Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (12): 1131-1144.DOI: 10.17521/cjpe.2018.0231
Special Issue: 生态系统碳水能量通量
• Research Articles • Next Articles
LI Xu-Hua,SUN Osbert Jianxin()
Received:
2018-09-18
Revised:
2018-12-06
Online:
2018-12-20
Published:
2019-04-04
Contact:
Osbert Jianxin SUN
Supported by:
LI Xu-Hua, SUN Osbert Jianxin. Testing parameter sensitivities and uncertainty analysis of Biome-BGC model in simulating carbon and water fluxes in broadleaved-Korean pine forests[J]. Chin J Plant Ecol, 2018, 42(12): 1131-1144.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0231
参数 Parameter | 符号 Symbol | 红松基 准值 Basic value of Korean pine | 阔叶树 基准值 Basic value of broadleaf species | 单位 Unit | 来源 Source |
---|---|---|---|---|---|
转移生长占生长季的比例 Transfer growth period | Tt | 0.3 | 0.2 | - | Biome-BGC V4.2 |
凋落过程占生长季的比例 Litterfall period | LFG | 0.3 | 0.2 | - | Biome-BGC V4.2 |
叶片与细根周转率 Annual leaf and fine root turnover fraction | LFRT | 0.32 | 1.0 | a-1 | |
活立木周转率 Annual live wood turnover fraction | LWT | 0.7 | 0.7 | a-1 | Biome-BGC V4.2 |
整株植物死亡率 Annual whole-plant mortality fraction | WPM | 0.009 0 | 0.021 3 | a-1 | |
火灾死亡率 Annual fire mortality fraction | FM | 0 | 0 | a-1 | Set by us |
细根与叶片碳分配比 New fine root C: leaf C | FRC:LC | 1.2 | 0.9 | - | |
新茎与新叶碳分配比 New stem C: leaf C | SC:LC | 1.4 | 2.4 | - | |
活立木与所有木质组织碳分配比 New live wood C: total wood C | LWC:TWC | 0.379 | 0.1 | - | |
粗根与新茎碳分配比 New coarse root C: stem C | CRC:SC | 0.29 | 0.23 | - | |
当前生长比例 Current growth proportion | CGP | 0.5 | 0.5 | - | Biome-BGC V4.2 |
叶片碳氮比 C:N of leaves | C:Nleaf | 34.30 | 17.55 | kg·kg-1 | Measured by us |
叶片凋落物碳氮比 C:N of falling leaf litter | C:Nlitter | 96.5 | 41.1 | kg·kg-1 | |
细根碳氮比 C:N of ?ne roots | C:Nfr | 56.4 | 47.4 | kg·kg-1 | |
活立木碳氮比 C:N of live wood | C:Nlw | 97.4 | 97.05 | kg·kg-1 | |
死立木碳氮比 C:N of dead wood | C:Ndw | 398 | 212 | kg·kg-1 | |
叶片凋落物易分解物质所占比 Leaf litter labile proportion | Llab | 0.45 | 0.53 | - | |
叶片凋落物纤维素所占比 Leaf litter cellulose proportion | Lcel | 0.25 | 0.22 | - | |
叶片凋落物木质素所占比 Leaf litter lignin proportion | Llig | 0.30 | 0.25 | - | |
细根中易分解物质所占比 Fine root labile proportion | FRlab | 0.34 | 0.30 | - | Biome-BGC V4.2 |
细根中纤维素所占比 Fine root cellulose proportion | FRcel | 0.44 | 0.45 | - | Biome-BGC V4.2 |
细根中木质素所占比 Fine root lignin proportion | FRlig | 0.22 | 0.25 | - | Biome-BGC V4.2 |
死立木中纤维素所占比 Dead wood cellulose proportion | DWcel | 0.73 | 0.76 | - | |
死立木中木质素所占比 Dead wood lignin proportion | DWlig | 0.27 | 0.24 | - | |
冠层截留系数 Water interception coef?cient | Wint | 0.045 | 0.033 | LAI-1·d-1 | |
冠层消光系数 Light extinction coef?cient | k | 0.50 | 0.58 | - | |
所有叶面积与投影叶面积之比 Ratio of all sided to projected leaf area | LAIall:proj | 2.6 | 2.0 | - | |
冠层平均比叶面积 Average speci?c leaf area | SLA | 16.4 | 54.2 | m2·kg-1 | Measured by us |
阴叶与阳叶比叶面积比 Ratio of shade SLA : sunlit SLA | SLAshd:sun | 2 | 2 | - | |
Rubisco酶中叶氮含量 Fraction of leaf N in Rubisco | FLNR | 0.080 | 0.075 | - | |
最大气孔导度 Maximum stomatal conductance | Gsmax | 0.006 0 | 0.006 5 | m·s-1 | |
表皮导度 Cuticular conductance | Gcut | 0.000 06 | 0.000 01 | m·s-1 | |
边界层导度 Boundary layer conductance | Gbl | 0.09 | 0.01 | m·s-1 | |
气孔开始减小时叶片水势 Leaf water potential : start of gs reduction | LWPi | -0.65 | -0.34 | MPa | |
气孔停止减小时叶片水势 Leaf water potential : completion of gs reduction | LWPf | -2.5 | -2.2 | MPa | |
气孔开始减小时饱和水汽压差 Vapor pressure deficit : start of gs reduction | VPDi | 610 | 1 100 | Pa | |
气孔停止减小时饱和水汽压差 Vapor pressure deficit : completion of gs reduction | VPDf | 3 100 | 3 600 | Pa |
Table 1 Parameterization for Korean pine (PK) and broadleaved species (DB) ecophysiological parameters
参数 Parameter | 符号 Symbol | 红松基 准值 Basic value of Korean pine | 阔叶树 基准值 Basic value of broadleaf species | 单位 Unit | 来源 Source |
---|---|---|---|---|---|
转移生长占生长季的比例 Transfer growth period | Tt | 0.3 | 0.2 | - | Biome-BGC V4.2 |
凋落过程占生长季的比例 Litterfall period | LFG | 0.3 | 0.2 | - | Biome-BGC V4.2 |
叶片与细根周转率 Annual leaf and fine root turnover fraction | LFRT | 0.32 | 1.0 | a-1 | |
活立木周转率 Annual live wood turnover fraction | LWT | 0.7 | 0.7 | a-1 | Biome-BGC V4.2 |
整株植物死亡率 Annual whole-plant mortality fraction | WPM | 0.009 0 | 0.021 3 | a-1 | |
火灾死亡率 Annual fire mortality fraction | FM | 0 | 0 | a-1 | Set by us |
细根与叶片碳分配比 New fine root C: leaf C | FRC:LC | 1.2 | 0.9 | - | |
新茎与新叶碳分配比 New stem C: leaf C | SC:LC | 1.4 | 2.4 | - | |
活立木与所有木质组织碳分配比 New live wood C: total wood C | LWC:TWC | 0.379 | 0.1 | - | |
粗根与新茎碳分配比 New coarse root C: stem C | CRC:SC | 0.29 | 0.23 | - | |
当前生长比例 Current growth proportion | CGP | 0.5 | 0.5 | - | Biome-BGC V4.2 |
叶片碳氮比 C:N of leaves | C:Nleaf | 34.30 | 17.55 | kg·kg-1 | Measured by us |
叶片凋落物碳氮比 C:N of falling leaf litter | C:Nlitter | 96.5 | 41.1 | kg·kg-1 | |
细根碳氮比 C:N of ?ne roots | C:Nfr | 56.4 | 47.4 | kg·kg-1 | |
活立木碳氮比 C:N of live wood | C:Nlw | 97.4 | 97.05 | kg·kg-1 | |
死立木碳氮比 C:N of dead wood | C:Ndw | 398 | 212 | kg·kg-1 | |
叶片凋落物易分解物质所占比 Leaf litter labile proportion | Llab | 0.45 | 0.53 | - | |
叶片凋落物纤维素所占比 Leaf litter cellulose proportion | Lcel | 0.25 | 0.22 | - | |
叶片凋落物木质素所占比 Leaf litter lignin proportion | Llig | 0.30 | 0.25 | - | |
细根中易分解物质所占比 Fine root labile proportion | FRlab | 0.34 | 0.30 | - | Biome-BGC V4.2 |
细根中纤维素所占比 Fine root cellulose proportion | FRcel | 0.44 | 0.45 | - | Biome-BGC V4.2 |
细根中木质素所占比 Fine root lignin proportion | FRlig | 0.22 | 0.25 | - | Biome-BGC V4.2 |
死立木中纤维素所占比 Dead wood cellulose proportion | DWcel | 0.73 | 0.76 | - | |
死立木中木质素所占比 Dead wood lignin proportion | DWlig | 0.27 | 0.24 | - | |
冠层截留系数 Water interception coef?cient | Wint | 0.045 | 0.033 | LAI-1·d-1 | |
冠层消光系数 Light extinction coef?cient | k | 0.50 | 0.58 | - | |
所有叶面积与投影叶面积之比 Ratio of all sided to projected leaf area | LAIall:proj | 2.6 | 2.0 | - | |
冠层平均比叶面积 Average speci?c leaf area | SLA | 16.4 | 54.2 | m2·kg-1 | Measured by us |
阴叶与阳叶比叶面积比 Ratio of shade SLA : sunlit SLA | SLAshd:sun | 2 | 2 | - | |
Rubisco酶中叶氮含量 Fraction of leaf N in Rubisco | FLNR | 0.080 | 0.075 | - | |
最大气孔导度 Maximum stomatal conductance | Gsmax | 0.006 0 | 0.006 5 | m·s-1 | |
表皮导度 Cuticular conductance | Gcut | 0.000 06 | 0.000 01 | m·s-1 | |
边界层导度 Boundary layer conductance | Gbl | 0.09 | 0.01 | m·s-1 | |
气孔开始减小时叶片水势 Leaf water potential : start of gs reduction | LWPi | -0.65 | -0.34 | MPa | |
气孔停止减小时叶片水势 Leaf water potential : completion of gs reduction | LWPf | -2.5 | -2.2 | MPa | |
气孔开始减小时饱和水汽压差 Vapor pressure deficit : start of gs reduction | VPDi | 610 | 1 100 | Pa | |
气孔停止减小时饱和水汽压差 Vapor pressure deficit : completion of gs reduction | VPDf | 3 100 | 3 600 | Pa |
参数符号 Parameter symbol | 红松取值范围 Value range of Korean pine | 阔叶树取值范围 Value range of broadleaved species | 单位 Unit |
---|---|---|---|
LFRT | [0.256, 0.384] | a-1 | |
LWT | [0.56, 0.84] | [0.56, 0.84] | a-1 |
WPM | [0.0072, 0.0108] | [0.017, 0.0256] | a-1 |
FRC:LC | [0.96, 1.44] | [0.72, 1.08] | - |
SC:LC | [1.12, 1.68] | [1.92, 2.88] | - |
LWC:TWC | [0.303, 0.455] | [0.08, 0.12] | - |
CRC:SC | [0.232, 0.348] | [0.184, 0.276] | - |
CGP | [0.4, 0.6] | [0.4, 0.6] | - |
C:Nleaf | [27.44, 41.16] | [14.04, 21.06] | kg·kg-1 |
C:Nlitter | [77.2, 115.8] | [32.88, 49.32] | kg·kg-1 |
C:Nfr | [45.12, 67.68] | [37.92, 56.88] | kg·kg-1 |
C:Nlw | [77.92, 116.88] | [77.64, 116.46] | kg·kg-1 |
C:Ndw | [318.4, 477.6] | [169.6, 254.4] | kg·kg-1 |
Lcel | [0.2, 0.3] | [0.176, 0.264] | - |
Llig | [0.24, 0.36] | [0.2, 0.3] | - |
FRcel | [0.352, 0.528] | [0.36, 0.54] | - |
FRlig | [0.176, 0.264] | [0.2, 0.3] | - |
DWlig | [0.216, 0.324] | [0.192, 0.288] | - |
Wint | [0.036, 0.054] | [0.0264, 0.0396] | LAI-1·d-1 |
k | [0.4, 0.6] | [0.464, 0.696] | - |
LAIall:proj | [2.08, 3.12] | [1.6, 2.4] | - |
SLA | [13.12, 19.68] | [43.36, 65.04] | m2·kg-1 |
SLAshd:sun | [1.6, 2.4] | [1.6, 2.4] | - |
FLNR | [0.064, 0.096] | [0.06, 0.09] | - |
Gsmax | [0.0048, 0.0072] | [0.0052, 0.0078] | m·s-1 |
Gcut | [0.000048, 0.000072] | [0.000008, 0.000012] | m·s-1 |
Gbl | [0.072, 0.108] | [0.008, 0.012] | m·s-1 |
LWPi | [-0.78, -0.52] | [-0.408, -0.272] | MPa |
LWPf | [-3, -2] | [-2.64, -1.76] | MPa |
VPDi | [488, 732] | [880, 1320] | Pa |
VPDf | [2480, 3720] | [2880, 4320] | Pa |
Table 2 Value range of the crucial ecophysiological parameters of Korean pine and broadleaved species used in sensitivity analysis
参数符号 Parameter symbol | 红松取值范围 Value range of Korean pine | 阔叶树取值范围 Value range of broadleaved species | 单位 Unit |
---|---|---|---|
LFRT | [0.256, 0.384] | a-1 | |
LWT | [0.56, 0.84] | [0.56, 0.84] | a-1 |
WPM | [0.0072, 0.0108] | [0.017, 0.0256] | a-1 |
FRC:LC | [0.96, 1.44] | [0.72, 1.08] | - |
SC:LC | [1.12, 1.68] | [1.92, 2.88] | - |
LWC:TWC | [0.303, 0.455] | [0.08, 0.12] | - |
CRC:SC | [0.232, 0.348] | [0.184, 0.276] | - |
CGP | [0.4, 0.6] | [0.4, 0.6] | - |
C:Nleaf | [27.44, 41.16] | [14.04, 21.06] | kg·kg-1 |
C:Nlitter | [77.2, 115.8] | [32.88, 49.32] | kg·kg-1 |
C:Nfr | [45.12, 67.68] | [37.92, 56.88] | kg·kg-1 |
C:Nlw | [77.92, 116.88] | [77.64, 116.46] | kg·kg-1 |
C:Ndw | [318.4, 477.6] | [169.6, 254.4] | kg·kg-1 |
Lcel | [0.2, 0.3] | [0.176, 0.264] | - |
Llig | [0.24, 0.36] | [0.2, 0.3] | - |
FRcel | [0.352, 0.528] | [0.36, 0.54] | - |
FRlig | [0.176, 0.264] | [0.2, 0.3] | - |
DWlig | [0.216, 0.324] | [0.192, 0.288] | - |
Wint | [0.036, 0.054] | [0.0264, 0.0396] | LAI-1·d-1 |
k | [0.4, 0.6] | [0.464, 0.696] | - |
LAIall:proj | [2.08, 3.12] | [1.6, 2.4] | - |
SLA | [13.12, 19.68] | [43.36, 65.04] | m2·kg-1 |
SLAshd:sun | [1.6, 2.4] | [1.6, 2.4] | - |
FLNR | [0.064, 0.096] | [0.06, 0.09] | - |
Gsmax | [0.0048, 0.0072] | [0.0052, 0.0078] | m·s-1 |
Gcut | [0.000048, 0.000072] | [0.000008, 0.000012] | m·s-1 |
Gbl | [0.072, 0.108] | [0.008, 0.012] | m·s-1 |
LWPi | [-0.78, -0.52] | [-0.408, -0.272] | MPa |
LWPf | [-3, -2] | [-2.64, -1.76] | MPa |
VPDi | [488, 732] | [880, 1320] | Pa |
VPDf | [2480, 3720] | [2880, 4320] | Pa |
Fig. 1 Comparison of modeled net primary productivity (NPP) with tree-ring width index (RWI) during the period 1958-2015. A, Time series of modeled NPP and RWI. B, Correlations between modeled NPP and RWI.
Fig. 2 Comparisons of modeled net primary productivity (NPP) and evapotranspiration (ET) with that of MODIS NPP and ET (mean + SD), respectively. A, NPP. B, ET. Different lowercase letters indicate significant difference between modeled values and MODIS values.
红松 Korean pine | 阔叶树 Broadleaved species | |||
---|---|---|---|---|
NPP (g C·m-2·a-1) | ET (mm·a-1) | NPP (g C·m-2·a-1) | ET (mm·a-1) | |
平均值 Mean | 498.4 | 677.6 | 656.1 | 678.0 |
标准差 SD | 76.9 | 0.013 | 63.5 | 0.19 |
变异系数 CV | 15.4 | 0.002 | 9.7 | 0.03 |
Table 3 Summary statistics of the uncertainty analysis in simulated net primary productivity (NPP) and evapotranspiration (ET)
红松 Korean pine | 阔叶树 Broadleaved species | |||
---|---|---|---|---|
NPP (g C·m-2·a-1) | ET (mm·a-1) | NPP (g C·m-2·a-1) | ET (mm·a-1) | |
平均值 Mean | 498.4 | 677.6 | 656.1 | 678.0 |
标准差 SD | 76.9 | 0.013 | 63.5 | 0.19 |
变异系数 CV | 15.4 | 0.002 | 9.7 | 0.03 |
Fig. 5 Sensitivity analysis of the ecophysiological parameters of Korean pine to annual net primary productivity (NPP)(A) and evapotranspiration (ET)(B). See Table 1 for ecophysiologcal parameter symbols.
Fig. 6 Sensitivity analysis of the ecophysiological parameters of broadleaved trees to annual net primary productivity (NPP)(A) and evapotranspiration (ET)(B). See Table 1 for ecophysiologcal parameter symbols.
参数符号 Parameter symbol | NPP | 决定系数R2 Determination coefficient | 参数符号 Parameter symbol | ET | 决定系数R2 Determination coefficient | ||||
---|---|---|---|---|---|---|---|---|---|
简单相关系数 Correlation coeffficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 简单相关系数Correlation coeffficient | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficient | ||||
LAIall:proj | -0.459 | -0.474 | 0.015 | 0.901 | SLA | 0.210 | 0.168 | 0.041 | 0.481 |
C:Nfr | 0.252 | 0.204 | 0.047 | FRC:LC | -0.113 | -0.117 | 0.004 | ||
Wint | -0.513 | -0.476 | -0.038 | SC:LC | -0.051 | 0.029 | -0.080 | ||
LFRT | 0.422 | 0.493 | -0.071 | C:Nleaf | -0.018 | -0.086 | 0.069 | ||
FLNR | 0.117 | 0.065 | 0.052 | Gcut | 0.141 | 0.204 | -0.063 | ||
SLA | -0.389 | -0.446 | 0.057 | Gsmax | -0.370 | -0.359 | -0.011 | ||
C:Nleaf | 0.035 | -0.039 | 0.074 | k | 0.429 | 0.421 | 0.009 | ||
WPM | 0.008 | -0.045 | 0.052 | ||||||
C:Nfr | 0.308 | 0.229 | 0.078 | ||||||
Gbl | -0.128 | -0.064 | -0.064 | ||||||
C:Nlitter | 0.114 | 0.103 | 0.011 |
Table 4 The path coefficients of sensitive parameters on net primary productivity (NPP) and evapotranspiration (ET) of Korean pine
参数符号 Parameter symbol | NPP | 决定系数R2 Determination coefficient | 参数符号 Parameter symbol | ET | 决定系数R2 Determination coefficient | ||||
---|---|---|---|---|---|---|---|---|---|
简单相关系数 Correlation coeffficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 简单相关系数Correlation coeffficient | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficient | ||||
LAIall:proj | -0.459 | -0.474 | 0.015 | 0.901 | SLA | 0.210 | 0.168 | 0.041 | 0.481 |
C:Nfr | 0.252 | 0.204 | 0.047 | FRC:LC | -0.113 | -0.117 | 0.004 | ||
Wint | -0.513 | -0.476 | -0.038 | SC:LC | -0.051 | 0.029 | -0.080 | ||
LFRT | 0.422 | 0.493 | -0.071 | C:Nleaf | -0.018 | -0.086 | 0.069 | ||
FLNR | 0.117 | 0.065 | 0.052 | Gcut | 0.141 | 0.204 | -0.063 | ||
SLA | -0.389 | -0.446 | 0.057 | Gsmax | -0.370 | -0.359 | -0.011 | ||
C:Nleaf | 0.035 | -0.039 | 0.074 | k | 0.429 | 0.421 | 0.009 | ||
WPM | 0.008 | -0.045 | 0.052 | ||||||
C:Nfr | 0.308 | 0.229 | 0.078 | ||||||
Gbl | -0.128 | -0.064 | -0.064 | ||||||
C:Nlitter | 0.114 | 0.103 | 0.011 |
参数符号 Parameter symbol | NPP | 决定系数R2 Determination coefficient | 参数符号 Parameter symbol | ET | 决定系数R2 Determination coefficient | ||||
---|---|---|---|---|---|---|---|---|---|
简单相关系数 Correlation coeffficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 简单相关系数 Correlation coeffficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | ||||
C:Nleaf | -0.385 | -0.436 | 0.052 | 0.749 | CGP | -0.367 | -0.300 | -0.067 | 0.706 |
SLA | -0.526 | -0.483 | -0.043 | SLA | 0.416 | 0.409 | 0.007 | ||
Gsmax | -0.334 | -0.259 | -0.075 | FRC:LC | -0.288 | -0.202 | -0.086 | ||
C:Nlitter | 0.362 | 0.306 | 0.055 | SC:LC | -0.409 | -0.321 | -0.087 | ||
C:Nfr | -0.175 | -0.117 | -0.058 | Gbl | 0.388 | 0.329 | 0.059 | ||
SC:LC | 0.215 | 0.195 | 0.020 | FLNR | 0.215 | 0.179 | 0.036 | ||
Wint | -0.333 | -0.203 | -0.130 | LWPf | -0.271 | -0.257 | -0.014 |
Table 5 The path coefficients of sensitive parameters on net primary productivity (NPP) and evapotranspiration (ET) of broadleaved trees
参数符号 Parameter symbol | NPP | 决定系数R2 Determination coefficient | 参数符号 Parameter symbol | ET | 决定系数R2 Determination coefficient | ||||
---|---|---|---|---|---|---|---|---|---|
简单相关系数 Correlation coeffficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 简单相关系数 Correlation coeffficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | ||||
C:Nleaf | -0.385 | -0.436 | 0.052 | 0.749 | CGP | -0.367 | -0.300 | -0.067 | 0.706 |
SLA | -0.526 | -0.483 | -0.043 | SLA | 0.416 | 0.409 | 0.007 | ||
Gsmax | -0.334 | -0.259 | -0.075 | FRC:LC | -0.288 | -0.202 | -0.086 | ||
C:Nlitter | 0.362 | 0.306 | 0.055 | SC:LC | -0.409 | -0.321 | -0.087 | ||
C:Nfr | -0.175 | -0.117 | -0.058 | Gbl | 0.388 | 0.329 | 0.059 | ||
SC:LC | 0.215 | 0.195 | 0.020 | FLNR | 0.215 | 0.179 | 0.036 | ||
Wint | -0.333 | -0.203 | -0.130 | LWPf | -0.271 | -0.257 | -0.014 |
[1] |
Cukier RI, Levine HB, Shuler KE ( 1978). Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics, 26, 1-42.
DOI URL |
[2] |
He LH, Wang HY, Lei XD ( 2016). Parameter sensitivity of simulating net primary productivity ofLarix olgensis forest based on BIOME-BGC model. Chinese Journal of Applied Ecology, 27, 412-420.
DOI URL |
[ 何丽鸿, 王海燕, 雷相东 ( 2016). 基于BIOME-BGC模型的长白落叶松林净初级生产力模拟参数敏感性. 应用生态学报, 27, 412-420.]
DOI URL |
|
[3] | Houborg R, Cescatti A, Migliavacca M ( 2012). Constraining Model Simulations of GPP Using Satellite Retrieved Leaf Chlorophyll. IEEE, Munich, Germany. 6455-6458. |
[4] | Jiang YF ( 2013). Litter Decomposition and Function Role of Soil Fauna in Decomposition in a Pinus Koraiensis Mixed Broad-leaved Forest of Changbai Mountains. PhD dissertation, Northeast Normal University, Changchun. |
[ 蒋云峰 ( 2013). 长白山针阔混交林主要凋落物分解及土壤动物的作用. 博士学位论文, 东北师范大学, 长春.] | |
[5] | Kang MC ( 2016). Energy Partitioning and Modelling of Carbon and Water Fluxes of a Poplar Plantation Ecosystem in Northern China. PhD dissertation, Beijing Forestry University, Beijing. |
[ 康满春 ( 2016). 北方典型杨树人工林能量分配与碳水通量模拟. 博士学位论文, 北京林业大学, 北京.] | |
[6] |
Kang S, Kimball JS, Running SW ( 2006). Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Science of the Total Environment, 362, 85-102.
DOI URL |
[7] |
Kumar M, Raghubanshi AS ( 2012). Sensitivity analysis of Biome-BGC model for dry tropical forests of Vindhyan highlands, India. Remote Sensing and Spatial Information Sciences, 38, 129-133.
DOI URL |
[8] | Li F ( 1984). A research of the bioproductivity of Korean pine broadleaf forest and its secondary forest of poplar-birch. Chinese Journal of Ecology, ( 2), 8-12. |
[ 李飞 ( 1984). 红松阔叶林及其次生杨桦林生物生产力的研究. 生态学杂志, ( 2), 8-12.] | |
[9] | Li XF, Han SJ, Hu YL, Zhao YT ( 2008). Decomposition of litter organic matter and its relations to C, N and P release in secondary conifer and broadleaf mixed forest in Changbai Mountains. Chinese Journal of Applied Ecology, 19, 245-251. |
[ 李雪峰, 韩士杰, 胡艳玲, 赵玉涛 ( 2008). 长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系. 应用生态学报, 19, 245-251.] | |
[10] | Li Y, Huang CL, Lu L ( 2014). Global sensitivity analysis of SEBS model parameters based on EFAST method. Remote Sensing Technology and Application, 29, 719-726. |
[ 李艳, 黄春林, 卢玲 ( 2014). 基于EFAST方法的SEBS模型参数全局敏感性分析. 遥感技术与应用, 29, 719-726.] | |
[11] |
Li YH, Zhou L, Wu J, Zhou WM, Dai LM, Lu ZM, Huang LY ( 2017). Decomposition of mixed leaf litter ofLarix kaempferi plantation in eastern montane region of Liaoning Province. Chinese Journal of Ecology, 36, 3049-3055.
DOI URL |
[ 李英花, 周莉, 吴健, 周旺明, 代力民, 卢正茂, 黄利亚 ( 2017). 辽东落叶松人工混交林凋落物混合分解特征. 生态学杂志, 36, 3049-3055.]
DOI URL |
|
[12] | Li YZ, Zhang TL, Liu QY, Li Y ( 2018). Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example. Chinese Journal of Applied Ecology, 29, 84-92. |
[ 李一哲, 张廷龙, 刘秋雨, 李英 ( 2018). 生态过程模型敏感参数最优取值的时空异质性分析—以BIOME-BGC模型为例. 应用生态学报, 29, 84-92.] | |
[13] |
Liang XY, Liu SR, Wang H, Wang JX ( 2018). Variation of carbon and nitrogen stoichiometry along a chronosequence of natural temperate forest in northeastern China. Journal of Plant Ecology, 11, 339-350.
DOI URL |
[14] |
Liu ZL, Jin GZ, Zhou M ( 2014). Measuring seasonal dynamics of leaf area index in a mixed conifer-broadleaved forest with direct and indirect methods. Chinese Journal of Plant Ecology, 38, 843-856.
DOI URL |
[ 刘志理, 金光泽, 周明 ( 2014). 利用直接法和间接法测定针阔混交林叶面积指数的季节动态. 植物生态学报, 38, 843-856.]
DOI URL |
|
[15] |
Majkowski J, Ridgeway JM, Miller DR ( 1981). Multiplicative sensitivity analysis and its role in development of simulation models. Ecological Modelling, 12, 191-208.
DOI URL |
[16] |
Mao HR, Chen JL, Jin GZ ( 2016). Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest. Journal of Beijing Forestry University, 38(3), 21-31.
DOI URL |
[ 毛宏蕊, 陈金玲, 金光泽 ( 2016). 氮添加对典型阔叶红松林凋落叶分解及养分释放的影响. 北京林业大学学报, 38(3), 21-31.]
DOI URL |
|
[17] | Mei L ( 2006). Fine Root Turnover and Carbon Allocation in Manchurian Ash and Davurian Larch Plantations. PhD dissertation, Northeast Forestry University, Harbin. |
[ 梅莉 ( 2006). 水曲柳落叶松人工林细根周转与碳分配. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[18] |
Miao ZW, Lathrop RG, Xu M, La Puma IP, Clark KL, Hom J, Skowronski N, Tuyl SV ( 2011). Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands. Environmental Modelling and Software, 26, 1112-1122.
DOI URL |
[19] |
Miao ZW, Trevisan M, Capri E, Padovani L, Del Re AAM ( 2004). Uncertainty assessment of the model RICEWQ in northern Italy. Journal of Environmental Quality, 33, 2217-2228.
DOI URL PMID |
[20] |
Qi G, Chen H, Zhou L, Wang XC, Zhou WM, Qi L, Yang YH, Yang FL, Wang QL, Dai LM ( 2016). Carbon stock of larch plantations and its comparison with an old-growth forest in Northeast China. Chinese Geographical Science, 26, 10-21.
DOI URL |
[21] |
Raj R, Hamm NAS, Tol CVD, Stein A ( 2014). Variance-based sensitivity analysis of BIOME-BGC for gross and net primary production. Ecological Modelling, 292, 26-36.
DOI URL |
[22] | Ren QW, Chen YB, Shu XJ ( 2010). Global sensitivity analysis of Xinanjiang model parameters based on Extend FAST method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 49, 127-134. |
[ 任启伟, 陈洋波, 舒晓娟 ( 2010). 基于Extend FAST方法的新安江模型参数全局敏感性分析. 中山大学学报(自然科学版), 49, 127-134.] | |
[23] |
Running SW, Coughlan JC ( 1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42, 125-154.
DOI URL |
[24] |
Saltelli A ( 2002). Sensitivity analysis for importance assessment. Risk Analysis, 22, 580-590.
DOI URL PMID |
[25] |
Sang WG, Li JW ( 1998). Dynamics modeling of Korean pine forest in southern Lesser Xingan Mountains of China. Acta Ecologica Sinica, 18, 38-47.
DOI URL |
[ 桑卫国, 李景文 ( 1998). 小兴安岭南坡红松林动态模拟. 生态学报, 18, 38-47.]
DOI URL |
|
[26] |
Schmid S, Zierl B, Bugmann H ( 2006). Analyzing the carbon dynamics of central European forests: Comparison of Biome-BGC simulations with measurements. Regional Environmental Change, 6, 167-180.
DOI URL |
[27] | Sobol IM ( 1993). Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling Computational Experiments, 1, 407-414. |
[28] |
Su HX, Feng JC, Axmacher JC, Sang WG ( 2015). Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China. Scientific Reports, 5, 9115-9122.
DOI URL PMID |
[29] | Tan JW ( 2017). Study on Parameter Sensitivity and Model Uncertainty Analysis of Crop Model. PhD dissertation, Wuhan University, Wuhan. |
[ 谭君位 ( 2017). 作物模型参数敏感性和不确定性分析方法研究. 博士学位论文, 武汉大学, 武汉.] | |
[30] |
Tatarinov FA, Cienciala E ( 2006). Application of BIOME-BGC model to managed forests: 1. Sensitivity analysis. Forest Ecology and Management, 237, 267-279.
DOI URL |
[31] |
Thornton PE, Law BE, Gholz HL, Kenneth LC, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP ( 2002). Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology, 113, 185-222.
DOI URL |
[32] |
Tian HQ, Chen GS, Liu ML, Zhang C, Sun G, Lu CQ, Xu XF, Ren W, Pan SF, Chappelka A ( 2010). Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007. Forest Ecology and Management, 259, 1311-1327.
DOI URL |
[33] | Wang L, Peng QY, Geng SB ( 2016). Study on tree layer biomass and productivity in forest in Lushuihe Forest Bureau of Changbai Mountains. Research of Soil and Water Conservation, 23, 277-281. |
[ 王亮, 彭琦云, 耿少波 ( 2016). 长白山露水河林区乔木层生物量及生产力研究. 水土保持研究, 23, 277-281.] | |
[34] |
White MA, Thornton PE, Running SW, Nemani RR ( 2000). Parameterization and sensitivity analysis of the BIOME- BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions, 4, 1-84.
DOI URL |
[35] |
Wu YL, Wang XP, Ouyang S, Xu K, Hawkins BA, Sun Osbert JX ( 2017). A test of BIOME-BGC with dendrochronology for forests along the altitudinal gradient of Mt. Changbai in Northeast China. Journal of Plant Ecology, 10, 415-425.
DOI URL |
[36] |
Xing HM, Xiang SY, Xu XG, Chen YJ, Feng HK, Yang GJ, Chen ZX ( 2017). Global sensitivity analysis of AquaCrop crop model parameters based on EFAST method. Scientia Agricultura Sinica, 50, 64-76.
DOI URL |
[ 邢会敏, 相诗尧, 徐新刚, 陈宜金, 冯海宽, 杨贵军, 陈召霞 ( 2017). 基于EFAST方法的AquaCrop作物模型参数全局敏感性分析. 中国农业科学, 50, 64-76.]
DOI URL |
|
[37] | Xu CG, Hu YM, Chang Y, Jiang Y, Li XZ, Bu RC, He HS ( 2004). Sensitivity analysis in ecological modeling. Chinese Journal of Applied Ecology, 15, 1056-1062. |
[ 徐崇刚, 胡远满, 常禹, 姜艳, 李秀珍, 布仁仓, 贺红士 ( 2004). 生态模型的灵敏度分析. 应用生态学报, 15, 1056-1062.] | |
[38] | Yan M ( 2016). Multimodal Simulation and Dynamic Analysis of Forest Carbon Fluxes. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[ 闫敏 ( 2016). 森林生态系统碳通量多模式模拟与动态分析. 博士学位论文, 中国林业科学研究院, 北京.] | |
[39] |
Yan M, Tian X, Li ZY, Chen EX, Wang XF, Han ZT, Sun H ( 2016). Simulation of forest carbon fluxes using model incorporation and data assimilation. Remote Sensing, 8, 567-574.
DOI URL |
[40] | Yao GQ, Chi GQ, Dong ZQ, Guo DW ( 1986). Studies on productiveness of three typies of artificial stand forest of Korean pine in the mountainous areas of Liaoning Province. Journal of Northeast Forestry University, 14(4), 42-47. |
[ 姚国清, 池桂清, 董兆琪, 郭德武 ( 1986). 人工红松林三种林型生产力的研究. 东北林业大学学报, 14(4), 42-47.] | |
[41] |
Yu DP, Zhou WM, Bao Y, Qi L, Zhou L, Dai LM ( 2015). Forest management of Korean pine and broadleaf mixed forest in Northeast China since the implementation of Natural Forest Protection Project. Acta Ecologica Sinica, 35, 10-17.
DOI URL |
[ 于大炮, 周旺明, 包也, 齐麟, 周莉, 代力民 ( 2015). 天保工程实施以来东北阔叶红松林的可持续经营. 生态学报, 35, 10-17.]
DOI URL |
|
[42] |
Zhang JX, Su W ( 2012). Sensitivity analysis of CERES-Wheat model parameters based on EFAST method. Journal of China Agricultural University, 17, 149-154.
DOI URL |
[ 张静潇, 苏伟 ( 2012). 基于EFAST方法的CERES-Wheat作物模型参数敏感性分析. 中国农业大学学报, 17, 149-154.]
DOI URL |
|
[43] |
Zhang L, Yu GR, Gu FX, He HL, Zhang LM, Han SJ ( 2012). Uncertainty analysis of modeled carbon fluxes for a broad-leaved Korean pine mixed forest using a process- based ecosystem model. Journal of Forest Research, 17, 268-282.
DOI URL |
[44] |
Zhang LM, Wang CK ( 2010). Carbon and nitrogen release during decomposition of coarse woody debris for eleven temperate tree species in the eastern mountain region of Northeast China. Chinese Journal of Plant Ecology, 34, 368-374.
DOI URL |
[ 张利敏, 王传宽 ( 2010). 东北东部山区11种温带树种粗木质残体分解与碳氮释放. 植物生态学报, 34, 368-374.]
DOI URL |
|
[45] |
Zhang ZM, Wang XY, Li MT ( 2014). Uncertainty analysis of WASP based on global sensitivity analysis method. China Environmental Science, 34, 1336-1346.
DOI URL |
[ 张质明, 王晓燕, 李明涛 ( 2014). 基于全局敏感性分析方法的WASP模型不确定性分析. 中国环境科学, 34, 1336-1346.]
DOI URL |
|
[46] |
Zheng L, Song SK, Yuan XL, Dong JQ, Li LH ( 2017). Simulation of water and carbon fluxes in a broad-leaved Korean pine forest in Changbai Mountains based on Biome-BGC model and Ensemble Kalman Filter method. Chinese Journal of Ecology, 36, 1752-1760.
DOI URL |
[ 郑磊, 宋世凯, 袁秀亮, 董嘉琪, 李龙辉 ( 2017). 基于Biome-BGC模型和集合卡尔曼滤波方法的阔叶红松林生态系统水碳通量模拟. 生态学杂志, 36, 1752-1760.]
DOI URL |
|
[47] | Zhou CH, Hao ZQ, He HS, Zhou DH ( 2008). Sensitivity of parameters in net primary productivity model of broadleaf- Korean pine mixed forest. Chinese Journal of Applied Ecology, 19, 929-935. |
[ 周春华, 郝占庆, 贺红士, 周丹卉 ( 2008). 阔叶红松林净初级生产力模型参数的敏感性. 应用生态学报, 19, 929-935.] | |
[48] | Zhu J ( 2013). Effects of Nitrogen Addition on Decomposition of Coarse Woody Debris in a Broad Leaved Korean Pine Forest in the Changbai Mountain. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[ 朱江 ( 2013). 施N对长白山阔叶红松林粗木质残体分解的影响. 博士学位论文, 中国科学院大学, 北京.] |
[1] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[2] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[3] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[4] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
[5] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[6] | LI Xin-Hao, TIAN Wen-Dong, LI Run-Dong, JIN Chuan, JIANG Yan, HAO Shao-Rong, JIA Xin, TIAN Yun, ZHA Tian-Shan. Responses of water vapor and heat fluxes to environmental factors in a deciduous broad- leaved forest ecosystem in Beijing [J]. Chin J Plant Ecol, 2021, 45(11): 1191-1202. |
[7] | Chao-Yang FENG, He-Song WANG, Jian-xin SUN. Temporal changes of vegetation water use efficiency and its influencing factors in Northern China [J]. Chin J Plant Ecol, 2018, 42(4): 453-465. |
[8] | Ya-Lin WANG, Rong GONG, Feng-Min WU, Wen-Wu FAN. Temporal and spatial variation characteristics of China shrubland net primary production and its response to climate change from 2001 to 2013 [J]. Chin J Plant Ecol, 2017, 41(9): 925-937. |
[9] | Xiao-Tao HUANG, Ge-Ping LUO. Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang [J]. Chin J Plan Ecolo, 2017, 41(5): 506-518. |
[10] | Qi-Dan WANG, Wen-Xin YANG, Jie-Yu HUANG, Kun XU, Pei WANG. Shrub encroachment effect on the evapotranspiration and its component—A numerical simulation study of a shrub encroachment grassland in Nei Mongol, China [J]. Chin J Plant Ecol, 2017, 41(3): 348-358. |
[11] | MI Zhao-Rong,CHEN Li-Tong,ZHANG Zhen-Hua,HE Jin-Sheng. Alpine grassland water use efficiency based on annual precipitation, growing season precipitation and growing season evapotranspiration [J]. Chin J Plan Ecolo, 2015, 39(7): 649-660. |
[12] | SUN Dian-Chao,LI Yu-Lin,ZHAO Xue-Yong,ZUO Xiao-An,MAO Wei. Effects of enclosure and grazing on carbon and water fluxes of sandy grassland [J]. Chin J Plan Ecolo, 2015, 39(6): 565-576. |
[13] | TAN Zheng-Hong,YU Gui-Rui,ZHOU Guo-Yi,HAN Shi-Jie,HSIA Yue-Joe,MAEDA Takashi,KOSUGI Yoshiko,YAMANOI Katsumi,LI Sheng-Gong,OHTA Takeshi,HIRATA Ryuichi,YASUDA Yukio,NAKANO Takashi,KOMINAMI Yuji,KITAMURA Kenzo,MIZOGUCHI Yasuko,LIAO Zhi-Yong,ZHAO Jun-Fu,YANG Lian-Yan. Microclimate of forests across East Asia biomes: 1. Radiation and energy balance [J]. Chin J Plan Ecolo, 2015, 39(6): 541-553. |
[14] | XIONG Yu-Jiu,QIU Guo-Yu,XIE Fang. Plant species change and water budget in restored grasslands in Taibus Banner, Inner Mongolia, China [J]. Chin J Plant Ecol, 2014, 38(5): 425-439. |
[15] | JIAN Sheng-Qi, ZHAO Chuan-Yan, FANG Shu-Min, YU Kai, MA Wen-Ying. Water storage capacity of the canopy dominated by Caragana korshinskii and Hippophae rhamnoides in hilly and gully region on the Loess Plateau of Northwest China [J]. Chin J Plant Ecol, 2013, 37(1): 45-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn