Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (12): 1551-1561.DOI: 10.17521/cjpe.2021.0414
Special Issue: 生态遥感及应用
• Research Articles • Previous Articles Next Articles
JIANG Yan(), CHEN Xing-Fang, YANG Xu-Jie
Received:
2021-11-15
Accepted:
2022-04-21
Online:
2022-12-20
Published:
2023-01-13
Supported by:
JIANG Yan, CHEN Xing-Fang, YANG Xu-Jie. Changes of aquatic plants in Donghu Lake of Wuhan based 1990-2020 Landsat images[J]. Chin J Plant Ecol, 2022, 46(12): 1551-1561.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0414
日期 Date | 传感器 Sensor | 日期 Date | 传感器 Sensor | 日期 Date | 传感器 Sensor |
---|---|---|---|---|---|
1990-09-02 | Landsat-5/TM | 2002-09-03 | Landsat-5-TM | 2014-10-06 | Landsat-8 OLI |
1991-07-19 | Landsat-5/TM | 2003-10-24 | Landsat-5-TM | 2015-10-25 | Landsat-8 OLI |
1992-11-10 | Landsat-5/TM | 2004-07-31 | Landsat-5-TM | 2016-07-23 | Landsat-8 OLI |
1993-10-12 | Landsat-5/TM | 2005-09-11 | Landsat-5-TM | 2017-10-30 | Landsat-8 OLI |
1994-07-27 | Landsat-5/TM | 2006-11-01 | Landsat-5-TM | 2018-09-15 | Landsat-8 OLI |
1995-08-31 | Landsat-5/TM | 2007-07-31 | Landsat-5-TM | 2019-08-17 | Landsat-8 OLI |
1996-09-02 | Landsat-5/TM | 2008-12-08 | Landsat-5-TM | 2020-02-09 | Landsat-8 OLI |
1997-09-21 | Landsat-5/TM | 2009-09-06 | Landsat-5-TM | 2020-04-13 | Landsat-8 OLI |
1998-10-26 | Landsat-5/TM | 2010-11-05 | Landsat-5-TM | 2020-08-03 | Landsat-8 OLI |
1999-09-27 | Landsat-5/TM | 2011-06-08 | Landsat-5-TM | 2020-10-22 | Landsat-8 OLI |
2000-07-27 | Landsat-5/TM | 2012-05-17 | Landsat-7/ETM+ | ||
2001-09-16 | Landsat-5-TM | 2013-07-31 | Landsat-8 OLI |
Table 1 Landsat image acquisition date and sensor type of Donghu Lake in Wuhan
日期 Date | 传感器 Sensor | 日期 Date | 传感器 Sensor | 日期 Date | 传感器 Sensor |
---|---|---|---|---|---|
1990-09-02 | Landsat-5/TM | 2002-09-03 | Landsat-5-TM | 2014-10-06 | Landsat-8 OLI |
1991-07-19 | Landsat-5/TM | 2003-10-24 | Landsat-5-TM | 2015-10-25 | Landsat-8 OLI |
1992-11-10 | Landsat-5/TM | 2004-07-31 | Landsat-5-TM | 2016-07-23 | Landsat-8 OLI |
1993-10-12 | Landsat-5/TM | 2005-09-11 | Landsat-5-TM | 2017-10-30 | Landsat-8 OLI |
1994-07-27 | Landsat-5/TM | 2006-11-01 | Landsat-5-TM | 2018-09-15 | Landsat-8 OLI |
1995-08-31 | Landsat-5/TM | 2007-07-31 | Landsat-5-TM | 2019-08-17 | Landsat-8 OLI |
1996-09-02 | Landsat-5/TM | 2008-12-08 | Landsat-5-TM | 2020-02-09 | Landsat-8 OLI |
1997-09-21 | Landsat-5/TM | 2009-09-06 | Landsat-5-TM | 2020-04-13 | Landsat-8 OLI |
1998-10-26 | Landsat-5/TM | 2010-11-05 | Landsat-5-TM | 2020-08-03 | Landsat-8 OLI |
1999-09-27 | Landsat-5/TM | 2011-06-08 | Landsat-5-TM | 2020-10-22 | Landsat-8 OLI |
2000-07-27 | Landsat-5/TM | 2012-05-17 | Landsat-7/ETM+ | ||
2001-09-16 | Landsat-5-TM | 2013-07-31 | Landsat-8 OLI |
分类结果 Classification result | |||||
---|---|---|---|---|---|
挺水/浮水 植物 Emerged/ floating plant | 沉水植物 Submerged plant | 水 Water | 合计 Combined | 精度 Accuracy (%) | |
挺水/浮水植物 Emerged/ floating plant | 33 | 3 | 1 | 40 | 82.50 |
沉水植物 Submerged plant | 0 | 22 | 1 | 27 | 81.48 |
水 Water | 2 | 0 | 24 | 29 | 82.75 |
总体精度 Overall accuracy (%) | 82.29 | ||||
Kappa系数 Kappa coefficient (%) | 72.39 |
Table 2 Classification results of aquatic plants of Donghu Lake in Wuhan (August 2020)
分类结果 Classification result | |||||
---|---|---|---|---|---|
挺水/浮水 植物 Emerged/ floating plant | 沉水植物 Submerged plant | 水 Water | 合计 Combined | 精度 Accuracy (%) | |
挺水/浮水植物 Emerged/ floating plant | 33 | 3 | 1 | 40 | 82.50 |
沉水植物 Submerged plant | 0 | 22 | 1 | 27 | 81.48 |
水 Water | 2 | 0 | 24 | 29 | 82.75 |
总体精度 Overall accuracy (%) | 82.29 | ||||
Kappa系数 Kappa coefficient (%) | 72.39 |
月份 Month | 挺水/浮水植物 Emergence/floating plant (km2) | 沉水植物 Submerged plant (km2) |
---|---|---|
2 | 1.43 | 0.23 |
4 | 2.07 | 0.36 |
8 | 3.36 | 0.44 |
10 | 3.13 | 0.38 |
Table 3 Area of aquatic plants in Donghu Lake in Wuhan in 2020
月份 Month | 挺水/浮水植物 Emergence/floating plant (km2) | 沉水植物 Submerged plant (km2) |
---|---|---|
2 | 1.43 | 0.23 |
4 | 2.07 | 0.36 |
8 | 3.36 | 0.44 |
10 | 3.13 | 0.38 |
环境指标 Environmental indicator | 有水生植物分布的样点(25个) Sample points with aquatic plant distribution | 无水生植物分布的样点(50个) Sample points without aquatic plant distribution | ||
---|---|---|---|---|
范围 Scope | 平均值 Mean | 范围 Scope | 平均值 Mean | |
总氮含量 Total nitrogen content (mg·L-1) | 0.56-4.56 | 1.56 | 0.62-6.65 | 1.86 |
总磷含量 Total phosphorous content (mg·L-1) | 0.04-0.30 | 0.12 | 0.04-0.37 | 0.14 |
水深 Water depth (m) | 0.80-3.20 | 2.58 | 0.70-4.40 | 3.29 |
透明度 Transparency (m) | 0.55-1.39 | 0.92 | 0.36-1.35 | 0.83 |
温度 Temperature (℃) | 10.96-17.64 | 14.73 | 9.97-17.38 | 14.74 |
pH | 7.96-9.44 | 8.65 | 7.86-9.24 | 8.69 |
浊度 Turbidity (g·L-1) | 4.30-41.80 | 15.15 | 3.40-49.40 | 15.98 |
溶解性总固体含量 Total dissolved solids content (g·L-1) | 0.23-0.31 | 0.27 | 0.23-0.33 | 0.27 |
Table 4 Differences in environmental factors with or without aquatic plants of Donghu Lake in Wuhan
环境指标 Environmental indicator | 有水生植物分布的样点(25个) Sample points with aquatic plant distribution | 无水生植物分布的样点(50个) Sample points without aquatic plant distribution | ||
---|---|---|---|---|
范围 Scope | 平均值 Mean | 范围 Scope | 平均值 Mean | |
总氮含量 Total nitrogen content (mg·L-1) | 0.56-4.56 | 1.56 | 0.62-6.65 | 1.86 |
总磷含量 Total phosphorous content (mg·L-1) | 0.04-0.30 | 0.12 | 0.04-0.37 | 0.14 |
水深 Water depth (m) | 0.80-3.20 | 2.58 | 0.70-4.40 | 3.29 |
透明度 Transparency (m) | 0.55-1.39 | 0.92 | 0.36-1.35 | 0.83 |
温度 Temperature (℃) | 10.96-17.64 | 14.73 | 9.97-17.38 | 14.74 |
pH | 7.96-9.44 | 8.65 | 7.86-9.24 | 8.69 |
浊度 Turbidity (g·L-1) | 4.30-41.80 | 15.15 | 3.40-49.40 | 15.98 |
溶解性总固体含量 Total dissolved solids content (g·L-1) | 0.23-0.31 | 0.27 | 0.23-0.33 | 0.27 |
[1] |
Barko JW, Gunnison D, Carpenter SR (1991). Sediment interactions with submersed macrophyte growth and community dynamics. Aquatic Botany, 41, 41-65.
DOI URL |
[2] |
Cao M, Qing S, Jin E, Hao Y, Zhao W (2021). A spectral index for the detection of algal blooms using Sentinel-2 Multispectral Instrument (MSI) imagery: a case study of Hulun Lake, China. International Journal of Remote Sensing, 42, 4514-4535.
DOI URL |
[3] | Chen L, Lin H (2014). Vegetation information extraction based on K-T transform and principal component transform. Journal of Central South University of Forestry & Technology, 34(6), 81-84. |
[ 陈利, 林辉 (2014). 基于K-T变换和主成分变换的植被信息提取. 中南林业科技大学学报, 34(6), 81-84.] | |
[4] |
Christy EJ, Sharitz RR (1980). Characteristics of three populations of a swamp annual under different temperature regimes. Ecology, 61, 454-460.
DOI URL |
[5] |
Datta A, Maharaj S, Prabhu GN, Bhowmik D, Marino A, Akbari V, Rupavatharam S, Sujeetha JARP, Anantrao GG, Poduvattil VK, Kumar S, Kleczkowski A (2021). Monitoring the spread of water hyacinth (Pontederia crassipes): challenges and future developments. Frontiers in Ecology and Evolution, 9, 631338. DOI: 10.3389/fevo.2021.631338.
DOI URL |
[6] | Fang X, Zhao FB, Chai XL, Wang LQ (2021). Relationship between the distribution of submerged plants and water environment factors in Yilong Lake. Resources and Environment in the Yangtze Basin, 30, 636-643. |
[ 方馨, 赵风斌, 柴晓利, 王丽卿 (2021). 异龙湖沉水植物分布格局与水环境因子相关性研究. 长江流域资源与环境, 30, 636-643.] | |
[7] |
Guo KD, Zhang XB, Liu PZ, Lei GC, Lv S, Zeng XF, Zeng WK (2020). The response of submerged plants to different environmental factors and hydrologic regime in West Lake Dongting. Journal of Lake Sciences, 32, 1736-1748.
DOI URL |
[ 郭凯迪, 张晓波, 刘培中, 雷光春, 吕偲, 曾喜凡, 曾伟坤 (2020). 西洞庭湖沉水植物分布格局对环境因子及水文情势差异的响应. 湖泊科学, 32, 1736-1748.] | |
[8] |
Kong JX, Zhang ZC, Zhang J (2019). Classification and identification of plant species based on multi-source remote sensing data: research progress and prospect. Biodiversity Science, 27, 796-812.
DOI |
[ 孔嘉鑫, 张昭臣, 张健 (2019). 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27, 796-812.]
DOI |
|
[9] | Li D, Zhang L (2003). Influence of environmental deterioration of inland natural waters on aquatic organisms in China. Reservoir Fisheries, 23(6), 36-37. |
[ 李达, 张力 (2003). 我国内陆天然水域的环境恶化对水生生物的影响. 水利渔业, 23(6), 36-37.] | |
[10] |
Li XJ, Huang MT, Wang RH (2020). Numerical simulation of Donghu Lake hydrodynamics and water quality based on remote sensing and MIKE 21. ISPRS International Journal of Geo-Information, 9, 94. DOI: 10.3390/ijgi9020094.
DOI URL |
[11] | Liang S, An QR, Wang J (2012). Study on hyperspectral remote sensing inversion model of chlorophyll a and suspended matter concentration in east lake of Wuhan. Science and Technology Innovation Herald, (28), 29-30. |
[ 梁思, 安巧绒, 王佳 (2012). 武汉东湖叶绿素a和悬浮物浓度的高光谱遥感反演模型研究. 科技创新导报, (28), 29-30.] | |
[12] |
Liu XH, Zhang YL, Shi K, Zhou YQ, Tang XM, Zhu GW, Qin BQ (2015). Mapping aquatic vegetation in a large, shallow eutrophic lake: a frequency-based approach using multiple years of MODIS data. Remote Sensing, 7, 10295-10320.
DOI URL |
[13] |
Luo JH, Li XC, Ma RH, Li F, Duan HT, Hu WP, Qin BQ, Huang WJ (2016). Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecological Indicators, 60, 503-513.
DOI URL |
[14] | Luo KX, Tao FL (2017). Method for wetland type extraction using remote sensing combing object-oriented and tasseled cap transformation. Transactions of the Chinese Society of Agricultural Engineering, 33, 198-203. |
[ 罗开盛, 陶福禄 (2017). 融合面向对象与缨帽变换的湿地覆被类别遥感提取方法. 农业工程学报, 33, 198-203.] | |
[15] |
Oyama Y, Matsushita B, Fukushima T (2015). Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sensing of Environment, 157, 35-47.
DOI URL |
[16] |
Patel M, Jernigan S, Richardson R, Ferguson S, Buckner G (2019). Autonomous robotics for identification and management of invasive aquatic plant species. Applied Sciences, 9, 2410. DOI: 10.3390/app9122410.
DOI URL |
[17] |
Pearson RM, Collier CJ, Brown CJ, Rasheed MA, Bourner J, Turschwell MP, Sievers M, Connolly RM (2021). Remote estimation of aquatic light environments using machine learning: a new management tool for submerged aquatic vegetation. Science of the Total Environment, 782, 146886. DOI: 10.1016/j.scitotenv.2021.146886.
DOI URL |
[18] | Peng AL, Gu Z, Huang JB, Zhang Q, Ni T, Tao SJ (2021). A case study of impact of aquatic plants on pond water quality. Pearl River, 42(3), 81-86. |
[ 彭爱凌, 顾准, 黄金柏, 张钦, 倪韬, 陶驷骥 (2021). 水生植物对水塘水质影响的实例研究. 人民珠江, 42(3), 81-86.] | |
[19] |
Phillips G, Willby N, Moss B (2016). Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquatic Botany, 135, 37-45.
DOI URL |
[20] |
Qing S, A R, Shun B, Zhao W, Bao Y, Hao Y (2020). Distinguishing and mapping of aquatic vegetations and yellow algae bloom with Landsat satellite data in a complex shallow Lake, China during 1986-2018. Ecological Indicators, 112, 106073. DOI: 10.1016/j.ecolind.2020.106073.
DOI URL |
[21] | Sachse R, Petzoldt T, Blumstock M, Moreira S, Pätzig M, Rücker J, Janse JH, Mooij WM, Hilt S (2014). Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality. Environmental Modelling & Software, 61, 410-423. |
[22] | Wang B, Zhou LP, Li W (2002). Preliminary studies on the purifying function and its physiological reaction of Potamageton crispus under different water qualities. Journal of Wuhan Botanical Research, 20, 150-152. |
[ 王斌, 周莉苹, 李伟 (2002). 不同水质条件下菹草的净化作用及其生理反应初步研究. 武汉植物学研究, 20, 150-152.] | |
[23] | Wang SH, Li JL, Jiang X, Wang WW, Zhang B, Zhao L (2015). Division of submerged aquatic vegetation restoration region in Lihu Lake based on light compensation depth. Research of Environmental Sciences, 28, 1389-1396. |
[ 王书航, 李佳璐, 姜霞, 王雯雯, 张博, 赵丽 (2015). 基于光补偿深度的蠡湖沉水植物恢复区划分. 环境科学研究, 28, 1389-1396.] | |
[24] | Wu ZB, Chen DQ, Qiu DR, Liu BY (2003). Investigation of the distribution of the aquatic vegetation in Lake Donghu, Wuhan. Chongqing Environmental Science, 25(8), 54-58. |
[ 吴振斌, 陈德强, 邱东茹, 刘保元 (2003). 武汉东湖水生植被现状调查及群落演替分析. 重庆环境科学, 25(8), 54-58.] | |
[25] | Yan GA, Ma JM, Qiu DR, Wu ZB (1997). Succession and species replacement of aquatic plant community in East Lake. Acta Phytoecologica Sinica, 21, 319-327. |
[ 严国安, 马剑敏, 邱东茹, 吴振斌 (1997). 武汉东湖水生植物群落演替的研究. 植物生态学报, 21, 319-327.] | |
[26] | Yan GA, Ren N, Ma JM, Tan ZQ, Li YJ (1995). Study on aquatic vegetation and its restoration in East Lake, Wuhan. Journal of Plant Resources and Environment, 4(3), 21-27. |
[ 严国安, 任南, 马剑敏, 谭智群, 李益健 (1995). 武汉东湖水生植被及其恢复途径探讨. 植物资源与环境, 4(3), 21-27.] | |
[27] | Yao ZW, Li YJ, Xia SL (1990). Studies of the aquatic vascular plants and eutrophication in Wuhan East Lake. Chongqing Environmental Science, 12(4), 26-30. |
[ 姚作五, 李益健, 夏盛林 (1990). 武汉东湖水维管束植物与富营养化. 重庆环境科学, 12(4), 26-30.] | |
[28] |
Yu Q, Mickler RA, Liu Y, Sun L, Zhou L, Zhang B, Deng H, Liang L (2020). Remote sensing of Potamogeton crispus L. in Dongping Lake in the north China plain based on vegetation phenology. Journal of the Indian Society of Remote Sensing, 48, 563-573.
DOI |
[29] |
Zhang YL, Jeppesen E, Liu XH, Qin BQ, Shi K, Zhou YQ, Thomaz SM, Deng JM (2017). Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 173, 259-265.
DOI URL |
[30] | Zhong AW, Song X, Zhang J, He L, Yi CL, Ni LY, Cao T (2017). Diversity and distribution of aquatic plants in Lake Donghu in Wuhan in 2014. Research of Environmental Sciences, 30, 398-405. |
[ 钟爱文, 宋鑫, 张静, 何亮, 易春龙, 倪乐意, 曹特 (2017). 2014年武汉东湖水生植物多样性及其分布特征. 环境科学研究, 30, 398-405.] | |
[31] | Zou LS, Nie ZY, Yao XY, Shi JY (2013). Effects of light on submerged macrophytes in eutrophic water: research progress. Chinese Journal of Applied Ecology, 24, 2073-2080. |
[ 邹丽莎, 聂泽宇, 姚笑颜, 施积炎 (2013). 富营养化水体中光照对沉水植物的影响研究进展. 应用生态学报, 24, 2073-2080.] |
[1] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[2] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[3] | TIAN Jia-Yu, WANG Bin, ZHANG Zhi-Ming, LIN Lu-Xiang. Application of spectral diversity in plant diversity monitoring and assessment [J]. Chin J Plant Ecol, 2022, 46(10): 1129-1150. |
[4] | YAN Zheng-Bing, LIU Shu-Wen, WU Jin. Hyperspectral remote sensing of plant functional traits: monitoring techniques and future advances [J]. Chin J Plant Ecol, 2022, 46(10): 1151-1166. |
[5] | CHEN Zhe, WANG Hao, WANG Jin-Zhou, SHI Hui-Jin, LIU Hui-Ying, HE Jin-Sheng. Estimation on seasonal dynamics of alpine grassland aboveground biomass using phenology camera-derived NDVI [J]. Chin J Plant Ecol, 2021, 45(5): 487-495. |
[6] | GUO Qing-Hua, HU Tian-Yu, MA Qin, XU Ke-Xin, YANG Qiu-Li, SUN Qian-Hui, LI Yu-Mei, SU Yan-Jun. Advances for the new remote sensing technology in ecosystem ecology research [J]. Chin J Plant Ecol, 2020, 44(4): 418-435. |
[7] | ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years [J]. Chin J Plant Ecol, 2019, 43(4): 305-319. |
[8] | ZHANG Feng,ZHOU Guang-Sheng. Research progress on monitoring vegetation water content by using hyperspectral remote sensing [J]. Chin J Plan Ecolo, 2018, 42(5): 517-525. |
[9] | Ke-Qing WANG, He-Song WANG, Osbert Jianxin SUN. Application and comparison of remote sensing GPP models with multi-site data in China [J]. Chin J Plant Ecol, 2017, 41(3): 337-347. |
[10] | Yang WANG, Lin-Lin MIAO, Dan YU, Chun-Hua LIU, Zhong WANG. Effects of environmental factors on gross caloric values of three life-forms aquatic plants on the Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2017, 41(2): 209-218. |
[11] | GAO Lin, WANG Xiao-Fei, GU Xing-Fa, TIAN Qing-Jiu, JIAO Jun-Nan, WANG Pei-Yan, LI Dan. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating [J]. Chin J Plant Ecol, 2017, 41(12): 1273-1288. |
[12] | Bo-Kai DOU, Yi-Dong WANG, Dong-Mei XUE, Zhong-Liang WANG. Research advancement in the processes and mechanisms of transporting methane by emerged herbaceous plants and hygrophytes [J]. Chin J Plan Ecolo, 2017, 41(11): 1208-1218. |
[13] | Tao-Yu LIU, Xia ZHAO, Hai-Hua SHEN, Hui-Feng HU, Wen-Jiang HUANG, Jing-Yun FANG. Spectral feature differences between shrub and grass communities and shrub coverage retri- eval in shrub-encroached grassland in Xianghuang Banner, Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(10): 969-979. |
[14] | MA Yong-Gang,ZHANG Chi,CHEN Xi. A new method of sample selections for optimizing phenology model based remote sensing data [J]. Chin J Plan Ecolo, 2015, 39(3): 264-274. |
[15] | MAO Xue-Gang, FAN Wen-Yi, LI Ming-Ze, YU Ying, YANG Jin-Ming. Temporal and spatial analysis of forest biomass in Changbai Mountains, Heilongjiang, China [J]. Chin J Plant Ecol, 2011, 35(4): 371-379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn