Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (12): 1562-1572.DOI: 10.17521/cjpe.2022.0172
• Research Articles • Previous Articles Next Articles
Received:
2022-04-29
Accepted:
2022-08-22
Online:
2022-12-20
Published:
2023-01-13
Contact:
*FAN Wei-Guo(MENG Qing-Jing, FAN Wei-Guo. Calcium-tolerance type and adaptability to high-calcium habitats of Rosa roxburghii[J]. Chin J Plant Ecol, 2022, 46(12): 1562-1572.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0172
指标 Index | 分级 Classification | 样本数 Number (n) | 范围 Range | 占比 Percentage (%) | 平均值 Mean | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|
pH | 酸性 Acid (<5.5) | 5 | 4.73-8.58 | 10.00 | 7.28 | 14.77 |
微酸性 Faintly acid (5.5-6.5) | 7 | 14.00 | ||||
中性 Neutral (6.5-7.5) | 8 | 16.00 | ||||
碱性 Alkaline (7.5-8.5) | 29 | 48.00 | ||||
强碱性 Highly alkaline (>8.5) | 1 | 2.00 | ||||
交换性钙含量 Exchangeable calcium content (mg·kg-1) | 缺乏 Lack (<250) | 0 | 406.41-9 425.98 | 0.00 | 3 839.36 | 60.59 |
适量 Suitable (250-1 000) | 5 | 10.00 | ||||
高量 High (1 000-2 000) | 5 | 10.00 | ||||
过量 Superfluous (>2 000) | 40 | 80.00 | ||||
交换性镁含量 Exchangeable magnesium content (mg·kg-1) | 缺乏 Lack (<50) | 4 | 23.04-1 354.48 | 8.00 | 315.01 | 97.80 |
适量 Suitable (50-100) | 8 | 16.00 | ||||
高量 High (100-200) | 13 | 26.00 | ||||
过量 Superfluous (>200) | 25 | 50.00 |
Table 1 Characteristics of pH, exchangeable calcium and magnesium content of wild Rosa roxburghii site soil in karst area (n = 50)
指标 Index | 分级 Classification | 样本数 Number (n) | 范围 Range | 占比 Percentage (%) | 平均值 Mean | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|
pH | 酸性 Acid (<5.5) | 5 | 4.73-8.58 | 10.00 | 7.28 | 14.77 |
微酸性 Faintly acid (5.5-6.5) | 7 | 14.00 | ||||
中性 Neutral (6.5-7.5) | 8 | 16.00 | ||||
碱性 Alkaline (7.5-8.5) | 29 | 48.00 | ||||
强碱性 Highly alkaline (>8.5) | 1 | 2.00 | ||||
交换性钙含量 Exchangeable calcium content (mg·kg-1) | 缺乏 Lack (<250) | 0 | 406.41-9 425.98 | 0.00 | 3 839.36 | 60.59 |
适量 Suitable (250-1 000) | 5 | 10.00 | ||||
高量 High (1 000-2 000) | 5 | 10.00 | ||||
过量 Superfluous (>2 000) | 40 | 80.00 | ||||
交换性镁含量 Exchangeable magnesium content (mg·kg-1) | 缺乏 Lack (<50) | 4 | 23.04-1 354.48 | 8.00 | 315.01 | 97.80 |
适量 Suitable (50-100) | 8 | 16.00 | ||||
高量 High (100-200) | 13 | 26.00 | ||||
过量 Superfluous (>200) | 25 | 50.00 |
器官 Organ | 范围 Range (g·kg-1) | 平均值 Mean (g·kg-1) | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 总钙含量分布的样本数 Sample number of total calcium content distribution (n) | ||
---|---|---|---|---|---|---|---|
<10 g·kg-1 | 10-20 g·kg-1 | >20 g·kg-1 | |||||
根 Root | 3.87-13.47 | 6.51b | 2.25 | 34.64 | 45 | 5 | 0 |
枝 Branch | 11.01-24.96 | 19.92a | 3.27 | 16.41 | 0 | 25 | 25 |
叶 Leaf | 13.95-24.95 | 19.72a | 2.96 | 15.01 | 0 | 28 | 22 |
果实 Fruit | 3.21-11.50 | 6.19b | 1.81 | 29.22 | 27 | 2 | 0 |
Table 2 Range, coefficient of variation and distribution characteristics of total calcium content in root, branch, leaf and fruit of wild Rosa roxburghii in karst area
器官 Organ | 范围 Range (g·kg-1) | 平均值 Mean (g·kg-1) | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 总钙含量分布的样本数 Sample number of total calcium content distribution (n) | ||
---|---|---|---|---|---|---|---|
<10 g·kg-1 | 10-20 g·kg-1 | >20 g·kg-1 | |||||
根 Root | 3.87-13.47 | 6.51b | 2.25 | 34.64 | 45 | 5 | 0 |
枝 Branch | 11.01-24.96 | 19.92a | 3.27 | 16.41 | 0 | 25 | 25 |
叶 Leaf | 13.95-24.95 | 19.72a | 2.96 | 15.01 | 0 | 28 | 22 |
果实 Fruit | 3.21-11.50 | 6.19b | 1.81 | 29.22 | 27 | 2 | 0 |
Fig. 2 Correlation between calcium and magnesium content in leaf of wild Rosa roxburghii and exchangeable calcium and magnesium content in soil in karst area (n = 50). **, p < 0.01.
Fig. 3 Correlation between total calcium content in branches, leaves, fruits, and roots of wild Rosa roxburghii and exchangeable calcium content in soil in karst area. *, p < 0.05; **, p < 0.01.
器官 Organ | 草酸钙含量范围 Content range of calcium oxalate (g·kg-1) | 含量平均值 Content mean (g·kg-1) | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 占器官总钙的百分比 Percentage of total calcium in organs (%) |
---|---|---|---|---|---|
根 Root | 0.35-5.64 | 1.91b | 1.09 | 57.02 | 29.35c |
枝 Branch | 3.34-16.88 | 11.12a | 2.82 | 25.39 | 55.81a |
叶 Leaf | 7.16-13.67 | 10.41a | 1.64 | 15.73 | 52.76a |
果实 Fruit | 0.52-4.96 | 2.12b | 1.01 | 47.52 | 34.30b |
Table 3 Content range, coefficient of variation and percentage of calcium oxalate in total calcium in root, branch, leaf and fruit of wild Rosa roxburghii in karst area
器官 Organ | 草酸钙含量范围 Content range of calcium oxalate (g·kg-1) | 含量平均值 Content mean (g·kg-1) | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 占器官总钙的百分比 Percentage of total calcium in organs (%) |
---|---|---|---|---|---|
根 Root | 0.35-5.64 | 1.91b | 1.09 | 57.02 | 29.35c |
枝 Branch | 3.34-16.88 | 11.12a | 2.82 | 25.39 | 55.81a |
叶 Leaf | 7.16-13.67 | 10.41a | 1.64 | 15.73 | 52.76a |
果实 Fruit | 0.52-4.96 | 2.12b | 1.01 | 47.52 | 34.30b |
生境 Condition | 交换性钙含量 Exchangeable calcium content (mg·kg-1) | 总钙含量 Total calcium content (g·kg-1) | 草酸钙含量 Calcium oxalate content (g·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
叶 Leaf | 枝 Branch | 果实 Fruit | 根 Root | 叶 Leaf | 枝 Branch | 果实 Fruit | 根 Root | ||
高钙 High calcium | 5 938.12 ± 185.04A | 19.92 ± 0.70A | 20.90 ± 0.10A | 11.50 ± 0.14A | 10.07 ± 0.13A | 9.75 ± 0.14A | 10.10 ± 0.14A | 4.96 ± 0.02A | 2.34 ± 0.03A |
低钙 Low calcium | 406.41 ± 14.41B | 14.07 ± 0.37B | 12.03 ± 0.08B | 3.86 ± 0.02B | 5.64 ± 0.13B | 7.53 ± 0.57B | 5.70 ± 0.23B | 0.52 ± 0.04B | 1.91 ± 0.06B |
Table 4 Exchangeable calcium content in soil, total calcium and calcium oxalate content in different organs of wild Rosa roxburghii plants in different calcium conditions (mean ± SD)
生境 Condition | 交换性钙含量 Exchangeable calcium content (mg·kg-1) | 总钙含量 Total calcium content (g·kg-1) | 草酸钙含量 Calcium oxalate content (g·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
叶 Leaf | 枝 Branch | 果实 Fruit | 根 Root | 叶 Leaf | 枝 Branch | 果实 Fruit | 根 Root | ||
高钙 High calcium | 5 938.12 ± 185.04A | 19.92 ± 0.70A | 20.90 ± 0.10A | 11.50 ± 0.14A | 10.07 ± 0.13A | 9.75 ± 0.14A | 10.10 ± 0.14A | 4.96 ± 0.02A | 2.34 ± 0.03A |
低钙 Low calcium | 406.41 ± 14.41B | 14.07 ± 0.37B | 12.03 ± 0.08B | 3.86 ± 0.02B | 5.64 ± 0.13B | 7.53 ± 0.57B | 5.70 ± 0.23B | 0.52 ± 0.04B | 1.91 ± 0.06B |
Fig. 4 Observation results of calcium oxalate crystals grown in the organs of Rosa roxburghii and at the stomata margins of leaves in two calcium conditions. A-F, Observation results of calcium oxalate crystals in different organs and leaves of R. roxburghii in high calcium conditions with soil exchangeable calcium content of 5 938.12 mg·kg-1. A, Calcium oxalate prism in leaf tissue. B, Calcium oxalate prism in branch phloem. C, Calcium oxalate raphid in fruit tissue. D, Root tissue without calcium oxalate crystals. E, Calcium oxalate deposits at the edge of the stomata. F, Calcium oxalate prism outside stomata. G-L, Observation results of calcium oxalate crystals in different organs and leaves of R. roxburghii in low calcium conditions with soil exchangeable calcium content of 406.41 mg·kg-1. G, Calcium oxalate prism in leaf tissue. H, Calcium oxalate prism in branch phloem. I, No calcium oxalate crystals were observed in fruit tissue. J, Root tissue without calcium oxalate crystals. K, No calcium oxalate deposits were observed around the stomata. L, No calcium oxalate crystals were observed around the stomata on the leaf surface.
Fig. 5 Rosa roxburghii in two calcium conditions. Left: R. roxburghii grows on acidic low calcium yellow soil with pH 5.02 and exchangeable calcium content of 432 mg·kg-1, there were more acidic indicator ferns around the plant. Right: R. roxburghii grows in alkaline calcareous soil with pH 8.24 and exchangeable calcium content up to 6 631 mg·kg-1.
[1] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. 152-199. |
[ 鲍士旦(2000). 土壤农化分析. 3版. 中国农业出版社, 北京. 152-199.] | |
[2] |
Borer CH, Hamby MN, Hutchinson LH (2012). Plant tolerance of a high calcium environment via foliar partitioning and sequestration. Journal of Arid Environments, 85, 128-131.
DOI URL |
[3] |
Clark CJ, Smith GS, Walker GD (1987). The form, distribution and seasonal accumulation of calcium in kiwifruit leaves. New Phytologist, 105, 477-486.
DOI PMID |
[4] | Fan WG, Gong FF (2019). Effects of exogenous oxalic acid on nutrient environment of calcareous yellow soil and the growth, physiological characteristics of Rosa roxburghii seedlings. Journal of Guizhou University (Natural Sciences), 36(3), 1-8. |
[ 樊卫国, 龚芳芳 (2019). 外源草酸对钙质黄壤营养环境和刺梨苗生长及生理特性的影响. 贵州大学学报(自然科学版), 36(3), 1-8.] | |
[5] | Fan WG, Liu JP (1997). Response of elements deficiency stress in Rosa roxburghii Tratt. Journal of Guizhou Agriculture College, 16(3), 43-47. |
[ 樊卫国, 刘进平 (1997). 刺梨对缺素胁迫的反应. 贵州农学院学报, 16(3), 43-47.] | |
[6] |
Franceschi VR, Horner HT (1980). Calcium oxalate crystals in plants. The Botanical Review, 46, 361-427.
DOI URL |
[7] | Fu R, Meng XX, Chai SF (2019). Research progress on the relationship between plants and calcium environment. Northern Horticulture, (3), 161-166. |
[ 付嵘, 孟小暇, 柴胜丰 (2019). 植物与钙环境关系的研究进展. 北方园艺, (3), 161-166.] | |
[8] | Gong FF (2018). The Organic Acids in the Rezosphere Soil of Rosa roxburghii Tratt. Growing on Calcareous Soil and the Function Verification of Principal Components of Those Organic Acids—The Effects of Exogenous Importing of Low Molecular Weight Organic Acids on Soil Nutrient Release and the Growth of Rosa roxburghii. Master degree dissertation, Guizhou University, Guiyang. |
[ 龚芳芳 (2018). 石灰性土壤上刺梨根际土壤低分子量有机酸及其主成分的功能验证——基于低分子量有机酸外源导入对土壤养分释放及刺梨生长的作用. 硕士学位论文, 贵州大学, 贵阳.] | |
[9] |
He HH, Veneklaas EJ, Kuo J, Lambers H (2014). Physiological and ecological significance of biomineralization in plants. Trends in Plant Science, 19, 166-174.
DOI PMID |
[10] | He ZF, Xiong LY, Guo XM, Niu AZ (1988). A study on the content of nutrients in Rosa roxburghii Tratt. fruit. Acta Nutrimenta Sinica, 10, 262-266. |
[ 何照范, 熊绿芸, 国兴民, 牛爱珍 (1988). 刺梨果实的营养成分. 营养学报, 10, 262-266.] | |
[11] | Hong WJ (2016). The Adaptive Mechanisms with Drought and Calcium of Two Species Suitable Growing in Limestone Mountain. Master degree dissertation, South China Agricultural University, Guangzhou. |
[ 洪文君 (2016). 两种石灰岩适生树种耐旱和钙适应性机理研究. 硕士学位论文, 华南农业大学, 广州.] | |
[12] | Huang YF, Huang YY, Chen GF, Liu YX, Pan LP, Xiong LM (2017). Investigation and evaluation of soil nutrients in pitaya orchard in Guangxi. Southwest China Journal of Agricultural Sciences, 30, 2035-2040. |
[ 黄雁飞, 黄玉溢, 陈桂芬, 刘永贤, 潘丽萍, 熊柳梅 (2017). 广西主要火龙果园土壤养分调查及评价. 西南农业学报, 30, 2035-2040.] | |
[13] | Islam MN, Islam S, Kawasaki M (2018). Evaluation of calcium regulating role of calcium oxalate crystals in eddo corms in hydroponic solution containing calcium at different concentrations. Asian Research Journal of Agriculture, 10(2), 1-12. |
[14] |
Islam MN, Kawasaki M (2015). Evaluation of calcium regulating roles of guttation and calcium oxalate crystals in leaf blades and petioles of hydroponically grown eddo. Plant Production Science, 18(1), 11-21.
DOI URL |
[15] | Ji FT, Li N, Deng X (2009). Calcium contents and high calcium adaptation of plants in karst areas of China. Chinese Journal of Plant Ecology, 33, 926-935. |
[ 姬飞腾, 李楠, 邓馨 (2009). 喀斯特地区植物钙含量特征与高钙适应方式分析. 植物生态学报, 33, 926-935.]
DOI |
|
[16] | Jing YR (2017). Common Plants and Their High Calcium Adaptation in Rocky Desertification Area Southwestern Hunan. Master degree dissertation, Central South University of Forestry & Technology, Changsha. |
[ 景宜然 (2017). 湘西南石漠化地区常见植物及其对土壤高钙适应方式分析. 硕士学位论文, 中南林业科技大学, 长沙.] | |
[17] |
Lersten NR, Horner HT (2008). Subepidermal idioblasts and crystal macropattern in leaves of Ticodendron (Ticodendraceae). Plant Systematics and Evolution, 276, 255-260.
DOI URL |
[18] | Li HP (2009). Plant Microscopic Techniques. 2nd ed. Science Press, Beijing. 85-90. |
[ 李和平 (2009). 植物显微技术. 2版. 科学出版社, 北京. 85-90.] | |
[19] |
Li Q, Yu LJ, Deng Y, Li W, Li MT, Cao JH (2007). Leaf epidermal characters of Lonicera japonica and Lonicera confuse and their ecology adaptation. Journal of Forestry Research, 18, 103-108.
DOI URL |
[20] | Li XL, Zhang WJ, Lu JW, Wang LJ (2012). Calcium oxalate biomineralization in plants. Chinese Science Bulletin, 57, 2443-2455. |
[ 李秀丽, 张文君, 鲁剑巍, 王荔军 (2012). 植物体内草酸钙的生物矿化. 科学通报, 57, 2443-2455.] | |
[21] |
Li XX, Zhang DZ, Lynch-Holm VJ, Okita TW, Franceschi VR (2003). Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiology, 133, 549-559.
PMID |
[22] |
Luo XQ, Wang CY, Yang HY, Liao XR (2012). Studies on adaptive mechanisms of karst dominant plant species to drought and high calcium stress. Chinese Agricultural Science Bulletin, 28(16), 1-5.
DOI |
[ 罗绪强, 王程媛, 杨鸿雁, 廖昕荣 (2012). 喀斯特优势植物种干旱和高钙适应性机制研究进展. 中国农学通报, 28(16), 1-5.] | |
[23] |
Mazen AMA (2004). Calcium oxalate deposits in leaves of Corchorus olitorius as related to accumulation of toxic metals. Russian Journal of Plant Physiology, 51, 281-285.
DOI URL |
[24] | Ohat Y, Yamamoto K, Deguchi M (1970). Chemical fractionation of calcium in the fresh rice leaf blade and influences of deficiency or oversupply of calcium and age of leaf on the content of each calcium fraction: chemical fractionation of calcium in some plant species (Part 1). Journal of the Science of Soil and Manure, 41, 19-26. |
[25] |
Qi QW, Hao Z, Tao JJ, Kang M (2013). Diversity of calcium speciation in leaves of Primulina species (Gesneriaceae). Biodiversity Science, 21, 715-722.
DOI URL |
[ 齐清文, 郝转, 陶俊杰, 康明 (2013). 报春苣苔属植物钙形态多样性. 生物多样性, 21, 715-722.]
DOI |
|
[26] | Tang SB, Zhang LL, Kuang YW, Yan JH, Chen FL (2017). Leaf construction costs of 34 dominant species in karst forest, Guizhou. Earth and Environment, 45(3), 18-24. |
[ 汤松波, 张玲玲, 旷远文, 闫俊华, 陈丰林 (2017). 贵州喀斯特森林34个优势种叶片构建成本特征. 地球与环境, 45(3), 18-24.] | |
[27] | Tu YL (1995). Analysis of flora and ecological characteristics of karst scrubs in Guizhou Province. Journal of Guizhou Normal University (Natural Science), 13(3), 1-8. |
[ 屠玉麟 (1995). 贵州喀斯特灌丛区系与生态特征分析. 贵州师范大学学报(自然科学版), 13(3), 1-8.] | |
[28] | Wang CM, Yi Y (2014). Physiological activity and calcium content of calciphile, ubiquists and calcifuge under nature environment. Hubei Agricultural Sciences, 53, 3840-3844. |
[ 王传明, 乙引 (2014). 自然生长下喜钙植物、随遇植物和嫌钙植物生理活性特征及钙含量特征的研究. 湖北农业科学, 53, 3840-3844.] | |
[29] | Wang CY, Wang SJ, Rong L, Luo XQ (2011). Analyzing about characteristics of calcium content and mechanisms of high calcium adaptation of common pteridophyte in Maolan karst area of China. Chinese Journal of Plant Ecology, 35, 1061-1069. |
[ 王程媛, 王世杰, 容丽, 罗绪强 (2011). 茂兰喀斯特地区常见蕨类植物的钙含量特征及高钙适应方式分析. 植物生态学报, 35, 1061-1069.]
DOI |
|
[30] | Wang GY, Qu HY, Cai LG, Ding YN, Wei J (2018). Research progress on mechanism of synthesis and degradation and function of calcium oxalate crystals in plants. Chinese Traditional and Herbal Drugs, 49, 1710-1715. |
[ 王光野, 曲红岩, 蔡立格, 丁亦男, 魏健 (2018). 植物草酸钙晶体合成、降解机制及功能研究进展. 中草药, 49, 1710-1715.] | |
[31] | Wang JN, Feng HJ, Li BQ, Fang K, Shi JM (2018). Distribution, transportation and accumulation of mineral elements in a rock-soil-plant system of Phyllostachys glaucain limestone mountains. Carsologica Sinica, 37, 770-776. |
[ 王江南, 冯火炬, 李百球, 方楷, 施建敏(2018). 石灰岩山地淡竹林“岩石-土壤-植物”的元素分布与迁移积聚特征. 中国岩溶, 37, 770-776.] | |
[32] | Wei SX, Huang LN, Xie ZS, Li ZY, Lin MX, Luo SR, Chen YY (2013). Analysis for soil fertility and recommendations for fertilization of main aged banana gardens in Zhangzhou. Chinese Journal of Tropical Crops, 34, 2336-2341. |
[ 魏守兴, 黄丽娜, 谢子四, 李志阳, 林敏霞, 罗石荣, 陈业渊 (2013). 漳州主要长期蕉园土壤肥力分析与施肥建议. 热带作物学报, 34, 2336-2341.] | |
[33] | Wei ZJ, Zhang M, Wang C, Zhang XJ, Zeng JH, Chen T (2019). Macroscopic and microscopic characteristics of Urtica fissa herb. Lishizhen Medicine and Materia Medica Research, 30, 1401-1403. |
[ 卫子皎, 张敏, 王纯, 张小佳, 曾建红, 陈涛 (2019). 荨麻的性状和显微鉴别研究. 时珍国医国药, 30, 1401-1403.] | |
[34] |
White PJ, Broadley MR (2003). Calcium in plants. Annals of Botany, 92, 487-511.
DOI PMID |
[35] |
Wu G, Fu CH, Huang YW, Li W, Yu LJ, Li MT (2011). Calcium salt excreted by stoma and its biomineralization in Lonicera confusa under a calcium-rich environment. Chinese Bulletin of Botany, 46, 658-664.
DOI URL |
[ 吴耿, 付春华, 黄永伟, 李为, 余龙江, 栗茂腾 (2011). 岩溶环境下华南忍冬气孔泌钙及其生物矿化. 植物学通报, 46, 658-664.] | |
[36] | Xu JJ, Ci HC, He XD, Xue PP, Zhao XL, Guo JT, Gao YB (2012). Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin. Chinese Journal of Applied Ecology, 23, 1247-1253. |
[ 徐静静, 慈华聪, 何兴东, 薛苹苹, 赵雪莱, 郭健潭, 高玉葆 (2012). 天津盐渍化生境54种植物钙晶体与钙组分特征. 应用生态学报, 23, 1247-1253.] | |
[37] | Yang HR, Fan WG (2022). Effects of different calcium supply levels on growth, mineral element absorption and related physiological and biochemical characteristics of Rosa roxburghii seedlings. Journal of Fruit Science, 39, 1891-1902. |
[ 杨婳若, 樊卫国 (2022). 不同供钙水平对刺梨苗生长、矿质元素吸收及相关生理生化特性的影响. 果树学报, 39, 1891-1902.] | |
[38] | Yang WH, Feng BH, Wei WX (2018). Survey of soil fertility and fertilizer recommendation in the main banana plantations in Nanning. Chinese Journal of Tropical Agriculture, 38(9), 6-13. |
[ 杨文慧, 封碧红, 韦文幸 (2018). 南宁主要香蕉种植基地土壤肥力调查与施肥建议. 热带农业科学, 38(9), 6-13.] | |
[39] | Zhang FS (1993). Environmental Stress and Plant Nutrition. Agricultural Press, Beijing. 369-381. |
[ 张福锁 (1993). 环境胁迫与植物营养. 农业出版社, 北京. 369-381.] | |
[40] | Zhang MJ, Wu Q, Wang LX (2021). Effects of calcium nitrate stress on physiological characteristics of tomato seedlings. Northern Horticulture, (23), 52-56. |
[ 张妙娟, 吴琼, 王丽霞 (2021). 硝酸钙胁迫对番茄幼苗生理特性的影响. 北方园艺, (23), 52-56.] | |
[41] | Zhou YC (1997). A study on the part plants’ main nutrient elements content of Guizhou karst region. Journal of Guizhou Agriculture College, 16(1), 11-16. |
[ 周运超 (1997). 贵州喀斯特植被主要营养元素含量分析. 贵州农学院学报, 16(1), 11-16.] |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn