Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (10): 863-876.DOI: 10.17521/cjpe.2019.0174
Special Issue: 青藏高原植物生态学:群落生态学; 植物功能性状
• Research Articles • Previous Articles Next Articles
YANG Ji-Hong,LI Ya-Nan,BU Hai-Yan,ZHANG Shi-Ting,QI Wei()
Received:
2019-07-08
Accepted:
2019-10-02
Online:
2019-10-20
Published:
2020-02-24
Contact:
QI Wei
Supported by:
YANG Ji-Hong, LI Ya-Nan, BU Hai-Yan, ZHANG Shi-Ting, QI Wei. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2019, 43(10): 863-876.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0174
海拔段 Altitude belt (m) | 气候带 Climatic zone | 年平均气温 Mean annual air temperature (℃) | 无霜期 Frost-free period (d) | 生长季 Growing season (d) | 地带性木本植被类型 Zonal woody vegetation type |
---|---|---|---|---|---|
1 600-1 900 | 亚热带-暖温带 Subtropical-warm temperate | 11-15 | 200-240 | 230-270 | 温带-北亚热带阔叶林 Temperate-North subtropical broad-leaved forest |
1 900-2 200 | 暖温带 Warm temperate | 8-12 | 160-210 | 210-250 | 温带落叶阔叶林 Temperate deciduous broad-leaved forest |
2 200-2 500 | 暖温带-中温带 Warm temperate-medium temperature | 5-9 | 120-170 | 190-230 | 温带落叶阔叶林及针阔混交林 Temperate deciduous broad-leaved forest and coniferous and broad-leaved mixed forest |
2 500-2 800 | 中温带 Medium temperature | 3-7 | 80-130 | 170-210 | 温带针阔混交林 Temperate coniferous and broad-leaved mixed forest |
2 800-3 100 | 中温带-亚高山带 Medium temperate-subalpine | 1-5 | 40-90 | 150-190 | 温带及亚高山针阔混交林 Temperate and subalpine coniferous and broad-leaved mixed forest |
3 100-3 400 | 亚高山带 subalpine zone | -1-3 | 0-50 | 140-170 | 亚高山针阔混交林 Subalpine coniferous and broad-leaved mixed forest |
3 400-3 700 | 亚高山带-高寒带 Subalpine-alpine | -3-1 | 0-20 | 120-160 | 高寒及亚高山灌丛 Alpine and subalpine shrub |
3 700-4 000 | 高寒带 Alpine | -5- -1 | 0 | 100-140 | 高寒灌丛 Alpine shrub |
Table 1 Climate and vegetation characteristics of each altitude belt of study area on the eastern Qinghai-Xizang Plateau
海拔段 Altitude belt (m) | 气候带 Climatic zone | 年平均气温 Mean annual air temperature (℃) | 无霜期 Frost-free period (d) | 生长季 Growing season (d) | 地带性木本植被类型 Zonal woody vegetation type |
---|---|---|---|---|---|
1 600-1 900 | 亚热带-暖温带 Subtropical-warm temperate | 11-15 | 200-240 | 230-270 | 温带-北亚热带阔叶林 Temperate-North subtropical broad-leaved forest |
1 900-2 200 | 暖温带 Warm temperate | 8-12 | 160-210 | 210-250 | 温带落叶阔叶林 Temperate deciduous broad-leaved forest |
2 200-2 500 | 暖温带-中温带 Warm temperate-medium temperature | 5-9 | 120-170 | 190-230 | 温带落叶阔叶林及针阔混交林 Temperate deciduous broad-leaved forest and coniferous and broad-leaved mixed forest |
2 500-2 800 | 中温带 Medium temperature | 3-7 | 80-130 | 170-210 | 温带针阔混交林 Temperate coniferous and broad-leaved mixed forest |
2 800-3 100 | 中温带-亚高山带 Medium temperate-subalpine | 1-5 | 40-90 | 150-190 | 温带及亚高山针阔混交林 Temperate and subalpine coniferous and broad-leaved mixed forest |
3 100-3 400 | 亚高山带 subalpine zone | -1-3 | 0-50 | 140-170 | 亚高山针阔混交林 Subalpine coniferous and broad-leaved mixed forest |
3 400-3 700 | 亚高山带-高寒带 Subalpine-alpine | -3-1 | 0-20 | 120-160 | 高寒及亚高山灌丛 Alpine and subalpine shrub |
3 700-4 000 | 高寒带 Alpine | -5- -1 | 0 | 100-140 | 高寒灌丛 Alpine shrub |
性状 Traits | 物种数量 N | 平均值 Mean | 最小值 Min | 最大值 Max | 标准误差 SE | 变异系数 CV | 偏度 Skewness |
---|---|---|---|---|---|---|---|
LL (cm) | 329 | 7.54 | 0.80 | 40.68 | 0.26 | 0.63 | 2.24 |
LW (cm) | 329 | 4.79 | 0.36 | 27.18 | 0.21 | 0.81 | 1.85 |
LL/LW | 329 | 2.02 | 0.26 | 12.97 | 0.07 | 0.62 | 3.24 |
LA (cm2) | 330 | 32.77 | 0.36 | 1 312.49 | 4.68 | 2.59 | 11.43 |
LT (mm) | 314 | 0.18 | 0.05 | 0.44 | 0.003 | 0.28 | 1.25 |
LWC | 280 | 0.60 | 0.33 | 0.85 | 0.01 | 0.14 | -0.28 |
PL (cm) | 310 | 2.13 | 0.19 | 18.89 | 0.13 | 1.08 | 2.64 |
SLA (cm2·g-1) | 320 | 173.49 | 46.47 | 392.15 | 3.29 | 0.34 | 0.93 |
LA/PL (cm2·cm-1) | 310 | 15.05 | 1.61 | 109.17 | 0.75 | 0.87 | 3.17 |
SD (No·mm-2) | 318 | 279.93 | 32.55 | 896.50 | 7.43 | 0.47 | 1.35 |
SL (μm) | 320 | 26.05 | 10.77 | 64.99 | 0.41 | 0.28 | 0.77 |
SW (μm) | 320 | 18.69 | 3.79 | 43.77 | 0.35 | 0.33 | 0.16 |
SL/SW | 320 | 1.46 | 0.55 | 3.04 | 0.02 | 0.20 | 1.08 |
SA (μm2) | 320 | 412.56 | 34.19 | 2 234.30 | 13.61 | 0.59 | 2.10 |
SPI | 318 | 0.10 | 0.01 | 0.34 | 0.003 | 0.54 | 1.13 |
Table 2 Descriptive statistical results of leaf traits of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau
性状 Traits | 物种数量 N | 平均值 Mean | 最小值 Min | 最大值 Max | 标准误差 SE | 变异系数 CV | 偏度 Skewness |
---|---|---|---|---|---|---|---|
LL (cm) | 329 | 7.54 | 0.80 | 40.68 | 0.26 | 0.63 | 2.24 |
LW (cm) | 329 | 4.79 | 0.36 | 27.18 | 0.21 | 0.81 | 1.85 |
LL/LW | 329 | 2.02 | 0.26 | 12.97 | 0.07 | 0.62 | 3.24 |
LA (cm2) | 330 | 32.77 | 0.36 | 1 312.49 | 4.68 | 2.59 | 11.43 |
LT (mm) | 314 | 0.18 | 0.05 | 0.44 | 0.003 | 0.28 | 1.25 |
LWC | 280 | 0.60 | 0.33 | 0.85 | 0.01 | 0.14 | -0.28 |
PL (cm) | 310 | 2.13 | 0.19 | 18.89 | 0.13 | 1.08 | 2.64 |
SLA (cm2·g-1) | 320 | 173.49 | 46.47 | 392.15 | 3.29 | 0.34 | 0.93 |
LA/PL (cm2·cm-1) | 310 | 15.05 | 1.61 | 109.17 | 0.75 | 0.87 | 3.17 |
SD (No·mm-2) | 318 | 279.93 | 32.55 | 896.50 | 7.43 | 0.47 | 1.35 |
SL (μm) | 320 | 26.05 | 10.77 | 64.99 | 0.41 | 0.28 | 0.77 |
SW (μm) | 320 | 18.69 | 3.79 | 43.77 | 0.35 | 0.33 | 0.16 |
SL/SW | 320 | 1.46 | 0.55 | 3.04 | 0.02 | 0.20 | 1.08 |
SA (μm2) | 320 | 412.56 | 34.19 | 2 234.30 | 13.61 | 0.59 | 2.10 |
SPI | 318 | 0.10 | 0.01 | 0.34 | 0.003 | 0.54 | 1.13 |
性状 Traits | 海拔 Altitude | PC1 | PC2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N(+) | N(-) | χ2 | p | N(+) | N(-) | χ2 | p | N(+) | N(-) | χ2 | p | |
LL | 20 | 50 | 12.86 | <0.01 | 40 | 30 | 1.43 | 0.23 | 36 | 34 | 0.06 | 0.81 |
LW | 22 | 47 | 9.06 | <0.01 | 39 | 29 | 1.47 | 0.23 | 38 | 31 | 0.71 | 0.40 |
LL/LW | 28 | 41 | 2.45 | 0.12 | 38 | 31 | 0.71 | 0.40 | 31 | 38 | 0.71 | 0.40 |
LA | 19 | 51 | 14.63 | <0.01 | 39 | 31 | 0.91 | 0.34 | 41 | 29 | 2.06 | 0.15 |
LT | 36 | 25 | 1.98 | 0.16 | 33 | 26 | 0.83 | 0.36 | 25 | 36 | 1.98 | 0.16 |
PL | 22 | 37 | 3.81 | 0.05 | 34 | 27 | 0.80 | 0.37 | 27 | 32 | 0.42 | 0.52 |
LWC | 21 | 25 | 0.35 | 0.56 | 26 | 20 | 0.78 | 0.38 | 20 | 26 | 0.78 | 0.38 |
SLA | 36 | 30 | 0.55 | 0.46 | 35 | 31 | 0.24 | 0.62 | 30 | 36 | 0.55 | 0.46 |
LA/PL | 23 | 38 | 3.69 | 0.06 | 30 | 31 | 0.02 | 0.90 | 39 | 22 | 4.74 | 0.03 |
SD | 27 | 35 | 1.03 | 0.31 | 27 | 35 | 1.03 | 0.31 | 34 | 28 | 0.58 | 0.45 |
SL | 40 | 24 | 4.00 | 0.04 | 33 | 31 | 0.06 | 0.80 | 30 | 34 | 0.25 | 0.61 |
SW | 40 | 24 | 4.00 | 0.04 | 33 | 31 | 0.06 | 0.80 | 35 | 29 | 0.56 | 0.45 |
SL/SW | 33 | 31 | 0.06 | 0.80 | 34 | 30 | 0.25 | 0.62 | 36 | 28 | 1.00 | 0.32 |
SA | 36 | 28 | 1.00 | 0.32 | 32 | 32 | 0.00 | 1.00 | 31 | 33 | 0.06 | 0.80 |
SPI | 31 | 33 | 0.06 | 0.80 | 30 | 34 | 0.25 | 0.62 | 38 | 26 | 2.25 | 0.13 |
Table 3 Chi-square test results of the within-species correlation between leaf traits of common broad-leaved woody plants and environmental factors on the eastern Qinghai-Xizang Plateau
性状 Traits | 海拔 Altitude | PC1 | PC2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N(+) | N(-) | χ2 | p | N(+) | N(-) | χ2 | p | N(+) | N(-) | χ2 | p | |
LL | 20 | 50 | 12.86 | <0.01 | 40 | 30 | 1.43 | 0.23 | 36 | 34 | 0.06 | 0.81 |
LW | 22 | 47 | 9.06 | <0.01 | 39 | 29 | 1.47 | 0.23 | 38 | 31 | 0.71 | 0.40 |
LL/LW | 28 | 41 | 2.45 | 0.12 | 38 | 31 | 0.71 | 0.40 | 31 | 38 | 0.71 | 0.40 |
LA | 19 | 51 | 14.63 | <0.01 | 39 | 31 | 0.91 | 0.34 | 41 | 29 | 2.06 | 0.15 |
LT | 36 | 25 | 1.98 | 0.16 | 33 | 26 | 0.83 | 0.36 | 25 | 36 | 1.98 | 0.16 |
PL | 22 | 37 | 3.81 | 0.05 | 34 | 27 | 0.80 | 0.37 | 27 | 32 | 0.42 | 0.52 |
LWC | 21 | 25 | 0.35 | 0.56 | 26 | 20 | 0.78 | 0.38 | 20 | 26 | 0.78 | 0.38 |
SLA | 36 | 30 | 0.55 | 0.46 | 35 | 31 | 0.24 | 0.62 | 30 | 36 | 0.55 | 0.46 |
LA/PL | 23 | 38 | 3.69 | 0.06 | 30 | 31 | 0.02 | 0.90 | 39 | 22 | 4.74 | 0.03 |
SD | 27 | 35 | 1.03 | 0.31 | 27 | 35 | 1.03 | 0.31 | 34 | 28 | 0.58 | 0.45 |
SL | 40 | 24 | 4.00 | 0.04 | 33 | 31 | 0.06 | 0.80 | 30 | 34 | 0.25 | 0.61 |
SW | 40 | 24 | 4.00 | 0.04 | 33 | 31 | 0.06 | 0.80 | 35 | 29 | 0.56 | 0.45 |
SL/SW | 33 | 31 | 0.06 | 0.80 | 34 | 30 | 0.25 | 0.62 | 36 | 28 | 1.00 | 0.32 |
SA | 36 | 28 | 1.00 | 0.32 | 32 | 32 | 0.00 | 1.00 | 31 | 33 | 0.06 | 0.80 |
SPI | 31 | 33 | 0.06 | 0.80 | 30 | 34 | 0.25 | 0.62 | 38 | 26 | 2.25 | 0.13 |
Fig. 2 Leaf trait patterns of common broad-leaved woody plants along altitude on the eastern Qinghai-Xizang Plateau. See Table 2 for the abbreviations of traits.
性状 Traits | 海拔(控制PC1) Altitude (control PC1) | 海拔(控制PC2) Altitude (control PC2) | 海拔(控制PC1和PC2) Altitude (control PC1and PC2) |
---|---|---|---|
LL | -0.472** | -0.382** | -3.00** |
LW | -0.467** | -0.323** | -0.289** |
LL/LW | 0.168** | 0.043 | 0.086 |
LA | -0.491** | -0.366** | -0.297** |
LT | 0.014 | 0.069 | 0.118* |
PL | -0.305** | -0.205** | -0.161** |
LWC | -0.074 | 0.068 | 0.082 |
SLA | -0.071 | -0.115 | -0.127* |
LA/PL | -0.404** | -0.334** | -0.269** |
SD | 0.015 | 0.021 | -0.010 |
SL | -0.151** | -0.095 | -0.049 |
SW | -0.146** | -0.073 | -0.029 |
SL/SW | 0.055 | 0.000 | -0.012 |
SA | -0.153** | -0.086 | -0.042 |
SPI | -0.140* | -0.064 | -0.041 |
Table 4 Partial correlation coefficients represent the contributions of altitude to each leaf trait after controlling for the effects of PC1 and PC2
性状 Traits | 海拔(控制PC1) Altitude (control PC1) | 海拔(控制PC2) Altitude (control PC2) | 海拔(控制PC1和PC2) Altitude (control PC1and PC2) |
---|---|---|---|
LL | -0.472** | -0.382** | -3.00** |
LW | -0.467** | -0.323** | -0.289** |
LL/LW | 0.168** | 0.043 | 0.086 |
LA | -0.491** | -0.366** | -0.297** |
LT | 0.014 | 0.069 | 0.118* |
PL | -0.305** | -0.205** | -0.161** |
LWC | -0.074 | 0.068 | 0.082 |
SLA | -0.071 | -0.115 | -0.127* |
LA/PL | -0.404** | -0.334** | -0.269** |
SD | 0.015 | 0.021 | -0.010 |
SL | -0.151** | -0.095 | -0.049 |
SW | -0.146** | -0.073 | -0.029 |
SL/SW | 0.055 | 0.000 | -0.012 |
SA | -0.153** | -0.086 | -0.042 |
SPI | -0.140* | -0.064 | -0.041 |
Fig. 3 Effect of climatic factors (first principal component PC1) on leaf traits of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau. See Table 2 for the abbreviations of traits.
Fig. 4 Effect of climatic factors (second principal component PC2) on leaf traits of common broad-leaved woody plants on the eastern Qinghai-Xizang Plateau. See Table 2 for the abbreviations of traits.
线性模型 Linear regression model | AIC | R2 | p |
---|---|---|---|
LL = -0.16 + 0.13MTCO + 0.03MGSS - 0.14MGST + 0.20PDR | -983.45 | 0.29 | <0.001 |
LW = -0.65 + 0.13MTCO + 0.30PDR + 0.03MGSS - 0.12MGST | -788.19 | 0.23 | <0.001 |
LL/LW = 0.96 + 0.006PWE - 0.22PDR - 0.0006MAP + 0.03MGSS | -1 008.31 | 0.04 | <0.01 |
LA = -0.91 + 0.26MTCO + 0.52MGSS + 0.47PDR - 0.26MGST | -507.75 | 0.30 | <0.001 |
LT = 0.49 - 0.02PWE - 0.22MGST + 0.11MTCO + 0.03MGSS + 0.39PDR - 0.01 MGSP + 0.002MAP | -1 333.81 | 0.08 | <0.001 |
PL = -0.94 + 0.05MTCO + 0.01MGSS + 0.16PDR | -587.23 | 0.11 | <0.001 |
LWC = 0.37 + 0.01MGST + 0.0002MAP | -1 382.27 | 0.04 | <0.01 |
SLA = 0.05 + 0.02MGSP - 0.17MTCO + 0.34MGST - 0.05MGSS + 0.02PWE - 0.56PDR -0.002MAP | -1 237.94 | 0.08 | <0.001 |
LA/PL = -0.16 + 0.133MTCO + 0.03MGSS - 0.14MGST + 0.22PDR | -766.38 | 0.19 | <0.001 |
SL = 1.10 + 0.01MTCO + 0.002MGSS + 0.05PDR | -1 355.05 | 0.06 | <0.001 |
SW = 1.42 + 0.01MTCO | -1 154.49 | 0.05 | <0.001 |
SL/SW = 0.005 + 0.002MGSS + 0.01PDR - 0.002PWE - 0.005MGST | -1 553.84 | 0.03 | <0.05 |
SA = 2.83 + 0.02MTCO | -819.19 | 0.05 | <0.001 |
SPI = 3.19 + 0.02MTCO | -813.97 | 0.04 | <0.001 |
Table 5 Multiple regression model of leaf traits of common broad-leaved woody plants varying with climatic factors on the eastern Qinghai-Xizang Plateau
线性模型 Linear regression model | AIC | R2 | p |
---|---|---|---|
LL = -0.16 + 0.13MTCO + 0.03MGSS - 0.14MGST + 0.20PDR | -983.45 | 0.29 | <0.001 |
LW = -0.65 + 0.13MTCO + 0.30PDR + 0.03MGSS - 0.12MGST | -788.19 | 0.23 | <0.001 |
LL/LW = 0.96 + 0.006PWE - 0.22PDR - 0.0006MAP + 0.03MGSS | -1 008.31 | 0.04 | <0.01 |
LA = -0.91 + 0.26MTCO + 0.52MGSS + 0.47PDR - 0.26MGST | -507.75 | 0.30 | <0.001 |
LT = 0.49 - 0.02PWE - 0.22MGST + 0.11MTCO + 0.03MGSS + 0.39PDR - 0.01 MGSP + 0.002MAP | -1 333.81 | 0.08 | <0.001 |
PL = -0.94 + 0.05MTCO + 0.01MGSS + 0.16PDR | -587.23 | 0.11 | <0.001 |
LWC = 0.37 + 0.01MGST + 0.0002MAP | -1 382.27 | 0.04 | <0.01 |
SLA = 0.05 + 0.02MGSP - 0.17MTCO + 0.34MGST - 0.05MGSS + 0.02PWE - 0.56PDR -0.002MAP | -1 237.94 | 0.08 | <0.001 |
LA/PL = -0.16 + 0.133MTCO + 0.03MGSS - 0.14MGST + 0.22PDR | -766.38 | 0.19 | <0.001 |
SL = 1.10 + 0.01MTCO + 0.002MGSS + 0.05PDR | -1 355.05 | 0.06 | <0.001 |
SW = 1.42 + 0.01MTCO | -1 154.49 | 0.05 | <0.001 |
SL/SW = 0.005 + 0.002MGSS + 0.01PDR - 0.002PWE - 0.005MGST | -1 553.84 | 0.03 | <0.05 |
SA = 2.83 + 0.02MTCO | -819.19 | 0.05 | <0.001 |
SPI = 3.19 + 0.02MTCO | -813.97 | 0.04 | <0.001 |
[1] |
. Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
DOI URL PMID |
[2] |
. Al Haj Khaled R, Duru M, Theau JP, Plantureux S, Cruz P (2005). Variation in leaf traits through seasons and N-availability levels and its consequences for ranking grassland species. Journal of Vegetation Science, 16, 391-398.
DOI URL |
[3] |
. Albert CH, de Bello F, Boulangeat I, Pellet G, Lavorel S, Thuiller W (2012). On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 121, 116-126.
DOI URL |
[4] |
. Barros FV, Goulart MF, Sá Telles SB, Lovato MB, Valladares F, de Lemos-Filho JP (2011). Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology, 14, 208-215.
DOI URL PMID |
[5] |
. Cornelissen JHC, Sibma F, van Logtestijn RSP, Broekman RA, Thompson K (2011). Leaf pH as a plant trait: Species- driven rather than soil-driven variation. Functional Ecology, 25, 449-455.
DOI URL |
[6] |
. Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL PMID |
[7] |
. Duan YF, Wang YN, Li X (2008). A simplified method for observing stomata by shaving off mesophyll cells to obtain epidermis from leaf and its application. Acta Agriculturae Boreali-Sinica, 23, 73-76.
DOI URL |
[ 段云峰, 王幼宁, 李霞 (2008). 一种获得叶片表皮观察气孔的简易方法及其应用. 华北农学报, 23, 73-76.]
DOI URL |
|
[8] |
. Funk JL, Cornwell WK (2013). Leaf traits within communities: Context may affect the mapping of traits to function. Ecology, 94, 1893-1897.
DOI URL |
[9] |
. Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984). Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. The American Naturalist,124, 479-497.
DOI URL PMID |
[10] | . Gratani L, Crescente MF, D’Amato V, Ricotta C, Frattaroli AR, Puglielli G (2014). Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines. Photosynthetica, 52, 386-396. |
[11] | . Han W, Liu C, Fan YW, Zhao N, Ye SY, Yin WL, Wang XP (2014). Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain, northeastern China. Journal of Beijing Forestry University, 36, 47-53. |
[ 韩威, 刘超, 樊艳文, 赵娜, 叶思阳, 尹伟伦, 王襄平 (2014). 长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征. 北京林业大学学报, 36, 47-53.] | |
[12] |
. He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848.
DOI URL PMID |
[13] |
. Hölscher D, Schmitt S, Kupfer K (2002). Growth and leaf traits of four broad-leaved tree species along a hillside gradient. Forstwissenschaftliches Centralblatt, 121, 229-239.
DOI URL |
[14] | . Hu MY, Zhang L, Luo TX, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 36, 136-143. |
[ 胡梦瑶, 张林, 罗天祥, 沈维 (2012). 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 36, 136-143.] | |
[15] | . Hu YS, Yao XY, Liu YH (2015). Specific leaf area and its influencing factors of forests at different succession stages in Changbai Mountains. Acta Ecologica Sinica, 35, 1480-1487. |
[ 胡耀升, 么旭阳, 刘艳红 (2015). 长白山森林不同演替阶段比叶面积及其影响因子. 生态学报, 35, 1480-1487.] | |
[16] |
. Hultine KR, Marshall JD (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 123, 32-40.
DOI URL |
[17] | . Li DS, Shi ZM, Feng QH, Liu F (2013). Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 37, 793-802. |
[ 李东胜, 史作民, 冯秋红, 刘峰 (2013). 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应. 植物生态学报, 37, 793-802.] | |
[18] |
. Li XL, Liu ZY, Hou XY, Wu XH, Wang Z, Hu J, Wu ZN (2015). Plant functional traits and their trade-offs in response to grazing: A review. Chinese Bulletin of Botany, 50, 159-170.
DOI URL |
[ 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 50, 159-170.]
DOI URL |
|
[19] |
. Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH (2012). A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36, 88-98.
DOI URL |
[ 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 (2012). 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36, 88-98.]
DOI URL |
|
[20] | . Li ZJ, Tian Q, Song LL (2018). Variation and correlation of leaf traits in woody plants in the north-facing slope of Motianling, Gansu, China. Journal of Desert Research, 38, 149-156. |
[ 李宗杰, 田青, 宋玲玲 (2018). 甘肃省摩天岭北坡木本植物叶性状变异及关联. 中国沙漠, 38, 149-156.] | |
[21] |
. Liu CC, Li Y, Xu L, Chen Z, He NP (2019). Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports, 9, 5803. DOI: 10.1038/s41598-019-42335-2.
DOI URL PMID |
[22] |
. McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
DOI URL |
[23] |
. Niinemets Ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469.
DOI URL |
[24] |
. Niinemets Ü, Afas NA, Cescatti A, Pellis A, Ceulemans R (2004). Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiology, 24, 141-154.
DOI URL PMID |
[25] |
. Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149.
DOI URL |
[26] |
. Plourde BT, Boukili VK, Chazdon RL (2015). Radial changes in wood specific gravity of tropical trees: Inter- and intraspecific variation during secondary succession. Functional Ecology, 29, 111-120.
DOI URL |
[27] |
. Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[28] |
. Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97, 438-445.
DOI URL PMID |
[29] |
. Rozendaal DMA, Hurtado VH, Poorter L (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20, 207-216.
DOI URL |
[30] |
. Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI URL |
[31] |
. Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li YZ, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015) . A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
DOI URL PMID |
[32] |
. Song LL, Fan JW, Harris W, Wu SH, Zhong HP, Zhou YC, Wang N, Zhu XD (2012). Adaptive characteristics of grassland community structure and leaf traits along an altitudinal gradient on a subtropical mountain in Chongqing, China. Plant Ecology, 213, 89-101.
DOI URL |
[33] |
. Song LL, Fan JW, Wu SH (2011). Research advances on changes of leaf traits along an altitude gradient. Progress in Geography, 30, 1431-1439.
DOI URL |
[ 宋璐璐, 樊江文, 吴绍洪 (2011). 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 30, 1431-1439.]
DOI URL |
|
[34] |
. Violle C, Garnier E, Lecoeur J, Roumet C, Podeur C, Blanchard A, Navas ML (2009). Competition, traits and resource depletion in plant communities. Oecologia, 160, 747-755.
DOI URL |
[35] |
. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[36] | . Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216. |
[ 王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.] | |
[37] |
. Wang CY, Zhou JW, Xiao HG, Liu J, Wang L (2017). Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. Journal of Forestry Research, 28, 241-248.
DOI URL |
[38] |
. Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2015). Latitudinal patterns and influencing factors of leaf functional traits in Chinese forest ecosystems. Acta Geographica Sinica, 70, 1735-1746.
DOI URL |
[ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2015). 中国森林叶片功能属性的纬度格局及其影响因素. 地理学报, 70, 1735-1746.]
DOI URL |
|
[39] |
. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[40] |
. Wigley BJ, Slingsby JA, Díaz S, Bond WJ, Fritz H, Coetsee C (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: Evidence for conservative versus acquisitive resource-use strategies. Journal of Ecology, 104, 1357-1369.
DOI URL |
[41] |
. Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI URL PMID |
[42] | . Xiao HG, Wang CY, Liu J, Wang L, Du DL (2015). Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities. Journal of Forestry Research, 26, 613-621. |
[43] | . Xu HJ, Yang TB, Zeng B (2012). Variation of stomatal length and stomatal density in leaves of Rhododendons with elevation. Arid Zone Research, 29, 1054-1058. |
[ 徐浩杰, 杨太保, 曾彪 (2012). 杜鹃叶片气孔长度和密度对海拔变化的响应. 干旱区研究, 29, 1054-1058.] | |
[44] |
. Xue ZJ, An SS, Cheng M, Wang WZ (2014). Plant functional traits and soil microbial biomass in different vegetation zones on the Loess Plateau. Journal of Plant Interactions, 9, 889-900.
DOI URL |
[45] | . Zhang L, Luo TX, Liu XS, Wang Y (2012). Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens. Acta Oecologica,43, 72-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn