Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (2): 119-130.DOI: 10.17521/cjpe.2019.0301
Special Issue: 全球变化与生态系统; 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
HUANG Song-Yu1,2, JIA Xin1,2,3,*(), ZHENG Jia-Jia1,2, YANG Rui-Zhi1,2, MU Yu1,2, YUAN He-Di1
Received:
2019-11-06
Accepted:
2020-05-12
Online:
2021-02-20
Published:
2020-06-08
Contact:
JIA Xin
Supported by:
HUANG Song-Yu, JIA Xin, ZHENG Jia-Jia, YANG Rui-Zhi, MU Yu, YUAN He-Di. Characteristics and influencing factors of Bowen ratio variation in typical terrestrial ecosystems in China[J]. Chin J Plant Ecol, 2021, 45(2): 119-130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0301
变量名称 Variable name | 缩写 Abbreviation | 单位 Unit | 变量名称 Variable name | 缩写 Abbreviation | 单位 Unit |
---|---|---|---|---|---|
纬度 Latitude | Lat | ° | 当年降水量 Annual precipitation of the studied year | PPT | mm |
经度 Longitude | Lon | ° | 净辐射 Net radiation | Rn | MJ·m-2·a-1 |
海拔 Altitude | Alt | m | 土壤热通量 Soil heat flux | G | MJ·m-2·a-1 |
年平均气温 Mean annual air temperature | MAT | ℃ | 显热通量 Sensible heat flux | H | MJ·m-2·a-1 |
年降水量 Mean annual precipitation | MAP | mm | 潜热通量 Latent heat flux | LE | MJ·m-2·a-1 |
生态系统类型 Ecosystem type | - | - | 波文比 Bowen ratio | β | - |
叶面积指数 Leaf Area Index | LAI | m2·m-2 | 能量闭合度 Energy balance closure | EBC | - |
当年平均气温 Mean annual air temperature of the studied year | Ta | ℃ | 能量平衡比率 Energy balance ratio | EBR | - |
Table 1 Main information of the Bowen ratio dataset in Chinese typical terrestrial ecosystems
变量名称 Variable name | 缩写 Abbreviation | 单位 Unit | 变量名称 Variable name | 缩写 Abbreviation | 单位 Unit |
---|---|---|---|---|---|
纬度 Latitude | Lat | ° | 当年降水量 Annual precipitation of the studied year | PPT | mm |
经度 Longitude | Lon | ° | 净辐射 Net radiation | Rn | MJ·m-2·a-1 |
海拔 Altitude | Alt | m | 土壤热通量 Soil heat flux | G | MJ·m-2·a-1 |
年平均气温 Mean annual air temperature | MAT | ℃ | 显热通量 Sensible heat flux | H | MJ·m-2·a-1 |
年降水量 Mean annual precipitation | MAP | mm | 潜热通量 Latent heat flux | LE | MJ·m-2·a-1 |
生态系统类型 Ecosystem type | - | - | 波文比 Bowen ratio | β | - |
叶面积指数 Leaf Area Index | LAI | m2·m-2 | 能量闭合度 Energy balance closure | EBC | - |
当年平均气温 Mean annual air temperature of the studied year | Ta | ℃ | 能量平衡比率 Energy balance ratio | EBR | - |
Fig. 1 Distribution of the data resources of Bowen ratio in typical terrestrial ecosystems in China. CRO, cropland ecosystems; FOR, forest ecosystems; GRA, grassland ecosystems; SHR, shrubland ecosystems; WET, wetland ecosystems.
Fig. 3 Boxing diagram of the Bowen ratio (β) of different ecosystem types. Lowercase letters indicate the results of multiple comparisons. The same letter indicates that the difference of β between ecosystems is not significant (p > 0.5), while different letters indicate significant differences in β between ecosystems (p < 0.5). n is the sample size. CRO, cropland ecosystems; FOR, forest ecosystems; GRA, grassland ecosystems; SHR, shrubland ecosystems; WET, wetland ecosystems.
Fig. 4 Relationships between the Bowen ratio (β), sensible heat flux (H), latent heat flux (LE) and latitude, longitude and altitude of terrestrial ecosystems in China. CRO, cropland ecosystems; FOR, forest ecosystems; GRA, grassland ecosystems; SHR, shrubland ecosystems; WET, wetland ecosystems.
影响因素 Influencing factor | 生态系统类型 Ecosystem type | 回归方程 Regression equation | 样本数 Sample size | R2 |
---|---|---|---|---|
纬度 Lat | FOR | β= 0.016Lat - 0.02 | 12 | 0.57** |
经度 Lon | FOR | β= 0.014Lon -1.13 | 12 | 0.32* |
年降水量 MAP | GRA | β= -0.00076MAP + 1.46 | 22 | 0.22* |
FOR | β= -0.00021MAP + 0.73 | 12 | 0.36* | |
SHR | β= -0.0046MAP + 3.73 | 4 | 0.91* | |
当年降水量 PPT | GRA | β= -0.00082PPT + 1.43 | 15 | 0.41** |
FOR | β= -0.00025PPT + 0.77 | 10 | 0.42* | |
年平均气温 MAT | FOR | β= -0.017MAT + 0.74 | 11 | 0.45* |
当年平均气温 Ta | FOR | β= -0.020Ta + 0.77 | 8 | 0.48* |
净辐射 Rn | GRA | β= -000063Rn + 2.54 | 20 | 0.34*** |
SHR | β= -0.0021Rn + 7.09 | 4 | 0.97* | |
叶面积指数 LAI | GRA | β= -0.20LAI + 1.45 | 12 | 0.34* |
Table 2 Linear regressions between Bowen ratio (β) and geographical, climatic and biological factors in different ecosystems
影响因素 Influencing factor | 生态系统类型 Ecosystem type | 回归方程 Regression equation | 样本数 Sample size | R2 |
---|---|---|---|---|
纬度 Lat | FOR | β= 0.016Lat - 0.02 | 12 | 0.57** |
经度 Lon | FOR | β= 0.014Lon -1.13 | 12 | 0.32* |
年降水量 MAP | GRA | β= -0.00076MAP + 1.46 | 22 | 0.22* |
FOR | β= -0.00021MAP + 0.73 | 12 | 0.36* | |
SHR | β= -0.0046MAP + 3.73 | 4 | 0.91* | |
当年降水量 PPT | GRA | β= -0.00082PPT + 1.43 | 15 | 0.41** |
FOR | β= -0.00025PPT + 0.77 | 10 | 0.42* | |
年平均气温 MAT | FOR | β= -0.017MAT + 0.74 | 11 | 0.45* |
当年平均气温 Ta | FOR | β= -0.020Ta + 0.77 | 8 | 0.48* |
净辐射 Rn | GRA | β= -000063Rn + 2.54 | 20 | 0.34*** |
SHR | β= -0.0021Rn + 7.09 | 4 | 0.97* | |
叶面积指数 LAI | GRA | β= -0.20LAI + 1.45 | 12 | 0.34* |
影响因素 Influencing factor | 生态系统类型 Ecosystem type | 回归方程 Regression equation | 样本数 Sample size | R2 |
---|---|---|---|---|
纬度 Lat | SHR | H =-373.96Lat + 15579.69 | 4 | 0.90* |
当年降水量 PPT | FOR | H =-0.20PPT + 1015.80 | 10 | 0.41* |
净辐射 Rn | SHR | H= 0.36Rn + 521.99 | 4 | 0.99** |
Table 3 Linear regressions between sensible heat flux (H) and geographical, climatic and biological factors in different ecosystems
影响因素 Influencing factor | 生态系统类型 Ecosystem type | 回归方程 Regression equation | 样本数 Sample size | R2 |
---|---|---|---|---|
纬度 Lat | SHR | H =-373.96Lat + 15579.69 | 4 | 0.90* |
当年降水量 PPT | FOR | H =-0.20PPT + 1015.80 | 10 | 0.41* |
净辐射 Rn | SHR | H= 0.36Rn + 521.99 | 4 | 0.99** |
影响因素 Influencing factor | 生态系统类型 Ecosystem type | 回归方程 Regression equation | 样本数 Sample size | R2 |
---|---|---|---|---|
纬度 Lat | GRA | LE= -45.40Lat +2767.46 | 22 | 0.36** |
CRO | LE= -57.21Lat + 3424.40 | 12 | 0.48** | |
FOR | LE= -40.80Lat + 3032.86 | 12 | 0.62** | |
经度 Lon | CRO | LE= -21.36Lon -3604.25 | 12 | 0.30* |
FOR | LE =-36.92Lon +5944.80 | 12 | 0.39* | |
海拔 Alt | SHR | LE= 0.43Alt -116.08 | 4 | 0.89* |
年降水量 MAP | GRA | LE =0.64MAP +683.66 | 22 | 0.34** |
CRO | LE =1.18MAP +500.76 | 10 | 0.52* | |
FOR | LE= 0.50MAP + 1203.54 | 12 | 0.36* | |
SHR | LE= 2.19MAP - 78.90 | 4 | 0.97** | |
当年降水量 PPT | GRA | LE= 0.65PPT + 725.23 | 15 | 0.44** |
年平均气温 MAT | FOR | LE =45.30MAT +1122.30 | 11 | 0.61** |
SHR | LE= -80.99MAT + 1200.72 | 4 | 0.90* | |
当年平均气温 Ta | FOR | LE= 54.34Ta + 1024.19 | 8 | 0.62* |
净辐射 Rn | GRA | LE= 0.47Rn - 53.39 | 20 | 0.51*** |
FOR | LE= 0.58Rn + 39.06 | 12 | 0.61** | |
WET | LE= 0.69Rn - 441.67 | 5 | 0.77* |
Table 4 Linear regressions between latent heat flux (LE) and geographical, climatic and biological factors in different ecosystems
影响因素 Influencing factor | 生态系统类型 Ecosystem type | 回归方程 Regression equation | 样本数 Sample size | R2 |
---|---|---|---|---|
纬度 Lat | GRA | LE= -45.40Lat +2767.46 | 22 | 0.36** |
CRO | LE= -57.21Lat + 3424.40 | 12 | 0.48** | |
FOR | LE= -40.80Lat + 3032.86 | 12 | 0.62** | |
经度 Lon | CRO | LE= -21.36Lon -3604.25 | 12 | 0.30* |
FOR | LE =-36.92Lon +5944.80 | 12 | 0.39* | |
海拔 Alt | SHR | LE= 0.43Alt -116.08 | 4 | 0.89* |
年降水量 MAP | GRA | LE =0.64MAP +683.66 | 22 | 0.34** |
CRO | LE =1.18MAP +500.76 | 10 | 0.52* | |
FOR | LE= 0.50MAP + 1203.54 | 12 | 0.36* | |
SHR | LE= 2.19MAP - 78.90 | 4 | 0.97** | |
当年降水量 PPT | GRA | LE= 0.65PPT + 725.23 | 15 | 0.44** |
年平均气温 MAT | FOR | LE =45.30MAT +1122.30 | 11 | 0.61** |
SHR | LE= -80.99MAT + 1200.72 | 4 | 0.90* | |
当年平均气温 Ta | FOR | LE= 54.34Ta + 1024.19 | 8 | 0.62* |
净辐射 Rn | GRA | LE= 0.47Rn - 53.39 | 20 | 0.51*** |
FOR | LE= 0.58Rn + 39.06 | 12 | 0.61** | |
WET | LE= 0.69Rn - 441.67 | 5 | 0.77* |
Fig. 5 Relationships between Bowen ratio (β) and mean annual precipitation (MAP), annual precipitation of the studied year (PPT), mean annual air temperature (MAT), mean annual air temperature of the studied year (Ta), net radiation (Rn) and Leaf Area Index (LAI) of China's terrestrial ecosystems. CRO, cropland ecosystems; FOR, forest ecosystems; GRA, grassland ecosystems; SHR, shrubland ecosystems; WET, wetland ecosystems.
Fig. 6 Relationships between sensible heat flux (β) and mean annual precipitation (MAP), annual precipitation of the studied year (PPT), mean annual air temperature (MAT), mean annual air temperature of the studied year (Ta), net radiation (Rn) and Leaf Area Index (LAI) of China's terrestrial ecosystems. CRO, cropland ecosystems; FOR, forest ecosystems; GRA, grassland ecosystems; SHR, shrubland ecosystems; WET, wetland ecosystems.
Fig. 7 The relationships between latent heat flux (LE) and mean annual precipitation (MAP), annual precipitation of the studied year (PPT), mean annual air temperature (MAT), mean annual air temperature of the studied year (Ta), net radiation (Rn) and Leaf Area Index (LAI) of China's terrestrial ecosystems. CRO, cropland ecosystems; FOR, forest ecosystems; GRA, grassland ecosystems; SHR, shrubland ecosystems; WET, wetland ecosystems.
Fig. 8 Path diagrams for the effects of mean annual precipitation (MAP), mean annual air temperature (MAT), net radiation (Rn) and Leaf Area Index (LAI). The statistical results of the structural equation model (SEM) are χ2 = 1.75, df = 2, p = 0.093, RMSEA = 0.038. Solid and dashed arrows represent positive and negative correlations, respectively. The figure for each arrow is the standardized path coefficient. The bold numbers are the explained variance (R2) of LAI, Rn and β, respectively.
[1] |
Boisier JP, de Noblet-Ducoudré N, Pitman AJ, Cruz FT, Delire C, van den Hurk BJJM, van der Molen MK, Müller C, Voldoire A (2012). Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: results from the first LUCID set of simulations. Journal of Gerphysical Research, 117,D12116. DOI: 10.1029/2011JD017106.
DOI |
[2] | Bonan GB (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320,1444-1449. |
[3] |
Bowen IS (1926). The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27,779-787.
DOI URL |
[4] |
Burakowski E, Tawfik A, Ouimette A, Lepine L, Novick D, Ollinger S, Zarzycki C, Bonan G (2017). The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States. Agricultural and Forest Meteorology, 249,367-376.
DOI URL |
[5] |
Chen L, Dirmeyer PA (2016). Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling. Environmental Research Letters, 11,034002. DOI: 10.1088/1748-9326/11/3/034002.
DOI URL |
[6] |
Chen SP, Chen JQ, Lin GH, Zhang WL, Miao HX, Wei L, Huang JH, Han XG (2009). Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agricultural and Forest Meteorology, 149,1800-1809.
DOI URL |
[7] | Chen YF, Jiang H, Zhou GM, Sun C, Chen J (2013). Energy flux and energy balance closure of intensively managed Lei bamboo forest ecosystem. Chinese Journal of Applied Ecology, 24,1063-1069. |
[ 陈云飞, 江洪, 周国模, 孙成, 陈健 (2013). 高效经营雷竹林生态系统能量通量过程及闭合度. 应用生态学报, 24,1063-1069.] | |
[8] | Ge J, Yu Y, Li ZC, Xie J, Liu C, Zan BL (2016). Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau. Plateau Meteorology, 35,608-620. |
[ 葛骏, 余晔, 李振朝, 解晋, 刘川, 昝蓓蕾 (2016). 青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究. 高原气象, 35,608-620.] | |
[9] | Grünwald T, Bernhofer C (2007). A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus, 59(B),387-396. |
[10] |
Han B, Lü SH, Li RQ, Wang X, Zhao L, Zhao CL, Wang DY, Meng XH (2017). Global land surface climate analysis based on the calculation of a modified Bowen ratio. Advances in Atmospheric Sciences, 34,663-678.
DOI URL |
[11] | He XM, Qin L, Lü GH, Yang JJ, Gong YM, Yang XD (2017). Surface energy balance of an arid desert wetland in Ebinur Lake basin, Xinjiang, China. Chinese Journal of Ecology, 36,309-317. |
[ 何学敏, 秦璐, 吕光辉, 杨建军, 公延明, 杨晓东 (2017). 新疆艾比湖流域干旱荒漠区湿地地表能量收支特征. 生态学杂志, 36,309-317.] | |
[12] |
Jia X, Zha TS, Wu B, Zhang YQ, Qin SG, Chen GP, Feng W, Kellomäki S, Peltola H (2016). Energy partitioning over a semi-arid shrubland in northern China. Hydrological Processes, 30,972-985.
DOI URL |
[13] |
Jo YH, Yan XH, Pan JY, Liu WT, He MX (2004). Sensible and latent heat flux in the tropical Pacific from satellite multi-sensor data. Remote Sensing of Environment, 90,166-177.
DOI URL |
[14] |
Juang JY, Katul G, Siqueira M, Stoy P, Novick K (2007). Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters, 34,L21408. DOI: 10.1029/2007GL031296.
DOI URL |
[15] |
Kueppers LM, Snyder MA, Sloan LC (2007). Irrigation cooling effect: regional climate forcing by land-use change. Geophysical Research Letters, 34,L03703. DOI: 10.1029/2006GL028679.
DOI |
[16] |
Launiainen S (2010). Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest. Biogeosciences, 7,3921-3940.
DOI URL |
[17] |
Launiainen S, Katul GG, Kolari P, Lindroth A, Lohila A, Aurela M, Varlagind A, Grelle A, Vesala T (2016). Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area? Global Change Biology, 22,4096-4113.
DOI PMID |
[18] |
Li Y, Zhao M, Motesharrei S, Mu Q, Kalnay E, Li S (2015). Local cooling and warming effects of forests based on satellite observations. Nature Communications, 6,6603. DOI: 10.1038/ncomms7603.
DOI URL |
[19] | Liu S, Li SG, Yu GR, Sun XM, Zhang LM, Hu ZM, Li YN, Zhang XZ (2009). Surface energy exchanges above two grassland ecosystems on the Qinghai-Tibetan Plateau. Biogeosciences Discussions, 6,9161-9192. |
[20] |
Matsumoto K, Ohta T, Nakai T, Kuwada T, Daikoku K, Iida S, Yabuki H, Kononov AV, Molen MK, Kodama Y, Maximov TC, Dolman AJ, Hattori S (2008). Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology, 148,1978-1989.
DOI URL |
[21] |
Morwal SB, Narkhedkar SG, Padmakumari B, Maheskumar RS, Deshpande CG, Kulkarni JP (2017). Intra-seasonal and inter-annual variability of Bowen ratio over rain- shadow region of north peninsular India. Theoretical and Applied Climatology, 128,835-844.
DOI URL |
[22] |
Ryu Y, Baldocchi DD, Ma S, Hehn T (2008). Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. Journal of Geophysical Research, 113,D09104. DOI: 10.1029/2007JD009263.
DOI |
[23] | Sun C (2014). The Study on the CO2 Flux and Energy Balance Variations in a Phyllostachys edulis Forest Ecosystem. PhD dissertation, Zhejiang A&F University, Lin'an, Zhejiang. |
[ 孙成 (2014). 毛竹林生态系统CO2通量和能量平衡的观测研究. 博士学位论文, 浙江农林大学, 浙江临安.] | |
[24] |
Tang YK, Wen XF, Sun XM, Wang HM (2014). Interannual variation of the Bowen ratio in a subtropical coniferous plantation in southeast China, 2003-2012. PLOS ONE, 9, e88267. DOI: 10.1371/journal.pone.0088267.
DOI |
[25] | Wang P, Ma QS, Wang JQ, Huang JY, Li W, Zhang CC (2017). Comparison of evapotranspiration and Bowen ratio method by eddy correlation and Bowen ratio system in a temperate grassland. Acta Agrestia Sinica, 25,453-459. |
[ 王佩, 马琪顺, 王家琪, 黄洁钰, 李炜, 张赐成 (2017). 温带草地蒸散发及波文比观测与比较: 涡动相关及波文比系统. 草地学报, 25,453-459.] | |
[26] | Xia L, Zhang Q (2014). Plateau surface energy balance components and interannual variability in response to climate fluctuations. Acta Physica Sinica, 63(11),119-201. |
[ 夏露, 张强 (2014). 黄土高原地表能量平衡分量年际变化及其对气候波动的响应. 物理学报, 63(11),119-201.] | |
[27] | Yuan WW, Tong XJ, Zhang JS, Meng P, Li J, Zheng N (2015). Characteristics of energy balance of a mixed plantation in the Xiaolangdi area in the growing season. Acta Ecologica Sinica, 35,4492-4499. |
[ 原文文, 同小娟, 张劲松, 孟平, 李俊, 郑宁 (2015). 黄河小浪底人工混交林生长季能量平衡特征. 生态学报, 35,4492-4499.] | |
[28] | Yue P, Zhang Q, Yang JH, Li HY, Sun XY, Yang QG, Zhang JZ (2011). Surface heat flux and energy budget for semi- arid grassland on the Loess Plateau. Acta Ecologica Sinica, 31,6866-6876. |
[ 岳平, 张强, 杨金虎, 李宏宇, 孙旭映, 杨启国, 张建忠 (2011). 黄土高原半干旱草地地表能量通量及闭合率. 生态学报, 31,6866-6876.] | |
[29] |
Yue P, Zhang Q, Yang Y, Zhang L, Zhang HL, Hao XC, Sun XY (2018). Seasonal and inter-annual variability of the Bowen smith ratio over a semi-arid grassland in the Chinese Loess Plateau. Agricultural and Forest Meteorology, 252,99-108.
DOI URL |
[30] | Zhang Q, Zhang L, Huang J, Zhang LY, Wang WY, Sha S (2014). Spatial distribution of surface energy fluxes over the Loess Plateau in China and its relationship with climate and the environment. Science China: Earth Sciences (Chinese Version), 44,2062-2076. |
[ 张强, 张良, 黄菁, 张立阳, 王文玉, 沙莎 (2014). 我国黄土高原地区陆面能量的空间分布规律及其与气候环境的关系. 中国科学: 地球科学(中文版), 44,2062-2076.] | |
[31] | Zhang X, Liu XQ, Zhang LF, Niu B, Zhao L, Gu S (2017). Energy balance of an artificial grassland in the Three-River Source Region of the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 37,4973-4983. |
[ 张翔, 刘晓琴, 张立锋, 牛犇, 赵亮, 古松 (2017). 青藏高原三江源区人工草地能量平衡的变化特征. 生态学报, 37,4973-4983.] | |
[32] |
Zhu Gf, Lu L, Su YH, Wang XF, Cui X, Ma JZ, He JH, Zhang K, Li CB (2014). Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrological Processes, 28,5093-5104.
DOI URL |
[33] |
Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W, Li SG, Sun XM, Zhang YP, Zhang JH, Yan JH, et al. (2013). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19,798-810.
DOI URL |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[3] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[7] | YANG Yu-Meng, LAI Quan, LIU Xin-Yi. Quantitative analysis of climate change and human activities on vegetation gross primary productivity in Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(3): 306-316. |
[8] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[9] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[10] | YU Ji-Mei, WU Fu-Zhong, YUAN Ji, JIN Xia, WEI Shu-Yuan, YUAN Chao-Xiang, PENG Yan, NI Xiang-Yin, YUE Kai. Global patterns and influencing factors of initial concentrations of phenols in plant litter [J]. Chin J Plant Ecol, 2023, 47(5): 608-617. |
[11] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[12] | YU Hai-Xia, QU Lu-Ping, TANG Xing-Hao, LIU Nan, ZHANG Zi-Lei, WANG Hao, WANG Yi-Xuan, SHAO Chang-Liang, DONG Gang, HU Ya-Lin. Divergent responses of non-structural carbohydrates in Phoebe bournei and Schima superba to different heat wave patterns [J]. Chin J Plant Ecol, 2023, 47(2): 249-261. |
[13] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[14] | WANG De-Li, LIANG Cun-Zhu. Restoration state of degraded grasslands: climate climax or disturbance climax? [J]. Chin J Plant Ecol, 2023, 47(10): 1464-1470. |
[15] | ZHOU Bo-Rui, LIAO Meng-Na, LI Kai, XU De-Yu, CHEN Hai-Yan, NI Jian, CAO Xian-Yong, KONG Zhao-Chen, XU Qing-Hai, ZHANG Yun, Ulrike HERZSCHUH, CAI Yong-Li, CHEN Bi-Shan, CHEN Jing-An, CHEN Ling-Kang, CHENG Bo, GAO Yang, $\boxed{\hbox{HUANG Ci-Xuan}}$ , HUANG Xiao-Zhong, LI Sheng-Feng, LI Wen-Yi, LIU Kam-Biu, LIU Guang-Xiu, LIU Ping-Mei, LIU Xing-Qi, MA Chun-Mei, SONG Chang-Qing, SUN Xiang-Jun, TANG Ling-Yu, WANG Man-Hua, WANG Yong-Bo, $\boxed{\hbox{XIA Yu-Mei}}$ , XU Jia-Sheng, YAN Shun, YANG Xiang-Dong, YAO Yi-Feng, YE Chuan-Yong, ZHANG Zhi-Yong, ZHAO Zeng-You, ZHENG Zhuo, ZHU Cheng. A fossil pollen dataset of China [J]. Chin J Plant Ecol, 2023, 47(10): 1453-1463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn