Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (2): 148-161.DOI: 10.17521/cjpe.2021.0033
Special Issue: 生态遥感及应用
• Research Articles • Previous Articles Next Articles
WEN Ke1, YAO Huan-Mei1,*(), GONG Zhu-Qing1, NA Ze-Lin1, WEI Yi-Ming1, HUANG Yi1, CHEN Hua-Quan1, LIAO Peng-Ren1, TANG Li-Ping2
Received:
2021-01-25
Accepted:
2021-07-15
Online:
2022-02-20
Published:
2021-08-06
Contact:
YAO Huan-Mei
Supported by:
WEN Ke, YAO Huan-Mei, GONG Zhu-Qing, NA Ze-Lin, WEI Yi-Ming, HUANG Yi, CHEN Hua-Quan, LIAO Peng-Ren, TANG Li-Ping. Influence of inundation frequency change on enhanced vegetation index of wetland vegetation in Poyang Lake, China[J]. Chin J Plant Ecol, 2022, 46(2): 148-161.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0033
年份 Year | 日期 Date | 传感器 Sensor |
---|---|---|
2000 | 2000-07-05 | Landsat 7-TM |
2001 | 2001-01-29 | Landsat 7-TM |
2005 | 2005-07-03 | Landsat 7-TM |
2006 | 2006-01-27 | Landsat 7-TM |
2010 | 2010-07-25 | Landsat 5-TM |
2011 | 2011-01-12 | HJ 1A-CCD |
2018 | 2018-07-31 | Landsat 8-OIL |
2019 | 2019-01-23 | Landsat 8-OIL |
Table 1 Images with 30 m moderate resolution of Poyang Lake in 2000-2019
年份 Year | 日期 Date | 传感器 Sensor |
---|---|---|
2000 | 2000-07-05 | Landsat 7-TM |
2001 | 2001-01-29 | Landsat 7-TM |
2005 | 2005-07-03 | Landsat 7-TM |
2006 | 2006-01-27 | Landsat 7-TM |
2010 | 2010-07-25 | Landsat 5-TM |
2011 | 2011-01-12 | HJ 1A-CCD |
2018 | 2018-07-31 | Landsat 8-OIL |
2019 | 2019-01-23 | Landsat 8-OIL |
Fig. 3 Numerical distribution of spectral indices of water pixel and non-water pixel of Poyang Lake. EVI, enhanced vegetation index; NDVI, normalized difference vegetation index; mNDWI, modified normalized difference water index.
Fig. 7 Spatial and temporal changes of enhanced vegetation index (EVI) of wetland vegetation in Poyang Lake from 2000 to 2019. IF, inundation frequency.
Fig. 8 Change of regional mean enhanced vegetation index (EVI), and water area of high and low inundation frequency (IF) of Poyang Lake from 2000 to 2019.
年份 Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
---|---|---|---|---|---|---|---|---|---|---|
R² | -0.960** | -0.953** | -0.933** | -0.952** | -0.962** | -0.958** | -0.96** | -0.969** | -0.972** | -0.974** |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
年份 Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
R² | -0.870** | -0.946** | -0.979** | -0.938** | -0.956** | -0.945** | -0.943** | -0.991** | -0.903** | -0.927** |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Table 2 Pearson correlation coefficient between annual maximum enhanced vegetation index (EVI) and total inundation frequency (IF) of Poyang Lake (2000-2019)
年份 Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
---|---|---|---|---|---|---|---|---|---|---|
R² | -0.960** | -0.953** | -0.933** | -0.952** | -0.962** | -0.958** | -0.96** | -0.969** | -0.972** | -0.974** |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
年份 Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
R² | -0.870** | -0.946** | -0.979** | -0.938** | -0.956** | -0.945** | -0.943** | -0.991** | -0.903** | -0.927** |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
[1] |
Adam E, Mutanga O, Rugege D (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management, 18, 281-296.
DOI URL |
[2] |
Chen B, Chen LF, Huang B, Michishita R, Xu B (2018). Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 75-87.
DOI URL |
[3] | Chen YS (2020). The Effect of Flooding Duration and Underwater Light Intensity on Wetland Plant Functional Traits and Biomass in Poyang Lake. Master degree dissertation, Nanchang University, Nanchang. |
[ 陈亚松 (2020). 水淹时长和水下光强对鄱阳湖湿地植物功能性状和生物量的影响. 硕士学位论文, 南昌大学, 南昌.] | |
[4] |
Colmer TD, Voesenek LACJ (2009). Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology, 36, 665-681.
DOI PMID |
[5] | Construction Office of Poyang Lake Water Control Project of Jiangxi Province (2013). Keep the lake water clear-Introduction of Poyang Lake Water Control Project. Jiangxi Hydraulic Science & Technology, 39(2), 83-91. |
[ 江西省鄱阳湖水利枢纽建设办公室 (2013). 为了“一湖清水”--鄱阳湖水利枢纽工程介绍. 江西水利科技, 39(2), 83-91.] | |
[6] | Cui BS (2006). Wetlands. Beijing Normal University Press, Beijing. 1-4. |
[ 崔保山 (2006). 湿地学. 北京师范大学出版社, 北京. 1-4.] | |
[7] |
Feng L, Hu CM, Chen XL, Cai XB, Tian LQ, Gan WX (2012). Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sensing of Environment, 121, 80-92.
DOI URL |
[8] | Gu J, Qin Y, Wang X, Ma JY, Guo ZH, Zou LJ, Shen XH (2018). Changes in inundation frequency in Poyang Lake and the response of wetland vegetation. Acta Ecologica Sinica, 38, 7718-7726. |
[ 谷娟, 秦怡, 王鑫, 马静宇, 郭仲皓, 邹乐君, 沈晓华 (2018). 鄱阳湖水体淹没频率变化及其湿地植被的响应. 生态学报, 38, 7718-7726.] | |
[9] | Han XX (2017). Spatio-temporal Dynamics of Poyang Lake Wetland Landscape Patterns Based Time Series Optical Remote Sensing Data in Poyang Lake. PhD dissertation, Wuhan University, Wuhan. |
[ 韩杏杏 (2017). 基于长时序光学遥感数据的鄱阳湖湿地景观格局时空动态研究. 博士学位论文, 武汉大学, 武汉.] | |
[10] |
Han XX, Chen XL, Feng L (2015). Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sensing of Environment, 156, 426-437.
DOI URL |
[11] |
Han XX, Feng L, Hu CM, Chen XL (2018). Wetland changes of Chinaʼs largest freshwater lake and their linkage with the Three Gorges Dam. Remote Sensing of Environment, 204, 799-811.
DOI URL |
[12] |
Hu YX, Huang JL, Du Y, Han PP, Wang JL, Huang W (2015). Monitoring wetland vegetation pattern response to water-level change resulting from the Three Gorges Project in the two largest freshwater lakes of China. Ecological Engineering, 74, 274-285.
DOI URL |
[13] | Hu ZP, Fu J (2018). Quantitative study on hydrology relationship between the Yangtze River and Poyang Lake and its changes. Journal of Hydraulic Engineering, 49, 570-579. |
[ 胡振鹏, 傅静 (2018). 长江与鄱阳湖水文关系及其演变的定量分析. 水利学报, 49, 570-579.] | |
[14] | Hu ZP, Ge G, Liu CL (2015). Cause analysis and early warning for wetland vegetation degradation in Poyang Lake. Resources and Environment in the Yangtze Basin, 24, 381-386. |
[ 胡振鹏, 葛刚, 刘成林 (2015). 鄱阳湖湿地植被退化原因分析及其预警. 长江流域资源与环境, 24, 381-386.] | |
[15] | Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195-213. |
[16] |
Huete AR, Liu HQ, Batchily K, van Leeuwen W, (1997). A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59, 440-451.
DOI URL |
[17] |
Kanai Y, Ueta M, Germogenov N, Nagendran M, Mita N, Higuchi H (2002). Migration routes and important resting areas of Siberian cranes (Grus leucogeranus) between northeastern Siberia and China as revealed by satellite tracking. Biological Conservation, 106, 339-346.
DOI URL |
[18] |
Li YK, Zhong YF, Shao RQ, Yan C, Jin JF, Shan JH, Li FS, Ji WT, Bin L, Zhang XY, Cao KQ, Shen J (2020). Modified hydrological regime from the Three Gorges Dam increases the risk of food shortages for wintering waterbirds in Poyang Lake. Global Ecology and Conservation, 24, e01286. DOI: 10.1016/j.gecco.2020.e01286.
DOI URL |
[19] |
Liu H, Zheng L, Jiang L, Liao M (2020). Forty-year water body changes in Poyang Lake and the ecological impacts based on Landsat and HJ-1 A/B observations. Journal of Hydrology, 589, 125161. DOI: 10.1016/j.jhydrol.2020.125161.
DOI URL |
[20] | Liu Y, Guo HC, Zhou F, Wang Z, Huang K (2006). Role of water level fluctuation on aquatic vegetation in lakes. Acta Ecologica Sinica, 26, 3117-3126. |
[ 刘永, 郭怀成, 周丰, 王真, 黄凯 (2006). 湖泊水位变动对水生植被的影响机理及其调控方法. 生态学报, 26, 3117-3126.] | |
[21] |
Lucht W, Lewis P (2000). Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. International Journal of Remote Sensing, 21, 81-98.
DOI URL |
[22] |
Lucht W, Schaaf CB, Strahler AH (2000). An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38, 977-998.
DOI URL |
[23] |
Mu S, Li B, Yao J, Yang G, Wan R, Xu X (2020). Monitoring the spatio-temporal dynamics of the wetland vegetation in Poyang Lake by Landsat and MODIS observations. Science of the Total Environment, 725, 138096. DOI: 10.1016/j.scitotenv.2020.138096.
DOI URL |
[24] |
Muala E, Mohamed YA, Duan Z, van der Zaag P, (2014). Estimation of reservoir discharges from Lake Nasser and roseires reservoir in the Nile Basin using satellite altimetry and imagery data. Remote Sensing, 6, 7522-7545.
DOI URL |
[25] |
Richards JH, Troxler TG, Lee DW, Zimmerman MS (2011). Experimental determination of effects of water depth on Nymphaea odorata growth, morphology and biomass allocation. Aquatic Botany, 95, 9-16.
DOI URL |
[26] |
Santoro M, Wegmüller U, Lamarche C, Bontemps S, Defourny P, Arino O (2015). Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale. Remote Sensing of Environment, 171, 185-201.
DOI URL |
[27] |
Schaaf CB, Gao F, Strahler AH, Lucht W, Li XW, Tsang T, Strugnell NC, Zhang XY, Jin YF, Muller JP, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, et al. (2002). First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83, 135-148.
DOI URL |
[28] | Shi MF, Zeng B, Shen JH, Lei ST, Zhu Z, Liu JH (2010). A review of the correlation of flooding adaptability and carbohydrates in plants. Chinese Journal of Plant Ecology, 34, 855-866. |
[ 施美芬, 曾波, 申建红, 类淑桐, 朱智, 刘建辉 (2010). 植物水淹适应与碳水化合物的相关性. 植物生态学报, 34, 855-866.]
DOI |
|
[29] | Sun FD, Ma RH (2020). Hydrologic changes of Poyang Lake based on radar altimeter and optical sensor. Acta Geographica Sinica, 75, 544-557. |
[ 孙芳蒂, 马荣华 (2020). 鄱阳湖水文特征动态变化遥感监测. 地理学报, 75, 544-557.]
DOI |
|
[30] | Sun FD, Zhao YY, Gong P, Ma RH, Dai YJ (2014). Monitoring dynamic changes of global land cover types: fluctuations of major lakes in China every 8 days during 2000-2010. Chinese Science Bulletin, 59, 171-189. |
[31] |
Sun YY, Huang SF, Li JR, Li XT, Ma JW, Li SY, Wang H (2015). Dynamic monitoring of Poyang Lake water body area using MODIS images between 2000 and 2014. Proceedings of the SPIE, 9808, 98081S8. DOI: 10.1117/12. 2209293.
DOI |
[32] |
Tan ZQ, Zhang Q, Li MF, Li YL, Xu XL, Jiang JH (2016). A study of the relationship between wetland vegetation communities and water regimes using a combined remote sensing and hydraulic modeling approach. Hydrology Research, 47, 278-292.
DOI URL |
[33] |
Townshend JRG, Justice CO (2002). Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing. Remote Sensing of Environment, 83, 351-359.
DOI URL |
[34] |
Tucker CJ (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127-150.
DOI URL |
[35] | Wan RR, Dai X, Shankman D (2019). Vegetation response to hydrological changes in Poyang Lake, China. Wetlands, 39, 99-112. |
[36] |
Wang L, Dronova I, Gong P, Yang WB, Li YR, Liu Q (2012). A new time series vegetation-water index of phenological- hydrological trait across species and functional types for Poyang Lake wetland ecosystem. Remote Sensing of Environment, 125, 49-63.
DOI URL |
[37] |
Wang XX, Xiao XM, Zou ZH, Hou LY, Qin YW, Dong JW, Doughty RB, Chen BQ, Zhang X, Chen Y, Ma J, Zhao B, Li B (2020). Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 312-326.
DOI URL |
[38] |
Wang ZS, Schaaf CB, Sun QS, Kim J, Erb AM, Gao F, Román MO, Yang Y, Petroy S, Taylor JR, Masek JG, Morisette JT, Zhang XY, Papuga SA (2017). Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product. International Journal of Applied Earth Observation and Geoinformation, 59, 104-117.
DOI URL |
[39] |
Wang ZS, Schaaf CB, Sun QS, Shuai YM, Román MO (2018). Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sensing of Environment, 207, 50-64.
DOI URL |
[40] |
Wu GP, Liu YB (2015). Capturing variations in inundation with satellite remote sensing in a morphologically complex, large lake. Journal of Hydrology, 523, 14-23.
DOI URL |
[41] |
Wu GP, Liu YB (2016). Mapping dynamics of inundation patterns of two largest river-connected lakes in China: a comparative study. Remote Sensing, 8, 560. DOI: 10.3390/rs8070560.
DOI URL |
[42] |
Xu HQ (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27, 3025-3033.
DOI URL |
[43] |
Xu KH, Milliman JD (2009). Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology, 104, 276-283.
DOI URL |
[44] |
Ye XC, Meng YK, Xu LG, Xu CY (2019). Net primary productivity dynamics and associated hydrological driving factors in the floodplain wetland of Chinaʼs largest freshwater lake. Science of the Total Environment, 659, 302-313.
DOI URL |
[45] |
Zhang Q, Li L, Wang YG, Werner AD, Xin P, Jiang T, Barry DA (2012). Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophysical Research Letters, 39, L20402. DOI: 10.1029/2012GL053431.
DOI |
[46] |
Zhou Y, Dong JW, Xiao XM, Liu RG, Zou ZH, Zhao GS, Ge QS (2019). Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Science of the Total Environment, 689, 366-380.
DOI URL |
[47] |
Zhou Y, Dong JW, Xiao XM, Xiao T, Yang ZQ, Zhao GS, Zou ZH, Qin YW (2017). Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors. Water, 9, 256. DOI: 10.3390/w9040256.
DOI URL |
[48] |
Zou Z, Dong J, Menarguez MA, Xiao X, Qin Y, Doughty RB, Hooker KV, Hambright KD (2017). Continued decrease of open surface water body area in Oklahoma during 1984-2015. Science of the Total Environment, 595, 451-460.
DOI URL |
[49] | Zou Z, Xiao X, Dong J, Qin Y, Doughty RB, Menarguez MA, Zhang G, Wang J (2018). Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proceedings of the National Academy of Sciences of the United States of America, 115, 3810-3815. |
[1] | LI Bo-Xin, JIANG Chao, SUN Osbert Jianxin. Comprehensive assessment of vegetation carbon use efficiency in southwestern China simulated by CMIP6 models [J]. Chin J Plant Ecol, 2023, 47(9): 1211-1224. |
[2] | JIANG Yu-Feng, LI Jing, XIN Rui-Rui, LI Yi. Spatial-temporal dynamics of coastal aquaculture ponds and its impacts on mangrove ecosystems [J]. Chin J Plant Ecol, 2022, 46(10): 1268-1279. |
[3] | Hong-Yan ZHOU, Qin WU, Ming-Yue CHEN, Wei KUANG, Ling-Ling CHANG, Qi-Wu HU. C, N and P stoichiometry in different organs of Vitex rotundifolia in a Poyang Lake desertification hill [J]. Chin J Plan Ecolo, 2017, 41(4): 461-470. |
[4] | Ke-Qing WANG, He-Song WANG, Osbert Jianxin SUN. Application and comparison of remote sensing GPP models with multi-site data in China [J]. Chin J Plant Ecol, 2017, 41(3): 337-347. |
[5] | Quan FANG, Yi-Zhen LIU, Gang GE. Characteristics of plant communities containing rare conifers in Poyang Lake Basin, China [J]. Chin J Plant Ecol, 2016, 40(9): 952-957. |
[6] | HU Wei-Fang, ZHANG Wen-Long, ZHANG Lin-Hai, CHEN Xiao-Yan, LIN Wei, ZENG Cong-Sheng, TONG Chuan. Stoichiometric characteristics of nitrogen and phosphorus in major wetland vegetation of China [J]. Chin J Plant Ecol, 2014, 38(10): 1041-1052. |
[7] | LI Zheng, HAN Lin, LIU Yu-Hong, AN Shu-Qing, LENG Xin. C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China [J]. Chin J Plant Ecol, 2012, 36(10): 1054-1061. |
[8] | SONG Chun-Qiao, YOU Song-Cai, KE Ling-Hong, LIU Gao-Huan, ZHONG Xin-Ke. Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing [J]. Chin J Plant Ecol, 2011, 35(8): 853-863. |
[9] | WANG Xiang-Lei, ZHOU Jin, LI Wei, LIU Gui-Hua, ZHANG Xue-Jiang. Seasonal Dynamics of Soil Seed Bank in Honghu Wetland Withdrawn from Long-term Rice Culture [J]. Chin J Plan Ecolo, 2003, 27(3): 352-359. |
[10] | WANG Hai-Yang, CHEN Jia-Kuan. Niche separation among coexisting species in a wetland Vegetation [J]. Chin J Plan Ecolo, 1999, 23(199901): 187-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn