Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (2): 167-175.DOI: 10.3724/SP.J.1258.2011.00167
• Research Articles • Previous Articles Next Articles
MA Jun1,2, TANG Hai-Ping1,2,*()
Received:
2010-04-14
Accepted:
2010-11-12
Online:
2011-04-14
Published:
2011-01-21
Contact:
TANG Hai-Ping
MA Jun, TANG Hai-Ping. Variations of soil respiration rate and its temperature sensitivity among different land use types in the agro-pastoral ecotone of Inner Mongolia[J]. Chin J Plant Ecol, 2011, 35(2): 167-175.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00167
重要因子 Important factors | 农田样地 Cropland plot | 弃耕样地 Abandoned cultivated plot | 围封样地 Grazing enclosure plot |
---|---|---|---|
地理位置 Geographical position | 42°02′19.9″ N 116°16′49.2″ E | 42°02′19.9″ N 116°16′53.2″ E | 42°02′23.4″ N 116°17′9.4″ E |
植被组成 Vegetation composition | 小麦 Triticum aestivum 荞麦 Fagopyrum tataricum | 冰草 Agropyron cristatum 冷蒿 Artemisia frigida | 克氏针茅 Stipa krylovii 冷蒿 Artemisia frigida |
土壤容重 Soil bulk density (g·cm-3) | 1.34 | 1.50 | 1.46 |
土壤有机质 Soil organic matter (%) | 1.63 | 2.83 | 2.31 |
土地利用历史 Land-use history | 1 year | 9 years | 10 years |
Table 1 Description of study sites
重要因子 Important factors | 农田样地 Cropland plot | 弃耕样地 Abandoned cultivated plot | 围封样地 Grazing enclosure plot |
---|---|---|---|
地理位置 Geographical position | 42°02′19.9″ N 116°16′49.2″ E | 42°02′19.9″ N 116°16′53.2″ E | 42°02′23.4″ N 116°17′9.4″ E |
植被组成 Vegetation composition | 小麦 Triticum aestivum 荞麦 Fagopyrum tataricum | 冰草 Agropyron cristatum 冷蒿 Artemisia frigida | 克氏针茅 Stipa krylovii 冷蒿 Artemisia frigida |
土壤容重 Soil bulk density (g·cm-3) | 1.34 | 1.50 | 1.46 |
土壤有机质 Soil organic matter (%) | 1.63 | 2.83 | 2.31 |
土地利用历史 Land-use history | 1 year | 9 years | 10 years |
土壤深度 Soil depth (cm) | 方程 Equation | R2 | p | |
---|---|---|---|---|
农田样地 Cropland plot | 0-5 | y = 0.519 7e2.092 5x | 0.028 9 | p > 0.05 |
5-10 | y = 0.409 6e3.495 4x | 0.095 9 | p > 0.05 | |
10-15 | y = 0.446 6e3.049 2x | 0.104 5 | p > 0.05 | |
弃耕样地 Abandoned cultivated plot | 0-5 | y = 1.029 4e-15.000x | 0.505 8 | p > 0.05 |
5-10 | y = 0.401 0e7.800 8x | 0.051 8 | p > 0.05 | |
10-15 | y = 0.198 5e26.016x | 0.292 6 | p > 0.05 | |
围封样地 Grazing enclosure plot | 0-5 | y = 0.362 6e6.371 3x | 0.065 5 | p > 0.05 |
5-10 | y = 0.376 4e6.597 6x | 0.017 2 | p > 0.05 | |
10-15 | y = 0.298 7e12.059x | 0.143 3 | p > 0.05 |
Table 2 Relationships between soil respiration rates and soil water content at different soil depths
土壤深度 Soil depth (cm) | 方程 Equation | R2 | p | |
---|---|---|---|---|
农田样地 Cropland plot | 0-5 | y = 0.519 7e2.092 5x | 0.028 9 | p > 0.05 |
5-10 | y = 0.409 6e3.495 4x | 0.095 9 | p > 0.05 | |
10-15 | y = 0.446 6e3.049 2x | 0.104 5 | p > 0.05 | |
弃耕样地 Abandoned cultivated plot | 0-5 | y = 1.029 4e-15.000x | 0.505 8 | p > 0.05 |
5-10 | y = 0.401 0e7.800 8x | 0.051 8 | p > 0.05 | |
10-15 | y = 0.198 5e26.016x | 0.292 6 | p > 0.05 | |
围封样地 Grazing enclosure plot | 0-5 | y = 0.362 6e6.371 3x | 0.065 5 | p > 0.05 |
5-10 | y = 0.376 4e6.597 6x | 0.017 2 | p > 0.05 | |
10-15 | y = 0.298 7e12.059x | 0.143 3 | p > 0.05 |
[1] |
Buyanovsky GA, Kucera CL, Wagner GH (1987). Comparative analysis of carbon dynamics in native and cultivated ecosystems. Ecology, 68, 2023-2031.
DOI URL PMID |
[2] | Campos CA (2006). Response of soil surface CO2-C flux to land use changes in a tropical cloud forest (Mexico). Forest Ecology and Management, 234, 305-312. |
[3] | Chen SQ (陈四清), Cui XY (崔骁勇), Zhou GS (周广胜), Li LH (李凌浩) (1999). Study on the CO2-release rate of soil respiration and litter decomposition in Stipa grandis steppe in Xilin River Basin, Inner Mongolia. Acta Botanica Sinica (植物学报), 41, 645-650. (in Chinese with English abstract) |
[4] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
DOI URL PMID |
[5] | Cui XY (崔骁勇), Chen SQ (陈四清), Chen ZZ (陈佐忠) (2000). CO2 release from typical Stipa grandis grassland soil. Chinese Journal of Applied Ecology (应用生态学报), 11, 390-394. (in Chinese with English abstract) |
[6] |
Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[7] | Feng CY (冯朝阳), Lü SH (吕世海), Gao JX (高吉喜), Liu SH (刘尚华), Lin D (林栋) (2008). Soil respiration characteristics of different vegetation types in the mountain areas of north China. Journal of Beijing Forestry University (北京林业大学学报), 30(2), 20-26. (in Chinese with English abstract) |
[8] | Frank AB, Liebig MA, Tanaka DL (2006). Management effects on soil CO2 efflux in northern semiarid grassland and cropland. Soil and Tillage Research, 89, 78-85. |
[9] |
Grünzweig JM, Sparrow SD, Chapin FS (2003). Impact of forest conversion to agriculture on carbon and nitrogen mineralization in subarctic Alaska. Biogeochemistry, 64, 271-296.
DOI URL |
[10] |
Högberg P, Read DJ (2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution, 21, 548-554.
DOI URL PMID |
[11] |
Houghton RA, Hackler JL, Lawrence KT (1999). The U.S. carbon budget: contributions from land-use change. Science, 285, 574-578.
DOI URL PMID |
[12] | Hu RG, Kusa K, Hatano R (2001). Soil respiration and methane flux in adjacent forest, grassland, and cornfield soils in Hokkaido, Japan. Soil Science and Plant Nutrition, 47, 621-627. |
[13] |
Inubushi K, Furukawa Y, Hadi A, Purnomo E, Tsuruta H (2003). Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use changes in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 52, 603-608.
DOI URL PMID |
[14] | Ishizuka S, Tsuruta H, Murdiyarso D (2002). An intensive field study on CO2, CH4, and N2O emissions from soils at four land use types in Sumatra, Indonesia. Global Biogeochemical Cycles, 16, 1049, doi: 10.1029/2001GB001614. |
[15] | Jia BR (贾丙瑞), Zhou GS (周广胜), Wang FY (王风玉), Wang YH (王玉辉) (2004). A comparative study on soil respiration between grazing and fenced typical Leymus chinensis steppe, Inner Mongolia. Chinese Journal of Applied Ecology (应用生态学报), 15, 1611-1615. (in Chinese with English abstract) |
[16] | Liu H, Zhao P, Lu P, Wang YS, Lin YB, Rao XQ (2008). Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China. Agriculture, Ecosystems and Environment, 124, 125-135. |
[17] | Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. |
[18] | Pavelka M, Acosta M, Marek MV, Kutsch W, Janous D (2007). Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant and Soil, 292, 171-179. |
[19] | Qi YC (齐玉春), Dong YS (董云社), Liu LX (刘立新), Liu XR (刘杏认), Peng Q (彭琴), Xiao SS (肖胜生), He YT (何亚婷) (2010). Spatial-temporal variation in soil respiration and its controlling factors in three steppes of Stipa L. in Inner Mongolia, China. Science China Earth Science (中国科学: 地球科学), 40, 341-351. (in Chinese) |
[20] | Qi YC, Dong YS, Liu JY, Domroes M, Geng YB, Liu LX, Liu XR, Yang XH (2007). Effect of the conversion of grassland to spring wheat field on the CO2 emission characteristics in Inner Mongolia, China. Soil and Tillage Research, 94, 310-320. |
[21] | Qi YC, Dong YS, Manfred D, Geng YB, Liu LX, Liu XR (2006). Comparison of CO2 effluxes and their driving factors between two temperate steppes in Inner Mongolia, China. Advances in Atmospheric Sciences, 23, 726-736. |
[22] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. |
[23] | Rayment MB, Jarvis PG (2000). Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biology and Biochemistry, 32, 35-45. |
[24] | Reichstein M, Kätterer T, Andrén O, Ciais P, Schulze ED, Cramer W, Papale D, Valentini R (2005). Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences, 2, 317-321. |
[25] | Rochette P, Ellert B, Gregorich EG, Desjardins RL, Pattey E, Lessard R, Johnson BG (1997). Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Canadian Journal of Soil Science, 77, 195-203. |
[26] | Rustad LE, Huntington TG, Boone RD (2000). Controls on soil respiration: implications for climate change. Biogeochemistry, 48, 1-6. |
[27] | Sheng H, Yang YS, Yang ZJ, Chen GS, Xie JS, Guo JF, Zou SQ (2010). The dynamic response of soil respiration to land-use changes in subtropical China. Global Change Biology, 16, 1107-1121. |
[28] | Shi GX (师广旭), Geng HL (耿浩林), Wang YL (王云龙), Wang YH (王玉辉), Qi XR (齐晓荣) (2008). Daily and seasonal dynamics of soil respiration and their environmental controlling factors in Stipa krylovii steppe. Acta Ecologica Sinica (生态学报), 28, 3408-3416. (in Chinese with English abstract) |
[29] |
Tang J, Baldocchi DD, Xu L (2005). Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology, 11, 1298-1304.
DOI URL PMID |
[30] | Trumbore S (2006). Carbon respired by terrestrial ecosystems: recent progress and challenges. Global Change Biology, 12, 141-153. |
[31] | Tufekcioglu A, Raich JW, Isenhart TM, Schultz RC (2001). Soil respiration within riparian buffers and adjacent crop fields. Plant and Soil, 229, 117-124. |
[32] |
Wan SQ, Norby RJ, Ledford J, Weltzin J (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424.
DOI URL |
[33] | Wang GC (王庚辰), Du R (杜睿), Kong QX (孔琴心), Lü DR (吕达仁) (2004). Study on characteristics of soil respiration in temperate steppe in China. Chinese Science Bulletin (科学通报), 49, 692-696. (in Chinese) |
[34] |
Wang W, Fang JY (2009). Soil respiration and human effects on global grasslands. Global and Planetary Change, 67, 20-28.
DOI URL |
[35] | Wang W (王娓), Guo JX (郭继勋) (2002). Contribution of CO2 emission from soil respiration and from litter decomposition in Leymus chinensis community in Northeast Songnen Grassland. Acta Ecologica Sinica (生态学报), 22, 655-660. (in Chinese with English abstract) |
[36] | Wang X (王旭), Zhou GS (周广胜), Jiang YL (蒋延玲), Li F (李峰) (2006). Comparison of soil respiration in broad- leaved Korean pine forest and reclaimed cropland in Changbai Mountains, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 887-893. (in Chinese with English abstract) |
[37] | Wu JG (吴建国), Zhang XQ (张小全), Xu DY (徐德应) (2003). The temporal variations of soil respiration under different land use in Liupan Mountain forest zone. Environmental Science (环境科学), 24(6), 23-32. (in Chinese with English abstract) |
[38] | Wu Q (吴琴), Cao GM (曹广民), Hu QW (胡启武), Li D (李东), Wang YS (王跃思), Li YM (李月梅) (2005). A primary study on CO2 emission from soil-plant systems of Kobresia humilis meadow. Resources Science (资源科学), 27(2), 96-102. (in Chinese with English abstract) |
[39] |
Xia JY, Han Y, Zhang Z, Zhang ZJ, Wan SQ (2009). Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences, 6, 1361-1370.
DOI URL |
[40] | Xu M, Qi Y (2001). Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677. |
[41] | Xu WH, Wan SQ (2008). Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semiarid grassland in northern China. Soil Biology and Biochemistry, 40, 679-687. |
[42] | Yuste JC, Janssens IA, Carrara A, Ceulemans R (2004). Annual Q10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Global Change Biology, 10, 161-169. |
[43] | Zhang JB (张金波), Song CC (宋长春), Yang WY (杨文燕) (2005). Temperature sensitivity of soil respiration and its effecting factors in the different land use. Acta Scientiae Circumstantiae (环境科学学报), 25, 1537-1542. (in Chinese with English abstract) |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[3] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[4] | LI Xue, DONG Jie, HAN Guang-Xuan, ZHANG Qi-Qi, XIE Bao-Hua, LI Pei-Guang, ZHAO Ming-Liang, CHEN Ke-Long, SONG Wei-Min. Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta [J]. Chin J Plant Ecol, 2023, 47(3): 434-446. |
[5] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[6] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[7] | CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19. |
[8] | Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland [J]. Chin J Plant Ecol, 2017, 41(9): 938-952. |
[9] | Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest [J]. Chin J Plant Ecol, 2017, 41(11): 1177-1189. |
[10] | Qiang ZHANG, Jia-Xiang LI, Zong-Qiang XIE. Effects of nitrogen addition on soil respiration of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plant Ecol, 2017, 41(1): 95-104. |
[11] | YAO Hui,HU Xue-Yang,ZHU Jiang-Ling,ZHU Jian-Xiao,JI Cheng-Jun,FANG Jing-Yun. Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing [J]. Chin J Plan Ecolo, 2015, 39(9): 849-856. |
[12] | XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(9): 857-866. |
[13] | WANG Ming, LIU Xing-Tu, ZHANG Ji-Tao, LI Xiu-Jun, WANG Guo-Dong, LU Xin-Rui, LI Xiao-Yu. Spatio-temporal variations of soil respiration in five typical plant communities in the meadow steppe of the western Songnen Plain, China [J]. Chin J Plant Ecol, 2014, 38(4): 396-404. |
[14] | LI Yue, LIU Ying-Hui, SHEN Wei-Jun, XU Xia, TIAN Yu-Qiang. Responses of soil heterotrophic respiration to changes in soil temperature and moisture in a Stipa krylovii grassland in Nei Mongol [J]. Chin J Plant Ecol, 2014, 38(3): 238-248. |
[15] | FAN Yue-Xin,YANG Yu-Sheng,GUO Jian-Fen,YANG Zhi-Jie,CHEN Guang-Shui,XIE Jin-Sheng,ZHONG Xiao-Jian,XU Ling-Lin. Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China [J]. Chin J Plant Ecol, 2014, 38(11): 1155-1165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn