Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (3): 264-274.DOI: 10.17521/cjpe.2015.0026
Special Issue: 生态遥感及应用
• Orginal Article • Previous Articles Next Articles
MA Yong-Gang1,2,3, ZHANG Chi1,*(), CHEN Xi1
Received:
2014-05-04
Accepted:
2014-12-17
Online:
2015-03-01
Published:
2015-03-17
Contact:
Chi ZHANG
About author:
# Co-first authors
MA Yong-Gang,ZHANG Chi,CHEN Xi. A new method of sample selections for optimizing phenology model based remote sensing data[J]. Chin J Plan Ecolo, 2015, 39(3): 264-274.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0026
模型 Model | 参数T0 Parameter T0 | 拟合程度 Fitting result | 精度评价 Accuracy assessment | ||||||
---|---|---|---|---|---|---|---|---|---|
固定型/游动型 Fixed or moved (mobile) | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | |||
Chuine模型 Chuine model | 游动 Moved | 70 | 11.18 | 0.55 | 79 | 15.42 | 0.10 | ||
固定 Fixed | 11.94 | 0.51 | 18.25 | 0.15 | |||||
SW模型 SW model | 游动 Moved | 10.75 | 0.57 | 9.68 | 0.55 | ||||
固定 Fixed | 13.24 | 0.42 | 16.27 | 0.61 | |||||
Seq模型 Seq model | 游动 Moved | 14.01 | 0.37 | 18.31 | 0.12 | ||||
固定 Fixed | 14.02 | 0.37 | 12.06 | 0.69 | |||||
Par模型 Par model | 游动 Moved | 9.38 | 0.61 | 10.72 | 0.69 | ||||
固定 Fixed | 19.36 | - | - | - | |||||
Al模型 Al model | 游动 Moved | 9.20 | 0.74 | 19.6 | 0.37 | ||||
固定 Fixed | - | 0.20 | - | - | |||||
Al-P模型 Al-P model | 游动 Moved | 6.60 | 0.68 | 16.57 | 0.51 | ||||
固定 Fixed | 12.40 | 0.37 | - | 0.12 | |||||
T-P修正模型 Modified T-P model | 游动 Moved | 7.70 | 0.83 | 9.87 | 0.70 | ||||
固定 Fixed | 10.25 | 0.77 | 14.19 | 0.64 | |||||
Chuine-P模型 Chuine-P model | 游动 Moved | 12.32 | 0.39 | 14.13 | 0.27 | ||||
固定 Fixed | 15.25 | 0.33 | 16.93 | - | |||||
T-D模型 T-D model | 游动 Moved | 9.79 | 0.67 | 11.77 | 0.66 | ||||
固定 Fixed | 10.64 | 0.68 | 15.18 | 0.68 | |||||
T-P-D1模型 T-P-D1 model | 游动 Moved | 7.78 | 0.69 | 10.01 | 0.48 | ||||
固定 Fixed | 8.60 | 0.77 | 11.34 | 0.71 | |||||
T-P-D2模型 T-P-D2 model | 游动 Moved | 8.00 | 0.47 | 17.21 | 0.47 | ||||
固定 Fixed | 10.54 | 0.64 | 14.50 | 0.41 |
Table 1 Results of the start of season (SOS) model fitting and assessment for desert steppe vegetation
模型 Model | 参数T0 Parameter T0 | 拟合程度 Fitting result | 精度评价 Accuracy assessment | ||||||
---|---|---|---|---|---|---|---|---|---|
固定型/游动型 Fixed or moved (mobile) | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | |||
Chuine模型 Chuine model | 游动 Moved | 70 | 11.18 | 0.55 | 79 | 15.42 | 0.10 | ||
固定 Fixed | 11.94 | 0.51 | 18.25 | 0.15 | |||||
SW模型 SW model | 游动 Moved | 10.75 | 0.57 | 9.68 | 0.55 | ||||
固定 Fixed | 13.24 | 0.42 | 16.27 | 0.61 | |||||
Seq模型 Seq model | 游动 Moved | 14.01 | 0.37 | 18.31 | 0.12 | ||||
固定 Fixed | 14.02 | 0.37 | 12.06 | 0.69 | |||||
Par模型 Par model | 游动 Moved | 9.38 | 0.61 | 10.72 | 0.69 | ||||
固定 Fixed | 19.36 | - | - | - | |||||
Al模型 Al model | 游动 Moved | 9.20 | 0.74 | 19.6 | 0.37 | ||||
固定 Fixed | - | 0.20 | - | - | |||||
Al-P模型 Al-P model | 游动 Moved | 6.60 | 0.68 | 16.57 | 0.51 | ||||
固定 Fixed | 12.40 | 0.37 | - | 0.12 | |||||
T-P修正模型 Modified T-P model | 游动 Moved | 7.70 | 0.83 | 9.87 | 0.70 | ||||
固定 Fixed | 10.25 | 0.77 | 14.19 | 0.64 | |||||
Chuine-P模型 Chuine-P model | 游动 Moved | 12.32 | 0.39 | 14.13 | 0.27 | ||||
固定 Fixed | 15.25 | 0.33 | 16.93 | - | |||||
T-D模型 T-D model | 游动 Moved | 9.79 | 0.67 | 11.77 | 0.66 | ||||
固定 Fixed | 10.64 | 0.68 | 15.18 | 0.68 | |||||
T-P-D1模型 T-P-D1 model | 游动 Moved | 7.78 | 0.69 | 10.01 | 0.48 | ||||
固定 Fixed | 8.60 | 0.77 | 11.34 | 0.71 | |||||
T-P-D2模型 T-P-D2 model | 游动 Moved | 8.00 | 0.47 | 17.21 | 0.47 | ||||
固定 Fixed | 10.54 | 0.64 | 14.50 | 0.41 |
Fig. 4 Scatter plots for desert steppe vegetation and delicious broadleaf forest assessment. A, Modified T-P model for desert grassland vegetation. B, Al model for deciduous broadleaved forest. RMSE, root mean square error.
模型名称 Model name | 参数 T0 Parameter T0 | 拟合程度 Fitting result | 精度评价 Accuracy assessment | ||||||
---|---|---|---|---|---|---|---|---|---|
固定型/游动型 Fixed or moved | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | |||
Chuine模型 Chuine model | 游动 Moved | 15 | 9.70 | 0.71 | 18 | 18.30 | 0.46 | ||
固定 Fixed | 11.70 | 0.42 | 16.20 | 0.41 | |||||
SW模型 SW model | 游动 Moved | 12.80 | 0.22 | 13.95 | 0.56 | ||||
固定 Fixed | 13.25 | 0.13 | 13.73 | 0.51 | |||||
Seq模型 Seq model | 游动 Moved | 12.60 | 0.31 | 17.50 | 0.21 | ||||
固定 Fixed | 12.56 | 0.31 | 15.88 | 0.59 | |||||
Par模型 Par model | 游动 Moved | 11.90 | 0.40 | 12.80 | 0.57 | ||||
固定 Fixed | 11.90 | 0.44 | 12.63 | 0.58 | |||||
Al模型 Al model | 游动 Moved | 8.00 | 0.82 | 12.10 | 0.63 | ||||
固定 Fixed | 14.29 | 0.62 | - | 0.29 | |||||
Al-P模型 Al-P model | 游动 Moved | - | - | ||||||
固定 Fixed | - | - | |||||||
T-P修正模型 Modified T-P model | 游动 Moved | - | 0.44 | - | - | ||||
固定 Fixed | - | 0.10 | - | - | |||||
Chuine-P模型 Chuine-P model | 游动 Moved | - | - | ||||||
固定 Fixed | - | - | |||||||
T-D模型 T-D model | 游动 Moved | 12.66 | 0.34 | 17.75 | 0.33 | ||||
固定 Fixed | 13.10 | - | 19.32 | - | |||||
T-P-D1模型 T-P-D1 model | 游动 Moved | - | 0.44 | - | - | ||||
固定 Fixed | - | - | - | - | |||||
T-P-D2模型 T-P-D2 model | 游动 Moved | - | 0.22 | - | - | ||||
固定 Fixed | - | - | - |
Table 2 Results of the start of the season (SOS) model fitting and assessment for board-leaved forest
模型名称 Model name | 参数 T0 Parameter T0 | 拟合程度 Fitting result | 精度评价 Accuracy assessment | ||||||
---|---|---|---|---|---|---|---|---|---|
固定型/游动型 Fixed or moved | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | 样本个数 Sample size | 均方根误差 RMSE | 决定系数 R2 | |||
Chuine模型 Chuine model | 游动 Moved | 15 | 9.70 | 0.71 | 18 | 18.30 | 0.46 | ||
固定 Fixed | 11.70 | 0.42 | 16.20 | 0.41 | |||||
SW模型 SW model | 游动 Moved | 12.80 | 0.22 | 13.95 | 0.56 | ||||
固定 Fixed | 13.25 | 0.13 | 13.73 | 0.51 | |||||
Seq模型 Seq model | 游动 Moved | 12.60 | 0.31 | 17.50 | 0.21 | ||||
固定 Fixed | 12.56 | 0.31 | 15.88 | 0.59 | |||||
Par模型 Par model | 游动 Moved | 11.90 | 0.40 | 12.80 | 0.57 | ||||
固定 Fixed | 11.90 | 0.44 | 12.63 | 0.58 | |||||
Al模型 Al model | 游动 Moved | 8.00 | 0.82 | 12.10 | 0.63 | ||||
固定 Fixed | 14.29 | 0.62 | - | 0.29 | |||||
Al-P模型 Al-P model | 游动 Moved | - | - | ||||||
固定 Fixed | - | - | |||||||
T-P修正模型 Modified T-P model | 游动 Moved | - | 0.44 | - | - | ||||
固定 Fixed | - | 0.10 | - | - | |||||
Chuine-P模型 Chuine-P model | 游动 Moved | - | - | ||||||
固定 Fixed | - | - | |||||||
T-D模型 T-D model | 游动 Moved | 12.66 | 0.34 | 17.75 | 0.33 | ||||
固定 Fixed | 13.10 | - | 19.32 | - | |||||
T-P-D1模型 T-P-D1 model | 游动 Moved | - | 0.44 | - | - | ||||
固定 Fixed | - | - | - | - | |||||
T-P-D2模型 T-P-D2 model | 游动 Moved | - | 0.22 | - | - | ||||
固定 Fixed | - | - | - |
1 | Ahl DE, Gower ST, Burrows SN, Shabanov NV, Myneni RB, Knyazikhin Y (2006). Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS.Remote Sensing of Environment, 104, 88-95. |
2 | Archibald S, Scholes RJ (2007). Leaf green-up in a semi-arid African savanna-separating tree and grass responses to environmental cues.Journal of Vegetation Science, 18, 583-594. |
3 | Augustine DJ (2010). Spatial versus temporal variation in precipitation in a semiarid ecosystem.Landscape Ecology, 25, 913-925. |
4 | Botta A, Viovy N, Ciais P, Friedlingstein P, Monfray P (2000). A global prognostic scheme of leaf onset using satellite data.Global Change Biology, 6, 709-725. |
5 | Cannell MGR, Smith RI (1983). Thermal time, chill days and prediction of budburst in Picea sitchensis.Journal of Applied Ecology, 20, 951-963. |
6 | Chuine I (2000). A unified model for budburst of trees.Journal of Theoretical Biology, 207, 337-347. |
7 | Chuine I, Cour P, Rousseau DD (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing.Plant, Cell & Environment, 21, 455-466. |
8 | Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007). Shifting plant phenology in response to global change.Trends in Ecology & Evolution, 22, 357-365. |
9 | de Beurs KM, Henebry GM (2004). Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan.Remote Sensing of Environment, 89, 497-509. |
10 | Delbart N, Kergoat L, le Toan T, Lhermitte J, Picard G (2005). Determination of phenological dates in boreal regions using normalized difference water index.Remote Sensing of Environment, 97, 26-38. |
11 | Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics.Global Biogeochemical Cycles, 10, 603-628. |
12 | Friend AD, Stevens AK, Knox RG, Cannell MGR (1997). A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0).Ecological Modelling, 95, 249-287. |
13 | Hänninen H (1990). Modelling bud dormancy release in trees from cool and temperate regions.Acta Forestalia Fennica, 213, 1-47. |
14 | Haxeltine A, Prentice IC (1996). BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types.Global Biogeochemical Cycles, 10, 693-709. |
15 | Howell SEL, Brown LC, Kang KK, Duguay CR (2009). Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000-2006.Remote Sensing of Environment, 113, 816-834. |
16 | Hu ZY, Zhang C, Hu Q, Tian HQ (2014). Temperature changes in Central Asia from 1979-2011 based on multiple datasets.Journal of Climate, 27, 1143-1167. |
17 | Hudson Dunn A, de Beurs KM (2011). Land surface phenology of North American mountain environments using moderate resolution imaging spectroradiometer data.Remote Sensing of Environment, 115, 1220-1233. |
18 | Hufkens K, Friedl M, Sonnentag O, Braswell BH, Milliman T, Richardson AD (2012). Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology.Remote Sensing of Environment, 117, 307-321. |
19 | Jiang Z, Huete A, Didan K, Miura T (2008). Development of a two-band enhanced vegetation index without a blue band.Remote Sensing of Environment, 112, 3833-3845. |
20 | Kariyeva J, van Leeuwen WJD, Woodhouse CA (2012). Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981-2008).Frontiers of Earth Science, 6, 206-225. |
21 | Koltunov A, Ustin SL, Asner GP, Fung I (2009). Selective logging changes forest phenology in the Brazilian Amazon: Evidence from MODIS image time series analysis.Remote Sensing of Environment, 113, 2431-2440. |
22 | Kramer K (1994). Selecting a model to predict the onset of growth of Fagus sylvatica.Journal of Applied Ecology, 31, 172-181. |
23 | Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice CI (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015. |
24 | Levis S, Bonan G, Vertenstein M, Oleson K (2004). The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User’s Guide. NCAR Technical Note. . Cited: May 2014. |
25 | Li RP, Zhou GS (2012). A temperature-precipitation based leafing model and its application in Northeast China.PLoS ONE, 7, e33192. |
26 | Linkosalo T, Lappalainen HK, Hari P (2008). A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations.Tree Physiology, 28, 1873-1882. |
27 | Ma YG, Zhang C, Tiyip T (2014). Spatial-temporal change of vegetation phenology in arid zone of Central Asia and Xinjiang, China.Advances in Climate Change Research, 10, 95-102. (in Chinese with English abstract) |
[马勇刚, 张弛, 塔西甫拉提·特依拜 (2004). 中亚及中国新疆干旱区植被物候时空变化. 气候变化研究进展, 10, 95-102.] | |
28 | Randerson JT, Hoffman FM, Thornton PE, Mahowald NM, Lindsay K, Lee YH, Nevison CD, Doney SC, Bonan G, Stöckli R, Covey C, Running SW, Fung IY (2009). Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models.Global Change Biology, 15, 2462-2484. |
29 | Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen GS, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis HA, McCaughey H, Migliavacca M, Monson RK, Munger JW, Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, Tian H, Vargas R, Verbeeck H, Xiao JF, Xue YK (2012). Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis.Global Change Biology, 18, 566-584. |
30 | Rocha AV, Shaver GR (2009). Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes.Agricultural and Forest Meteorology, 149, 1560-1563. |
31 | Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H (2005). A crop phenology detection method using time-series MODIS data.Remote Sensing of Environment, 96, 366-374. |
32 | Sarvas R (1972). Investigations on the annual cycle of development of forest trees: active period.Communicationes Instituti Forestalls Fenniae, 76, 1-110. |
33 | Sato H, Itoh A, Kohyama T (2007). SEIB-DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach.Ecological Modelling, 200, 279-307. |
34 | Shu SJ, Wang Y, Chu HY (2009). Spatial distribution of temperature in China: Geographic and orographic influences. Journal of Nanjing University (Natural Science), 45, 334-342. (in Chinese with English abstract) |
[舒守娟, 王元, 储惠云 (2009). 地理和地形影响下我国区域的气温空间分布. 南京大学学报(自然科学版), 45, 334-342.] | |
35 | Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model.Global Change Biology, 9, 161-185. |
36 | White MA, Thornton PE, Running SW (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability.Global Biogeochemical Cycles, 11, 217-234. |
37 | Wright CK, de Beurs KM, Akhmadieva ZK, Groisman PY, Henebry GM (2009). Reanalysis data underestimate significant changes in growing season weather in Kazakhstan.Environmental Research Letters, 4, doi:10.1088/1748-9326/4/4/045020. |
38 | Wu YF, Li MS, Song JQ (2008). Advance in vegetation phenology monitoring based on remote sensing.Journal of Meteorology and Environment, 24(3), 51-58. (in Chinese with English abstract) |
[武永峰, 李茂松, 宋吉青 (2008). 植物物候遥感监测研究进展. 气象与环境学报, 24(3), 51-58.] | |
39 | Yang S, Sun GJ, He WY, Zhao H, Li FM, Xiong YC (2011). Correlation of topographic factors with precipitation and surface temperature in arid and cold region of Northwest China: A case study in Gansu Province.Acta Ecologica Sinica, 31, 2414-2420. (in Chinese with English abstract) |
[杨森, 孙国钧, 何文莹, 赵鸿, 李凤民, 熊友才 (2011). 西北旱寒区地理、地形因素与降雨量及平均温度的相关性——以甘肃省为例. 生态学报, 31, 2414-2420.] | |
40 | Yang X, Mustard JF, Tang JW, Xu H (2012). Regional-scale phenology modeling based on meteorological records and remote sensing observations.Journal of Geophysical Research, 117, doi: 10.1029/2012JG001977. |
41 | Zhang XY, Friedl MA, Schaaf CB (2009). Sensitivity of vegetation phenology detection to the temporal resolution of satellite data.International Journal of Remote Sensing, 30, 2061-2074. |
42 | Zhao H, Yang ZW, Di LP, Pei ZY (2012). Evaluation of temporal resolution effect in remote sensing based crop phenology detection studies. In: Li D, Chen Y eds. Computer and Computing Technologies in Agriculture V. Springer, Berlin. 135-150. |
[1] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[2] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[3] | JIANG Yan, CHEN Xing-Fang, YANG Xu-Jie. Changes of aquatic plants in Donghu Lake of Wuhan based 1990-2020 Landsat images [J]. Chin J Plant Ecol, 2022, 46(12): 1551-1561. |
[4] | TIAN Jia-Yu, WANG Bin, ZHANG Zhi-Ming, LIN Lu-Xiang. Application of spectral diversity in plant diversity monitoring and assessment [J]. Chin J Plant Ecol, 2022, 46(10): 1129-1150. |
[5] | YAN Zheng-Bing, LIU Shu-Wen, WU Jin. Hyperspectral remote sensing of plant functional traits: monitoring techniques and future advances [J]. Chin J Plant Ecol, 2022, 46(10): 1151-1166. |
[6] | CHEN Zhe, WANG Hao, WANG Jin-Zhou, SHI Hui-Jin, LIU Hui-Ying, HE Jin-Sheng. Estimation on seasonal dynamics of alpine grassland aboveground biomass using phenology camera-derived NDVI [J]. Chin J Plant Ecol, 2021, 45(5): 487-495. |
[7] | GUO Qing-Hua, HU Tian-Yu, MA Qin, XU Ke-Xin, YANG Qiu-Li, SUN Qian-Hui, LI Yu-Mei, SU Yan-Jun. Advances for the new remote sensing technology in ecosystem ecology research [J]. Chin J Plant Ecol, 2020, 44(4): 418-435. |
[8] | ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years [J]. Chin J Plant Ecol, 2019, 43(4): 305-319. |
[9] | ZHANG Feng,ZHOU Guang-Sheng. Research progress on monitoring vegetation water content by using hyperspectral remote sensing [J]. Chin J Plan Ecolo, 2018, 42(5): 517-525. |
[10] | Ke-Qing WANG, He-Song WANG, Osbert Jianxin SUN. Application and comparison of remote sensing GPP models with multi-site data in China [J]. Chin J Plant Ecol, 2017, 41(3): 337-347. |
[11] | GAO Lin, WANG Xiao-Fei, GU Xing-Fa, TIAN Qing-Jiu, JIAO Jun-Nan, WANG Pei-Yan, LI Dan. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating [J]. Chin J Plant Ecol, 2017, 41(12): 1273-1288. |
[12] | Tao-Yu LIU, Xia ZHAO, Hai-Hua SHEN, Hui-Feng HU, Wen-Jiang HUANG, Jing-Yun FANG. Spectral feature differences between shrub and grass communities and shrub coverage retri- eval in shrub-encroached grassland in Xianghuang Banner, Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(10): 969-979. |
[13] | ZHANG Qi, YUAN Xiu-Liang, CHEN Xi, LUO Ge-Ping, LI Long-Hui. Vegetation change and its response to climate change in Central Asia from 1982 to 2012 [J]. Chin J Plant Ecol, 2016, 40(1): 13-23. |
[14] | MAO Xue-Gang, FAN Wen-Yi, LI Ming-Ze, YU Ying, YANG Jin-Ming. Temporal and spatial analysis of forest biomass in Changbai Mountains, Heilongjiang, China [J]. Chin J Plant Ecol, 2011, 35(4): 371-379. |
[15] | ZHAO Chuan-Yan, SHEN Wei-Hua, PENG Huan-Hua. METHODS FOR DETERMINING CANOPY LEAF AREA INDEX OF PICEA CRASSIFOLIA FOREST IN QILIAN MOUNTAINS, CHINA [J]. Chin J Plant Ecol, 2009, 33(5): 860-869. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn