Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (10): 863-876.doi: 10.17521/cjpe.2019.0174

• Research Articles • Previous Articles     Next Articles

Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau

YANG Ji-Hong,LI Ya-Nan,BU Hai-Yan,ZHANG Shi-Ting,QI Wei()   

  1. State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2019-07-08 Accepted:2019-10-02 Online:2020-02-24 Published:2019-10-20
  • Contact: QI Wei E-mail:qiw@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(31770448);the National Natural Science Foundation of China(31600329);the National Key R&D Program of China(2017YFC0504800);the National Key R&D Program of China(2018YFD0502400)

Abstract:

Aims Leaf trait-environment relationships are critical for predicting the effects of climate change on plants. Our objective was to reveal the response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau. Methods We measured 15 leaf traits of 332 species from 666 populations collected at 47 sites on the eastern Qinghai-Xizang Plateau. We investigated the extent of leaf trait variation in this area, and explored the response and adaptation strategies of leaf traits to environment at intra- and inter-species levels. Important findings Traits related to leaf size exhibited relatively high variation, and the leaf area was the most variant trait. Most leaf traits were significantly associated with elevation, except stomatal density. Climatic factors were important drivers of leaf trait variation because they explained 3.3%-29.5% of leaf trait variation. Meantime, temperature had the highest interpretation degree of leaf trait variation, and sunshine hours could explain the variation of most leaf traits. However, the interpretation degree of precipitation was relatively weak. In addition, the significant relationships between leaf traits and environmental (altitude and climatic) factors at intra-species level were far less than at inter-species levels. The reason for the result may be the coordinated variation and trade-off between plant traits, which make the variation of intra-species traits relatively small, and thus weaken the correlation between intra-plant leaf traits and environmental factors. Overall, leaf traits were closely related to woody plant adaptation strategies to the environment, and small, thick leaves and short petioles were selected for high-altitude plants to adapt to harsh environments such as strong winds and low temperature.

Key words: leaf morphological trait, stomatal trait, altitude, climatic factor, environmental factor

Table 1

Climate and vegetation characteristics of each altitude belt of study area on the eastern Qinghai-Xizang Plateau"

海拔段
Altitude belt (m)
气候带
Climatic zone
年平均气温
Mean annual air
temperature (℃)
无霜期
Frost-free period (d)
生长季
Growing season (d)
地带性木本植被类型
Zonal woody vegetation type
1 600-1 900 亚热带-暖温带
Subtropical-warm temperate
11-15 200-240 230-270 温带-北亚热带阔叶林
Temperate-North subtropical broad-leaved forest
1 900-2 200 暖温带
Warm temperate
8-12 160-210 210-250 温带落叶阔叶林
Temperate deciduous broad-leaved forest
2 200-2 500 暖温带-中温带
Warm temperate-medium
temperature
5-9 120-170 190-230 温带落叶阔叶林及针阔混交林
Temperate deciduous broad-leaved forest and
coniferous and broad-leaved mixed forest
2 500-2 800 中温带
Medium temperature
3-7 80-130 170-210 温带针阔混交林
Temperate coniferous and broad-leaved mixed forest
2 800-3 100 中温带-亚高山带
Medium temperate-subalpine
1-5 40-90 150-190 温带及亚高山针阔混交林
Temperate and subalpine coniferous and broad-leaved mixed forest
3 100-3 400 亚高山带 subalpine zone -1-3 0-50 140-170 亚高山针阔混交林
Subalpine coniferous and broad-leaved mixed forest
3 400-3 700 亚高山带-高寒带 Subalpine-alpine -3-1 0-20 120-160 高寒及亚高山灌丛 Alpine and subalpine shrub
3 700-4 000 高寒带 Alpine -5- -1 0 100-140 高寒灌丛 Alpine shrub

Fig. 1

Distribution of sampling sites of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau."

Table 2

Descriptive statistical results of leaf traits of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau"

性状 Traits 物种数量 N 平均值 Mean 最小值 Min 最大值 Max 标准误差 SE 变异系数 CV 偏度 Skewness
LL (cm) 329 7.54 0.80 40.68 0.26 0.63 2.24
LW (cm) 329 4.79 0.36 27.18 0.21 0.81 1.85
LL/LW 329 2.02 0.26 12.97 0.07 0.62 3.24
LA (cm2) 330 32.77 0.36 1 312.49 4.68 2.59 11.43
LT (mm) 314 0.18 0.05 0.44 0.003 0.28 1.25
LWC 280 0.60 0.33 0.85 0.01 0.14 -0.28
PL (cm) 310 2.13 0.19 18.89 0.13 1.08 2.64
SLA (cm2·g-1) 320 173.49 46.47 392.15 3.29 0.34 0.93
LA/PL (cm2·cm-1) 310 15.05 1.61 109.17 0.75 0.87 3.17
SD (No·mm-2) 318 279.93 32.55 896.50 7.43 0.47 1.35
SL (μm) 320 26.05 10.77 64.99 0.41 0.28 0.77
SW (μm) 320 18.69 3.79 43.77 0.35 0.33 0.16
SL/SW 320 1.46 0.55 3.04 0.02 0.20 1.08
SA (μm2) 320 412.56 34.19 2 234.30 13.61 0.59 2.10
SPI 318 0.10 0.01 0.34 0.003 0.54 1.13

Table 3

Chi-square test results of the within-species correlation between leaf traits of common broad-leaved woody plants and environmental factors on the eastern Qinghai-Xizang Plateau"

性状 Traits 海拔 Altitude PC1 PC2
N(+) N(-) χ2 p N(+) N(-) χ2 p N(+) N(-) χ2 p
LL 20 50 12.86 <0.01 40 30 1.43 0.23 36 34 0.06 0.81
LW 22 47 9.06 <0.01 39 29 1.47 0.23 38 31 0.71 0.40
LL/LW 28 41 2.45 0.12 38 31 0.71 0.40 31 38 0.71 0.40
LA 19 51 14.63 <0.01 39 31 0.91 0.34 41 29 2.06 0.15
LT 36 25 1.98 0.16 33 26 0.83 0.36 25 36 1.98 0.16
PL 22 37 3.81 0.05 34 27 0.80 0.37 27 32 0.42 0.52
LWC 21 25 0.35 0.56 26 20 0.78 0.38 20 26 0.78 0.38
SLA 36 30 0.55 0.46 35 31 0.24 0.62 30 36 0.55 0.46
LA/PL 23 38 3.69 0.06 30 31 0.02 0.90 39 22 4.74 0.03
SD 27 35 1.03 0.31 27 35 1.03 0.31 34 28 0.58 0.45
SL 40 24 4.00 0.04 33 31 0.06 0.80 30 34 0.25 0.61
SW 40 24 4.00 0.04 33 31 0.06 0.80 35 29 0.56 0.45
SL/SW 33 31 0.06 0.80 34 30 0.25 0.62 36 28 1.00 0.32
SA 36 28 1.00 0.32 32 32 0.00 1.00 31 33 0.06 0.80
SPI 31 33 0.06 0.80 30 34 0.25 0.62 38 26 2.25 0.13

Fig. 2

Leaf trait patterns of common broad-leaved woody plants along altitude on the eastern Qinghai-Xizang Plateau. See Table 2 for the abbreviations of traits."

Table 4

Partial correlation coefficients represent the contributions of altitude to each leaf trait after controlling for the effects of PC1 and PC2"

性状 Traits 海拔(控制PC1) Altitude (control PC1) 海拔(控制PC2) Altitude (control PC2) 海拔(控制PC1和PC2) Altitude (control PC1and PC2)
LL -0.472** -0.382** -3.00**
LW -0.467** -0.323** -0.289**
LL/LW 0.168** 0.043 0.086
LA -0.491** -0.366** -0.297**
LT 0.014 0.069 0.118*
PL -0.305** -0.205** -0.161**
LWC -0.074 0.068 0.082
SLA -0.071 -0.115 -0.127*
LA/PL -0.404** -0.334** -0.269**
SD 0.015 0.021 -0.010
SL -0.151** -0.095 -0.049
SW -0.146** -0.073 -0.029
SL/SW 0.055 0.000 -0.012
SA -0.153** -0.086 -0.042
SPI -0.140* -0.064 -0.041

Fig. 3

Effect of climatic factors (first principal component PC1) on leaf traits of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau. See Table 2 for the abbreviations of traits."

Fig. 4

Effect of climatic factors (second principal component PC2) on leaf traits of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau. See Table 2 for the abbreviations of traits."

Table 5

Multiple regression model of leaf traits of common broad-leaved woody plants varying with climatic factors on the eastern Qinghai-Xizang Plateau"

线性模型 Linear regression model AIC R2 p
LL = -0.16 + 0.13MTCO + 0.03MGSS - 0.14MGST + 0.20PDR -983.45 0.29 <0.001
LW = -0.65 + 0.13MTCO + 0.30PDR + 0.03MGSS - 0.12MGST -788.19 0.23 <0.001
LL/LW = 0.96 + 0.006PWE - 0.22PDR - 0.0006MAP + 0.03MGSS -1 008.31 0.04 <0.01
LA = -0.91 + 0.26MTCO + 0.52MGSS + 0.47PDR - 0.26MGST -507.75 0.30 <0.001
LT = 0.49 - 0.02PWE - 0.22MGST + 0.11MTCO + 0.03MGSS + 0.39PDR - 0.01 MGSP + 0.002MAP -1 333.81 0.08 <0.001
PL = -0.94 + 0.05MTCO + 0.01MGSS + 0.16PDR -587.23 0.11 <0.001
LWC = 0.37 + 0.01MGST + 0.0002MAP -1 382.27 0.04 <0.01
SLA = 0.05 + 0.02MGSP - 0.17MTCO + 0.34MGST - 0.05MGSS + 0.02PWE - 0.56PDR -0.002MAP -1 237.94 0.08 <0.001
LA/PL = -0.16 + 0.133MTCO + 0.03MGSS - 0.14MGST + 0.22PDR -766.38 0.19 <0.001
SL = 1.10 + 0.01MTCO + 0.002MGSS + 0.05PDR -1 355.05 0.06 <0.001
SW = 1.42 + 0.01MTCO -1 154.49 0.05 <0.001
SL/SW = 0.005 + 0.002MGSS + 0.01PDR - 0.002PWE - 0.005MGST -1 553.84 0.03 <0.05
SA = 2.83 + 0.02MTCO -819.19 0.05 <0.001
SPI = 3.19 + 0.02MTCO -813.97 0.04 <0.001
[1] . Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
doi: 10.1111/j.1461-0248.2006.01006.x pmid: 17257101
[2] . Al Haj Khaled R, Duru M, Theau JP, Plantureux S, Cruz P (2005). Variation in leaf traits through seasons and N-‌availability levels and its consequences for ranking grassland species. Journal of Vegetation Science, 16, 391-398.
doi: 10.1111/j.1654-1103.2005.tb02378.x
[3] . Albert CH, de Bello F, Boulangeat I, Pellet G, Lavorel S, Thuiller W (2012). On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 121, 116-126.
doi: 10.1111/j.1600-0706.2011.19672.x
[4] . Barros FV, Goulart MF, Sá Telles SB, Lovato MB, Valladares F, de Lemos-Filho JP (2011). Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology, 14, 208-215.
doi: 10.1111/j.1438-8677.2011.00474.x pmid: 21972934
[5] . Cornelissen JHC, Sibma F, van Logtestijn RSP, Broekman RA, Thompson K (2011). Leaf pH as a plant trait: Species- driven rather than soil-driven variation. Functional Ecology, 25, 449-455.
doi: 10.1111/j.1365-2435.2010.01765.x
[6] . Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
doi: 10.1038/nature16489 pmid: 26700811
[7] . Duan YF, Wang YN, Li X (2008). A simplified method for observing stomata by shaving off mesophyll cells to obtain epidermis from leaf and its application. Acta Agriculturae Boreali-Sinica, 23, 73-76.
doi: 10.7668/hbnxb.2008.S1.019
[ 段云峰, 王幼宁, 李霞 (2008). 一种获得叶片表皮观察气孔的简易方法及其应用. 华北农学报, 23, 73-76.]
doi: 10.7668/hbnxb.2008.S1.019
[8] . Funk JL, Cornwell WK (2013). Leaf traits within communities: Context may affect the mapping of traits to function. Ecology, 94, 1893-1897.
doi: 10.1890/12-1602.1
[9] . Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984). Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. The American Naturalist,124, 479-497.
doi: 10.1093/aob/mct147 pmid: 23864002
[10] . Gratani L, Crescente MF, D’Amato V, Ricotta C, Frattaroli AR, Puglielli G (2014). Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines. Photosynthetica, 52, 386-396.
[11] . Han W, Liu C, Fan YW, Zhao N, Ye SY, Yin WL, Wang XP (2014). Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain, northeastern China. Journal of Beijing Forestry University, 36, 47-53.
[ 韩威, 刘超, 樊艳文, 赵娜, 叶思阳, 尹伟伦, 王襄平 (2014). 长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征. 北京林业大学学报, 36, 47-53.]
[12] . He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848.
doi: 10.1111/j.1469-8137.2006.01704.x pmid: 16684242
[13] . Hölscher D, Schmitt S, Kupfer K (2002). Growth and leaf traits of four broad-leaved tree species along a hillside gradient. Forstwissenschaftliches Centralblatt, 121, 229-239.
doi: 10.1046/j.1439-0337.2002.02031.x
[14] . Hu MY, Zhang L, Luo TX, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 36, 136-143.
[ 胡梦瑶, 张林, 罗天祥, 沈维 (2012). 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 36, 136-143.]
[15] . Hu YS, Yao XY, Liu YH (2015). Specific leaf area and its influencing factors of forests at different succession stages in Changbai Mountains. Acta Ecologica Sinica, 35, 1480-1487.
[ 胡耀升, 么旭阳, 刘艳红 (2015). 长白山森林不同演替阶段比叶面积及其影响因子. 生态学报, 35, 1480-1487.]
[16] . Hultine KR, Marshall JD (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 123, 32-40.
doi: 10.1007/s004420050986
[17] . Li DS, Shi ZM, Feng QH, Liu F (2013). Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 37, 793-802.
[ 李东胜, 史作民, 冯秋红, 刘峰 (2013). 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应. 植物生态学报, 37, 793-802.]
[18] . Li XL, Liu ZY, Hou XY, Wu XH, Wang Z, Hu J, Wu ZN (2015). Plant functional traits and their trade-offs in response to grazing: A review. Chinese Bulletin of Botany, 50, 159-170.
doi: 10.3724/SP.J.1259.2015.00159
[ 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 50, 159-170.]
doi: 10.3724/SP.J.1259.2015.00159
[19] . Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH (2012). A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36, 88-98.
doi: 10.3724/SP.J.1258.2012.00088
[ 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 (2012). 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36, 88-98.]
doi: 10.3724/SP.J.1258.2012.00088
[20] . Li ZJ, Tian Q, Song LL (2018). Variation and correlation of leaf traits in woody plants in the north-facing slope of Motianling, Gansu, China. Journal of Desert Research, 38, 149-156.
[ 李宗杰, 田青, 宋玲玲 (2018). 甘肃省摩天岭北坡木本植物叶性状变异及关联. 中国沙漠, 38, 149-156.]
[21] . Liu CC, Li Y, Xu L, Chen Z, He NP (2019). Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports, 9, 5803. DOI: 10.1038/s41598-019-42335-2.
doi: 10.1038/s41598-019-42335-2 pmid: 30967600
[22] . McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
doi: 10.1046/j.1365-2435.2003.00698.x
[23] . Niinemets Ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469.
doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
[24] . Niinemets Ü, Afas NA, Cescatti A, Pellis A, Ceulemans R (2004). Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiology, 24, 141-154.
doi: 10.1093/treephys/24.2.141 pmid: 14676031
[25] . Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149.
doi: 10.1111/geb.2009.18.issue-2
[26] . Plourde BT, Boukili VK, Chazdon RL (2015). Radial changes in wood specific gravity of tropical trees: Inter- and intraspecific variation during secondary succession. Functional Ecology, 29, 111-120.
doi: 10.1111/fec.2015.29.issue-1
[27] . Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
doi: 10.1073/pnas.94.25.13730 pmid: 9391094
[28] . Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97, 438-445.
doi: 10.3732/ajb.0900290 pmid: 21622407
[29] . Rozendaal DMA, Hurtado VH, Poorter L (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216.
doi: 10.1111/fec.2006.20.issue-2
[30] . Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
doi: 10.1104/pp.111.173856
[31] . Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li YZ, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015) . A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
doi: 10.1111/ele.12508 pmid: 26415616
[32] . Song LL, Fan JW, Harris W, Wu SH, Zhong HP, Zhou YC, Wang N, Zhu XD (2012). Adaptive characteristics of grassland community structure and leaf traits along an altitudinal gradient on a subtropical mountain in Chongqing, China. Plant Ecology, 213, 89-101.
doi: 10.1007/s11258-011-0009-x
[33] . Song LL, Fan JW, Wu SH (2011). Research advances on changes of leaf traits along an altitude gradient. Progress in Geography, 30, 1431-1439.
doi: 10.11820/dlkxjz.2011.11.014
[ 宋璐璐, 樊江文, 吴绍洪 (2011). 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 30, 1431-1439.]
doi: 10.11820/dlkxjz.2011.11.014
[34] . Violle C, Garnier E, Lecoeur J, Roumet C, Podeur C, Blanchard A, Navas ML (2009). Competition, traits and resource depletion in plant communities. Oecologia, 160, 747-755.
doi: 10.1007/s00442-009-1333-x
[35] . Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
doi: 10.1111/oik.2007.116.issue-5
[36] . Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216.
[ 王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.]
[37] . Wang CY, Zhou JW, Xiao HG, Liu J, Wang L (2017). Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. Journal of Forestry Research, 28, 241-248.
doi: 10.1007/s11676-016-0290-6
[38] . Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2015). Latitudinal patterns and influencing factors of leaf functional traits in Chinese forest ecosystems. Acta Geographica Sinica, 70, 1735-1746.
doi: 10.11821/dlxb201511004
[ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2015). 中国森林叶片功能属性的纬度格局及其影响因素. 地理学报, 70, 1735-1746.]
doi: 10.11821/dlxb201511004
[39] . Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
doi: 10.1146/annurev.ecolsys.33.010802.150452
[40] . Wigley BJ, Slingsby JA, Díaz S, Bond WJ, Fritz H, Coetsee C (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: Evidence for conservative versus acquisitive resource-use strategies. Journal of Ecology, 104, 1357-1369.
doi: 10.1111/1365-2745.12598
[41] . Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
doi: 10.1126/science.aal4760 pmid: 28860384
[42] . Xiao HG, Wang CY, Liu J, Wang L, Du DL (2015). Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities. Journal of Forestry Research, 26, 613-621.
[43] . Xu HJ, Yang TB, Zeng B (2012). Variation of stomatal length and stomatal density in leaves of Rhododendons with elevation. Arid Zone Research, 29, 1054-1058.
[ 徐浩杰, 杨太保, 曾彪 (2012). 杜鹃叶片气孔长度和密度对海拔变化的响应. 干旱区研究, 29, 1054-1058.]
[44] . Xue ZJ, An SS, Cheng M, Wang WZ (2014). Plant functional traits and soil microbial biomass in different vegetation zones on the Loess Plateau. Journal of Plant Interactions, 9, 889-900.
doi: 10.1080/17429145.2014.990063
[45] . Zhang L, Luo TX, Liu XS, Wang Y (2012). Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens. Acta Oecologica,43, 72-79.
[1] Xinghui Lu,Runguo Zang,Yi Ding,Jihong Huang,Yue Xu. Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, a Wild Plant with Extremely Small Populations [J]. Biodiv Sci, 2020, 28(3): 289-295.
[2] ZHANG Yi-Ping, HAI Xu-Ying, XU Jun-Liang, WU Wen-Xia, CAO Peng-He, AN Wen-Jing. Seasonal dynamics of non-structural carbohydrate content in branch of Quercus variabilis growing in east Qinling Mountain range [J]. Chin J Plant Ecol, 2019, 43(6): 521-531.
[3] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[4] Xuerui Dong, Hong Zhang, Minggang Zhang. Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau [J]. Biodiv Sci, 2019, 27(12): 1269-1278.
[5] Rijin Jiang,Linlin Zhang,Kaida Xu,Pengfei Li,Yi Xiao,Ziwei Fan. Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province [J]. Biodiv Sci, 2019, 27(12): 1330-1338.
[6] TANG Li-Tao, LIU Dan, LUO Xue-Ping, HU Lei, WANG Chang-Ting. Forest soil phosphorus stocks and distribution patterns in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(12): 1091-1103.
[7] YIN Shuang, WANG Chuan-Kuan, JIN Ying, ZHOU Zheng-Hu. Changes in soil-microbe-exoenzyme C:N:P stoichiometry along an altitudinal gradient in Mt. Datudingzi, Northeast China [J]. Chin J Plant Ecol, 2019, 43(11): 999-1009.
[8] Gao Kexiao, Li Feifei, Liu Xiaoyan, Xiong Yunqi, Li Junsheng, Zhao Caiyun. Elevational patterns of invasive nonnative and native herbaceous species in Jiuwan Mountain National Nature Reserve of Guangxi [J]. Biodiv Sci, 2019, 27(10): 1047-1055.
[9] Li Jie,Li Weiyue,Fu Jing,Gao Jun,Yang Lei,He Weihang. Using low-altitude UAV remote sensing to identify national park functional zoning boundary: A case study in Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 42-50.
[10] Yu Zhang, Gang Feng. Distribution pattern and mechanism of insect species diversity in Inner Mongolia [J]. Biodiv Sci, 2018, 26(7): 701-706.
[11] Yuxian Wang,Zuojun Liu,Zhigang Zhao,Meng Hou,Xiaorui Zhang,Wanling Lü. Responses of floral longevity to pollination environments in 11 species from two alpine meadows [J]. Biodiv Sci, 2018, 26(5): 510-518.
[12] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
[13] Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. Spatial patterns and drivers of root turnover in grassland ecosystems in China [J]. Chin J Plan Ecolo, 2018, 42(3): 337-348.
[14] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[15] Hongliang Wang, Siyi Guo, Pengtao Wang, Chunpeng Song. Research Progress in Stomatal Development Mechanism [J]. Chin Bull Bot, 2018, 53(2): 164-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Ying-gen;Zhang Li-jun and Li yu. Studies on the Postharvest Physiology properties of Peach Fruits[J]. Chin Bull Bot, 1995, 12(04): 47 -49 .
[2] Zhou Shi-gong. Applications of Lanthanum in Botanical Research[J]. Chin Bull Bot, 1992, 9(02): 26 -29 .
[3] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[4] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[5] ZHAO Yun-Yun ZHOU Xiao-Mei YANG Cai. Production of Hybrid F1 Between Avena magna and Avena nuda and It''s Identification[J]. Chin Bull Bot, 2003, 20(03): 302 -306 .
[6] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[8] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[9] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .
[10] ZHANG Zhi-Meng, WAN Shu-Bo, NING Tang-Yuan, DAI Liang-Xiang. EFFECTS OF NITROGEN LEVEL ON NITROGEN METABOLISM AND CORRELATING ENZYME ACTIVITY IN PEANUT[J]. Chin J Plan Ecolo, 2008, 32(6): 1407 -1416 .