° E | 2003-2005 |
常绿阔叶林 Evergreen broad-leaved forest | 鼎湖山南亚热带常绿阔叶林通量观测站 Dinghushan South Subtropical Evergreen Broad-leaved Forest Flux Observation Site | 23.17° N, 112.54° E | 2003-2005 |
温带草原 Temperate steppe | 锡林郭勒温性典型草原通量观测站 Xilingol Temperate Grassland Flux Observation Site | 43.53° N, 116.67° E | 2004-2005 |
常绿针叶林 Evergreen needle-leaved forest | 千烟洲人工林通量观测站 Qianyanzhou Planted Forest Flux Observation Site | 26.74° N, 115.06° E | 2003-2005 |
农田 Cropland | 禹城暖温带半湿润旱作农田通量观测站 Yucheng Warmer Temperate Dry Farming Cropland Flux Observation Site | 36.83° N, 116.57° E | 2003-2005 |
高寒草甸 Alpine meadow | 当雄高寒草甸碳通量观测站 Damxung Alpine Meadow Flux Observation Site | 30.83° N, 91.12° E | 2004-2005 |
针阔混交林 Mixed broadleaf-conifer forest | 长白山温带红松阔叶林通量观测站 Changbaishan Temperate Broad-leaved Korean Pine Forest Flux Observation Site | 42.40° N, 128.07° E | 2003-2005 |
热带雨林 Tropical rain forest | 西双版纳热带雨林通量观测站 Xishuangbanna Tropical Rainforest Flux Observation Site | 21.93° N, 101.20° E | 2003-2005 |
Table 1 Basic information of the study sites
植被类型 Vegetation type | 站点名称 Site name | 地理位置 Geo-location | 数据时段 Data period |
---|---|---|---|
灌丛 Shrubland | 海北高寒草甸生态系统通量观测站 Haibei Alpine Meadow Ecosystem Flux Observation Site | 37.67° N, 101.33° E | 2003-2005 |
常绿阔叶林 Evergreen broad-leaved forest | 鼎湖山南亚热带常绿阔叶林通量观测站 Dinghushan South Subtropical Evergreen Broad-leaved Forest Flux Observation Site | 23.17° N, 112.54° E | 2003-2005 |
温带草原 Temperate steppe | 锡林郭勒温性典型草原通量观测站 Xilingol Temperate Grassland Flux Observation Site | 43.53° N, 116.67° E | 2004-2005 |
常绿针叶林 Evergreen needle-leaved forest | 千烟洲人工林通量观测站 Qianyanzhou Planted Forest Flux Observation Site | 26.74° N, 115.06° E | 2003-2005 |
农田 Cropland | 禹城暖温带半湿润旱作农田通量观测站 Yucheng Warmer Temperate Dry Farming Cropland Flux Observation Site | 36.83° N, 116.57° E | 2003-2005 |
高寒草甸 Alpine meadow | 当雄高寒草甸碳通量观测站 Damxung Alpine Meadow Flux Observation Site | 30.83° N, 91.12° E | 2004-2005 |
针阔混交林 Mixed broadleaf-conifer forest | 长白山温带红松阔叶林通量观测站 Changbaishan Temperate Broad-leaved Korean Pine Forest Flux Observation Site | 42.40° N, 128.07° E | 2003-2005 |
热带雨林 Tropical rain forest | 西双版纳热带雨林通量观测站 Xishuangbanna Tropical Rainforest Flux Observation Site | 21.93° N, 101.20° E | 2003-2005 |
Fig. 2 Relationships between the eddy covariance gross primary production (EC-GPP) and the product of the scaled land surface temperature (LSTScaled) multiplied by the scaled enhance vegetation index (EVIScaled) for different study sites. CBS, Changbaishan Temperate Broad-leaved Korean Pine Forest Flux Observation Site; DHS, Dinghushan South Subtropical Evergreen Broadleaved Forest Flux Observation Site; DX, Damxung Alpine Meadow Flux Observation Site; HB, Haibei Alpine Meadow Ecosystem Flux Observation Site; QYZ, Qianyanzhou Planted Forest Flux Observation Site; XLGL, Xilingol Temperate Grassland Flux Observation Site; XSBN, Xishuangbanna Tropical Rainforest Flux Observation Site; YC, Yucheng Warmer Temperate Dry Farming Cropland Flux Observation Site.
Fig. 3 Relationships between the eddy covariance gross primary production (EC-GPP) and the product of the enhanced vegetation index (EVI) multiplied by photosynthetic active radiation (PAR) for different study sites. CBS, Changbaishan Temperate Broad-leaved Korean Pine Forest Flux Observation Site; DHS, Dinghushan South Subtropical Evergreen Broadleaved Forest Flux Observation Site; DX, Damxung Alpine Meadow Flux Observation Site; HB, Haibei Alpine Meadow Ecosystem Flux Observation Site; QYZ, Qianyanzhou Planted Forest Flux Observation Site; XLGL, Xilingol Temperate Grassland Flux Observation Site; XSBN, Xishuangbanna Tropical Rainforest Flux Observation Site; YC, Yucheng Warmer Temperate Dry Farming Cropland Flux Observation Site.
Fig. 4 Relationships between the simulated gross primary production in 2005 by the TG model (TG-GPP) and the eddy covariance gross primary production (EC-GPP) for the corresponding time period for different study sites. CBS, Changbaishan Temperate Broad-leaved Korean Pine Forest Flux Observation Site; DHS, Dinghushan South Subtropical Evergreen Broadleaved Forest Flux Observation Site; DX, Damxung Alpine Meadow Flux Observation Site; HB, Haibei Alpine Meadow Ecosystem Flux Observation Site; QYZ, Qianyanzhou Planted Forest Flux Observation Site; XLGL, Xilingol Temperate Grassland Flux Observation Site; XSBN, Xishuangbanna Tropical Rainforest Flux Observation Site; YC, Yucheng Warmer Temperate Dry Farming Cropland Flux Observation Site.
Fig. 5 Relationships between the simulated gross primary production (VI-GPP) in 2005 by the VI model and the eddy covariance gross primary production (EC-GPP) for different study sites. CBS, Changbaishan Temperate Broad-leaved Korean Pine Forest Flux Observation Site; DHS, Dinghushan South Subtropical Evergreen Broadleaved Forest Flux Observation Site; DX, Damxung Alpine Meadow Flux Observation Site; HB, Haibei Alpine Meadow Ecosystem Flux Observation Site; QYZ, Qianyanzhou Planted Forest Flux Observation Site; XLGL, Xilingol Temperate Grassland Flux Observation Site; XSBN, Xishuangbanna Tropical Rainforest Flux Observation Site; YC, Yucheng Warmer Temperate Dry Farming Cropland Flux Observation Site.
站点 Site | 决定系数 Coefficient of determination (R2) | 相对误差 Relative error (RE) (%) | 均方根误差 Root mean square error (RMSE) (g·m-2·d-1) | |||
---|---|---|---|---|---|---|
TG | VI | TG | VI | TG | VI | |
锡林郭勒温性典型草原通量观测站 Xilingol Temperate Grassland Flux Observation Site | 0.67 | 0.75 | 126.79 | 196.62 | 0.62 | 0.77 |
长白山温带红松阔叶林通量观测站 Changbaishan Temperate Broad-Leaved Korean Pine Forest Flux Observation Site | 0.87 | 0.85 | -9.94 | -13.79 | 1.39 | 1.46 |
海北高寒草甸生态系统通量观测站 Haibei Alpine Meadow Ecosystem Flux Observation Site | 0.94 | 0.89 | -3.10 | 3.32 | 0.55 | 0.75 |
禹城暖温带半湿润旱作农田通量观测站 Yucheng Warmer Temperate Dry Farming Cropland Flux Observation Site | 0.67 | 0.83 | -55.41 | -39.42 | 4.30 | 3.15 |
当雄高寒草甸碳通量观测站 Damxung Alpine Meadow Flux Observation Site | 0.80 | 0.82 | 10.90 | 33.16 | 0.29 | 0.31 |
千烟洲人工林通量观测站 Qianyanzhou Planted Forest Flux Observation Site | 0.73 | 0.72 | -29.23 | -56.02 | 1.77 | 2.75 |
鼎湖山南亚热带常绿阔叶林通量观测站 Dinghushan South Subtropical Evergreen Broadleaved Forest Flux Observation Site | 0.64 | 0.55 | -60.08 | -79.09 | 2.19 | 2.84 |
西双版纳热带雨林通量观测站 Xishuangbanna Tropical Rainforest Flux Observation Site | 0.06 | 0.13 | -67.71 | -77.52 | 6.40 | 7.09 |
Table 2 Performance of the TG and VI models in simulating the gross primary production in 2005 for different study sites
站点 Site | 决定系数 Coefficient of determination (R2) | 相对误差 Relative error (RE) (%) | 均方根误差 Root mean square error (RMSE) (g·m-2·d-1) | |||
---|---|---|---|---|---|---|
TG | VI | TG | VI | TG | VI | |
锡林郭勒温性典型草原通量观测站 Xilingol Temperate Grassland Flux Observation Site | 0.67 | 0.75 | 126.79 | 196.62 | 0.62 | 0.77 |
长白山温带红松阔叶林通量观测站 Changbaishan Temperate Broad-Leaved Korean Pine Forest Flux Observation Site | 0.87 | 0.85 | -9.94 | -13.79 | 1.39 | 1.46 |
海北高寒草甸生态系统通量观测站 Haibei Alpine Meadow Ecosystem Flux Observation Site | 0.94 | 0.89 | -3.10 | 3.32 | 0.55 | 0.75 |
禹城暖温带半湿润旱作农田通量观测站 Yucheng Warmer Temperate Dry Farming Cropland Flux Observation Site | 0.67 | 0.83 | -55.41 | -39.42 | 4.30 | 3.15 |
当雄高寒草甸碳通量观测站 Damxung Alpine Meadow Flux Observation Site | 0.80 | 0.82 | 10.90 | 33.16 | 0.29 | 0.31 |
千烟洲人工林通量观测站 Qianyanzhou Planted Forest Flux Observation Site | 0.73 | 0.72 | -29.23 | -56.02 | 1.77 | 2.75 |
鼎湖山南亚热带常绿阔叶林通量观测站 Dinghushan South Subtropical Evergreen Broadleaved Forest Flux Observation Site | 0.64 | 0.55 | -60.08 | -79.09 | 2.19 | 2.84 |
西双版纳热带雨林通量观测站 Xishuangbanna Tropical Rainforest Flux Observation Site | 0.06 | 0.13 | -67.71 | -77.52 | 6.40 | 7.09 |
Fig. 6 Time series of the eddy covariance gross primary production (EC-GPP) and the simulated gross primary production by the TG and VI models (TG-GPP and VI-GPP) for different study sites. CBS, Changbaishan Temperate Broad-leaved Korean Pine Forest Flux Observation Site; DHS, Dinghushan South Subtropical Evergreen Broadleaved Forest Flux Observation Site; DX, Damxung Alpine Meadow Flux Observation Site; HB, Haibei Alpine Meadow Ecosystem Flux Observation Site; QYZ, Qianyanzhou Planted Forest Flux Observation Site; XLGL, Xilingol Temperate Grassland Flux Observation Site; XSBN, Xishuangbanna Tropical Rainforest Flux Observation Site; YC, Yucheng Warmer Temperate Dry Farming Cropland Flux Observation Site.
[1] | Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834-838. |
[2] | Cao MK, Prinee SD, Li K (2003). Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 9, 536-546. |
[3] | Chen JQ, Yan MH, Wang SQ, Gao YN, Hang M, Wang JB, Xaio XM (2014). Estimation of gross primary production in Chinese terrestrial ecosystems by VPM model. Quaternary Sciences, 34, 732-742. (in Chinese with English abstract)[陈静清, 闫慧敏, 王绍强, 高艳妮, 黄玫, 王军邦, 肖向明 (2014). 中国陆地生态系统总初级生产力VPM遥感模型估算. 第四纪研究, 34, 732-742.] |
[4] | Damm A, Elbers J, Erler E, Gioli B, Hamdi K, Hutjes R, Kosvancova M, Meroni M, Miglietta F, Moersch A (2010). Remote sensing of sun induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Global Change Biology, 16, 171-186. |
[5] | Drolet GG, Middleton EM, Huemmrich KF, Hall FG, Amiro BD, Barr AG, Black TA, McCaughey JH, Margolis HA (2008). Regional mapping of gross light-use efficiency using MODIS spectral indices. Remote Sensing of Environment, 112, 3064-3078. |
[6] | Gao YN, Yu GR, Yan HM, Zhu XJ, Li SG, Wang QF, Zhang JH, Wang YF, Li YN, Zhao L, Shi PL (2014). A MODIS- based Photosynthetic Capacity Model to estimate gross primary production in Northern China and the Tibetan Plateau. Remote Sensing of Environment, 148, 108-118. |
[7] | Gitelson AA, Gamon JA (2015). The need for a common basis for defining light-use efficiency: Implications for prod¬uctivity estimation. Remote Sensing of Environment, 156, 196-201. |
[8] | Gitelson AA, Peng Y, Masek JG, Rundquist DC, Verma SS, Suyker A, Baker JM, Hatfield JL, Meyers T (2012). Remote estimation of crop gross primary production with Landsat data. Remote Sensing of Environment, 121, 404-414. |
[9] | Granger RJ (2000). Satellite-derived estimates of evapotran¬spiration in the Gediz Basin. Journal of Hydrology, 229, 70-76. |
[10] | Guanter L, Frankenberg C, Dudhia A, Lewis PE, Gomez-Dans J, Kuze A, Suto H, Grainger RG (2012). Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment, 121, 236-251. |
[11] | Hao YB, Wang YF, Cui XY (2010). Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in Inner Mongolia, China. Chinese Journal of Plant Ecology, 34, 898-906. (in Chinese with English abstract)[郝彦宾, 王艳芬, 崔骁勇 (2010). 干旱胁迫降低了内蒙古羊草草原的碳累积. 植物生态学报, 34, 898-906.] |
[12] | Jiang Y, Zhang JH, Xu XD, Dong ZX (2013). A GPP assimilation model for the southeastern Tibetan Plateau based on CO2 eddy covariance flux tower and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 23, 213-225. |
[13] | Le Quéré C, Raupauch MR, Canadell JG, Marland G (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831-836. |
[14] | Li XR, Zhu ZC, Zeng H, Piao SL (2016). Estimation of gross primary production in China (1982-2010) with multiple ecosystem models. Ecological Modelling, 324, 33-44. |
[15] | Li ZQ, Yu GR, Xiao XM, Li YN, Zhao XQ, Ren CY, Zhang LM, Fu YL (2007). Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data. Remote Sensing of Environment, 107, 510-519. |
[16] | Liu YC, Yu GR, Wang QF (2014b). How temperature, precipi¬tation and stand age control the biomass carbon density of global mature forests. Global Ecology and Biogeography, 23, 323-333. |
[17] | Liu ZJ (2012). How Many Uncertainties Transferred from the Meteorological Data to the Terrestrial Carbon Cycle Modeling Based on CEVSA Model. Master degree dissertation, Shandong Normal University, Jinan. 35-44. (in Chinese with English abstract).[刘正佳 (2012). 气象数据的不确定性对CEVSA模型模拟结果的影响研究. 硕士学位论文, 山东师范大学, 济南. 35-44.] |
[18] | Liu ZJ, Wang LC, Wang SS (2014a). Comparison of different GPP models in China using MODIS image and China FLUX data. Remote Sensing of Environment, 6, 10215-10231. |
[19] | Lobell DB, Hicke JA, Asner GP, Field CB, Tucker CJ, Los SO (2002). Satellite estimates of productivity and light use efficiency in United States agriculture, 1982-1998. Global Change Biology, 8, 722-735. |
[20] | Mekonnen AZ, Grant RF, Schwalm C (2016). Contrasting changes in gross primary productivity of different regions of North America as affected by warming in recent dec¬ades. Agricultural and Forest Meteorology, 218-219, 50-64. |
[21] | Minunno F, Peltoniemi M, Launiainen S, Aurela M, Lindroth A, Lohila A, Mammarella L, Minkkinen K, Mäkelä A (2016). Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the boreal region. Ecological Modelling, 341, 37-52. |
[22] | Sánchez ML, Pardo N, Pérez IA, García MA (2015). GPP and maximum light use efficiency estimates using different approaches over a rotating biodiesel crop. Agricultural and Forest Meteorology, 214-215, 444-455. |
[23] | Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Bolstad PV, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, Oechel WC, Schmid HP, Wofsy SC, Xu LK (2008). A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface tem¬perature from MODIS. Remote Sensing of Environment, 112, 1633-1646. |
[24] | Tian H, Melillo JM, Kieklighter DW, McGuire AD, Helfrich J (1999). The sensitivity of terrestrial carbon storage to history elimate variability and atmospheric CO2 in the United States. Tellus, 26, 414-452. |
[25] | Verma M, Friedla MA, Lawc BE, Bonald D, Kielye G, Black TA, Wohlfahrtg G. Moors EJ, Montagnani L, Marcollal B, Toscanom P, Varlaginn A, Roupsardo O, Cescattiq A, Arainr MA, D’Odoricosa P (2015). Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agricultural and Forest Meteorology, 214-215, 416-429. |
[26] | Wang HS, Jia GS, Feng JM, Zhao TB, Ma ZG (2010b). Mode¬ling gross primary production by integrating satellite data and coordinated flux measurements in arid and semi-arid China. Atmospheric and Oceanic Science Letters, 3, 7-13. |
[27] | Wang HS, Jia GS, Fu CB, Feng JM, Zhao TB, Ma ZG (2010a). Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling. Remote Sensing of Env¬ir¬onment, 114, 2248-2258. |
[28] | Wang XF, Ma MG, Li X, Song Y, Tan JL, Huang GH, Yu WP (2012). Comparison of remote sensing based GPP models at an alpine meadow site. Journal of Remote Sensing, 16, 751-763. (in Chinese with English abstract)[王旭峰, 马明国, 李新, 宋怡, 谭俊磊, 黄广辉, 于文凭 (2012). 遥感GPP模型在高寒草甸的应用比较. 遥感学报, 16, 751-763.] |
[29] | Wu CY, Han XZ, Ni JS, Niu Z, Huang WJ (2010). Estimation of gross primary production in wheat from in situ measurements. International Journal of Applied Earth Observation and Geoinformation, 12, 183-189. |
[30] | Wu WX, Wang SQ, Xiao XM, Yu GR, Fu YL, Hao YB (2008). Modeling gross primary production of a temperate grassland ecosystem in Inner Mongolia, China, using MODIS imagery and climate data. Science in China Series D—Earth Sciences, 38, 993-1004. (in Chinese with English abstract)[伍卫星, 王绍强, 肖向明, 于贵瑞, 伏玉玲, 郝彦宾 (2008). 利用MODIS影像和气候数据模拟中国内蒙古温带草原生态系统总初级生产力. 中国科学D辑: 地球科学, 38, 993-1004.] |
[31] | Xiao XM, Zhang QY, Braswell B, Urbanski S, Boles S, Wofsy S, Moore III B, Ojima D (2004). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91, 256-270. |
[32] | Yan M, Tian X, Li ZY, Chen E, Li CM, Fan WW (2016). A long-term simulation of forest carbon fluxes over the Qilian Mountains. International Journal of Applied Earth Observation and Geoinformation, 52, 515-526. |
[33] | Yu GR, Sun XM (2006). Principle and Method of Terrestrial Ecosystem Flux Observation. Higher Education Press, Beijing. (in Chinese)[于贵瑞, 孙晓敏 (2006). 陆地生态系统通量观测的原理与方法. 高等教育出版社, 北京.] |
[34] | Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W, Li SG, Sun XM, Zhang YP, Zhang JH, Yan JH, Wang HM, Zhou GS, Jia BR, Xiang WH, Li YN, Zhao L, Wang YF, Shi PL, Chen SP, Xin XP, Zhao FH, Wang YY, Tong CL (2012). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19, 798-810. |
[35] | Yu GY, Wen XF, Sun XM, Tanner BD, Lee XH, Chen JY (2006). Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 137, 125-137. |
[36] | Yuan WP, Liu SG, Zhou GS, Zhou GY, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu YM, Law BE, Stoy PC, Vesala T, Wofsy SC (2007). Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143, 189-207. |
[37] | Zhang WJ, Wang HM, Yang FT, Yi YH, Wen XF, Sun XM, Yu GR, Wang YD, Ning JC (2011). Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation. Biogeosciences, 8, 1667-1678. |
[38] | Zhou GS, Zhang XS (1995). A natural vegetation NPP model. Acta Phytoecologica Sinica,19, 193-200. (in Chinese with English abstract)[周广胜, 张新时 (1995). 自然植被净第一生产力模型初探. 植物生态学报, 19, 193-200.] |
[39] | Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types. Acta Phytoecologica Sinica, 24, 518-522. (in Chinese with English abstract)[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳储存和碳平衡. 植物生态学报, 24, 518-522.] |
[1] | YANG Yu-Meng, LAI Quan, LIU Xin-Yi. Quantitative analysis of climate change and human activities on vegetation gross primary productivity in Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(3): 306-316. |
[2] | HAN Cong, MU Yan-Mei, ZHA Tian-Shan, QIN Shu-Gao, LIU Peng, TIAN Yun, JIA Xin. A dataset of ecosystem fluxes in a shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012-2016) [J]. Chin J Plant Ecol, 2023, 47(9): 1322-1332. |
[3] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[4] | LIU Pei-Rong, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru, YU Pei-Yang, ZHOU Yu. Effect of diffuse radiation on gross primary productivity of typical planted forests in eastern China [J]. Chin J Plant Ecol, 2022, 46(8): 904-918. |
[5] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
[6] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[7] | WEN Ke, YAO Huan-Mei, GONG Zhu-Qing, NA Ze-Lin, WEI Yi-Ming, HUANG Yi, CHEN Hua-Quan, LIAO Peng-Ren, TANG Li-Ping. Influence of inundation frequency change on enhanced vegetation index of wetland vegetation in Poyang Lake, China [J]. Chin J Plant Ecol, 2022, 46(2): 148-161. |
[8] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[9] | JIANG Yan, CHEN Xing-Fang, YANG Xu-Jie. Changes of aquatic plants in Donghu Lake of Wuhan based 1990-2020 Landsat images [J]. Chin J Plant Ecol, 2022, 46(12): 1551-1561. |
[10] | WANG Yan-Bing, YOU Cui-Hai, TAN Xing-Ru, CHEN Bo-Yu, XU Meng-Zhen, CHEN Shi-Ping. Seasonal and interannual variations in energy balance closure over arid and semi-arid grasslands in northern China [J]. Chin J Plant Ecol, 2022, 46(12): 1448-1460. |
[11] | LI Hong-Qin, ZHANG Ya-Ru, ZHANG Fa-Wei, MA Wen-Jing, LUO Fang-Lin, WANG Chun-Yu, YANG Yong-Sheng, ZHANG Lei-Ming, LI Ying-Nian. Application of boosted regression trees for the gap-filling to flux dataset in an alpine scrubland of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1437-1447. |
[12] | TIAN Jia-Yu, WANG Bin, ZHANG Zhi-Ming, LIN Lu-Xiang. Application of spectral diversity in plant diversity monitoring and assessment [J]. Chin J Plant Ecol, 2022, 46(10): 1129-1150. |
[13] | YAN Zheng-Bing, LIU Shu-Wen, WU Jin. Hyperspectral remote sensing of plant functional traits: monitoring techniques and future advances [J]. Chin J Plant Ecol, 2022, 46(10): 1151-1166. |
[14] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[15] | CHEN Zhe, WANG Hao, WANG Jin-Zhou, SHI Hui-Jin, LIU Hui-Ying, HE Jin-Sheng. Estimation on seasonal dynamics of alpine grassland aboveground biomass using phenology camera-derived NDVI [J]. Chin J Plant Ecol, 2021, 45(5): 487-495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn