Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (9): 905-915.DOI: 10.17521/cjpe.2020.0130
Special Issue: 青藏高原植物生态学:种群生态学
• Research Articles • Previous Articles Next Articles
WANG Yu-Xian1, HOU Meng1, XIE Yan-Yan1, LIU Zuo-Jun2, ZHAO Zhi-Gang1,*(), LU Ning-Na3
Received:
2020-05-06
Revised:
2020-07-23
Online:
2020-09-20
Published:
2020-08-10
Contact:
ZHAO Zhi-Gang
Supported by:
WANG Yu-Xian, HOU Meng, XIE Yan-Yan, LIU Zuo-Jun, ZHAO Zhi-Gang, LU Ning-Na. Relationships of flower longevity with attractiveness traits and their effects on female fitness of alpine meadow plants on the Qinghai-Xizang Plateau, China[J]. Chin J Plant Ecol, 2020, 44(9): 905-915.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0130
海拔 Altitude | 因素 Effect | 估计值±标准误差 Estimate ± SE | t | p |
---|---|---|---|---|
低海拔 Low altitude | 截距 Intercept | 3.98 ± 1.69 | 2.353 | 0.023 |
植株高度 Plant height (cm) | 0.07 ± 0.03 | 2.183 | 0.032 | |
Log (花大小) log (flower size) | 0.21 ± 0.28 | 0.751 | 0.454 | |
开花数目 Flower number | -0.25 ± 0.11 | -2.366 | 0.020 | |
高海拔 High altitude | 截距 Intercept | 2.85 ± 1.77 | 1.609 | 0.123 |
植株高度 Plant height (cm) | 0.06 ± 0.03 | 2.224 | 0.030 | |
Log (花大小) log (flower size) | 0.49 ± 0.24 | 2.038 | 0.046 | |
开花数目 Flower number | -0.14 ± 0.07 | -2.065 | 0.044 |
海拔 Altitude | 因素 Effect | 估计值±标准误差 Estimate ± SE | t | p |
---|---|---|---|---|
低海拔 Low altitude | 截距 Intercept | 3.98 ± 1.69 | 2.353 | 0.023 |
植株高度 Plant height (cm) | 0.07 ± 0.03 | 2.183 | 0.032 | |
Log (花大小) log (flower size) | 0.21 ± 0.28 | 0.751 | 0.454 | |
开花数目 Flower number | -0.25 ± 0.11 | -2.366 | 0.020 | |
高海拔 High altitude | 截距 Intercept | 2.85 ± 1.77 | 1.609 | 0.123 |
植株高度 Plant height (cm) | 0.06 ± 0.03 | 2.224 | 0.030 | |
Log (花大小) log (flower size) | 0.49 ± 0.24 | 2.038 | 0.046 | |
开花数目 Flower number | -0.14 ± 0.07 | -2.065 | 0.044 |
Fig. 1 Scatterplots of the relationships between flower longevity and plant height (A), and flower number (B) at low altitude plant communities. Data points represent individuals, and each colored point represents different species. Red line indicates the mean response across species.
Fig. 2 Scatterplots of the relationships between flower longevity and plant height (A), log (flower size)(B), and flower number (C) at high altitude plant communities. Data points represent individuals, and each colored point represents different species. Red line indicates the mean response across species.
海拔 Altitude | 因素 Effect | 估计值±标准误差 Estimate ± SE | z | p |
---|---|---|---|---|
低海拔 Low altitude | 截距 Intercept | 1.62 ± 0.46 | 3.545 | 0.000 |
植株高度 Plant height (cm) | 0.01 ± 0.01 | 0.856 | 0.392 | |
Log (花大小) log (flower size) | 0.18 ± 0.08 | 2.319 | 0.020 | |
花寿命 Flower longevity (day) | 0.07 ± 0.03 | 2.213 | 0.027 | |
开花数目 Flower number | 0.01 ± 0.03 | 0.101 | 0.919 | |
高海拔 High altitude | 截距 Intercept | 1.89 ± 0.60 | 3.131 | 0.002 |
植株高度 Plant height (cm) | 0.01 ± 0.01 | 1.094 | 0.274 | |
Log (花大小) log (flower size) (mm2) | -0.03 ± 0.09 | -0.340 | 0.734 | |
花寿命 Flower longevity (day) | 0.16 ± 0.05 | 3.380 | 0.001 | |
开花数目 Flower number | -0.01 ± 0.03 | -0.200 | 0.841 |
海拔 Altitude | 因素 Effect | 估计值±标准误差 Estimate ± SE | z | p |
---|---|---|---|---|
低海拔 Low altitude | 截距 Intercept | 1.62 ± 0.46 | 3.545 | 0.000 |
植株高度 Plant height (cm) | 0.01 ± 0.01 | 0.856 | 0.392 | |
Log (花大小) log (flower size) | 0.18 ± 0.08 | 2.319 | 0.020 | |
花寿命 Flower longevity (day) | 0.07 ± 0.03 | 2.213 | 0.027 | |
开花数目 Flower number | 0.01 ± 0.03 | 0.101 | 0.919 | |
高海拔 High altitude | 截距 Intercept | 1.89 ± 0.60 | 3.131 | 0.002 |
植株高度 Plant height (cm) | 0.01 ± 0.01 | 1.094 | 0.274 | |
Log (花大小) log (flower size) (mm2) | -0.03 ± 0.09 | -0.340 | 0.734 | |
花寿命 Flower longevity (day) | 0.16 ± 0.05 | 3.380 | 0.001 | |
开花数目 Flower number | -0.01 ± 0.03 | -0.200 | 0.841 |
Fig. 3 Scatterplots of the relationships between female fitness (seed number) and log (flower size)(A), and flower longevity (B) at low altitude plant communities. Data points represent individuals, and each colored point represents different species. Red line indicates the mean response across species.
Fig. 4 Relationships between seed set and flower longevity at high altitude plant communities. Data points represent individuals, and each colored point represents different species. Red line indicates the mean response across species.
[1] |
Abdala-Roberts L, Parra-Tabla V, Navarro J ( 2007). Is floral longevity influenced by reproductive costs and pollination success in Cohniella ascendens (Orchidaceae)? Annals of Botany, 100, 1367-1371.
DOI URL PMID |
[2] |
Arista M, Ortiz PL ( 2007). Differential gender selection on floral size: an experimental approach using Cistus salvifolius. Journal of Ecology, 95, 973-982.
DOI URL |
[3] |
Arroyo MTK, Armesto JJ, Primack RB ( 1985). Community studies in pollination ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant Systematics and Evolution, 149, 187-203.
DOI URL |
[4] |
Arroyo MTK, Armesto JJ, Villagran C ( 1981). Plant phenological patterns in the high Andean cordillera of central Chile. Journal of Ecology, 69, 205-223.
DOI URL |
[5] |
Arroyo MTK, Dudley LS, Jespersen G, Pacheco DA, Cavieres LA ( 2013). Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance. New Phytologist, 200, 1260-1268.
DOI URL |
[6] |
Ashman TL, Schoen DJ ( 1994). How long should flowers live? Nature, 371, 788-791.
DOI URL |
[7] | Ashman TL, Schoen DJ ( 1996). Floral longevity: fitness consequences and resource costs//Lloyd D, Barrett S. Floral Biology: Studies on Floral Evolution in Animal-Pollinated Plants. Springer, New York. 112-139. |
[8] |
Ashman TL, Schoen DJ ( 1997). The cost of floral longevity in Clarkia tembloriensis: an experimental investigation. Evolutionary Ecology, 11, 289-300.
DOI URL |
[9] |
Bauer AA, Clayton MK, Brunet J ( 2017). Floral traits influencing plant attractiveness to three bee species: consequences for plant reproductive success. American Journal of Botany, 104, 772-781.
DOI URL PMID |
[10] |
Blionis GJ, Vokou D ( 2001). Pollination ecology of Campanula species on Mt Olympus, Greece. Ecography, 24, 287-297.
DOI URL |
[11] |
Castro S, Silveira P, Navarro L ( 2008). Effect of pollination on floral longevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae). Annals of Botany, 102, 1043-1048.
DOI URL PMID |
[12] |
Dudash MR, Hassler C, Stevens PM, Fenster CB ( 2011). Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird- pollinated plant. American Journal of Botany, 98, 275-282.
DOI URL |
[13] |
Dukas R, Real LA ( 1993). Learning constraints and floral choice behaviour in bumble bees. Animal Behaviour, 46, 637-644.
DOI URL |
[14] |
Evanhoe L, Galloway LF ( 2002). Floral longevity in Campanula americana (Campanulaceae): a comparison of morphological and functional gender phases. American Journal of Botany, 89, 587-591.
DOI URL PMID |
[15] |
Galen C, Newport MEA ( 1987). Bumble bee behavior and selection on flower size in the sky pilot, Polemonium viscosum. Oecologia, 74, 20-23.
DOI URL PMID |
[16] |
Gao J, Xiong YZ, Huang SQ ( 2015). Effects of floral sexual investment and dichogamy on floral longevity. Journal of Plant Ecology, 8, 116-121.
DOI URL |
[17] |
Giblin DE ( 2005). Variation in floral longevity between populations of Campanula rotundifolia (Campanulaceae) in response to fitness accrual rate manipulation. American Journal of Botany, 92, 1714-1722.
DOI URL PMID |
[18] |
Goodwillie C, Sargent RD, Eckert CG, Elle E, Geber MA, Johnston MO, Kalisz S, Moeller DA, Ree RH, Vallejo- Marin M, Winn AA ( 2010). Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytologist, 185, 311-321.
DOI URL |
[19] |
Harder LD, Johnson SD ( 2009). Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytologist, 183, 530-545.
DOI URL |
[20] | He YP, Fei SM, Liu JQ, Chen XM, Wang P, Jiang JM, He F ( 2005). A preliminary review of studies of alpine plant breeding system. Journal of Sichuan Forestry Science and Technology, 26(4), 43-49. |
[ 何亚平, 费世民, 刘建全, 陈秀明, 王鹏, 蒋俊明, 何飞 ( 2005). 高山植物繁育系统研究进展初探. 四川林业科技, 26(4), 43-49.] | |
[21] |
Hegland SJ, Totland Ø ( 2005). Relationships between species’ floral traits and pollinator visitation in a temperate grassland. Oecologia, 145, 586-594.
DOI URL |
[22] | Hu C, Liu ZJ, Wu GQ, Zhao ZG ( 2013). Floral characteristic and breeding system of Anemone obtusiloba. Acta Agrestia Sinica, 21, 783-788. |
[ 胡春, 刘左军, 伍国强, 赵志刚 ( 2013). 钝裂银莲花花部综合特征及其繁育系统. 草地学报, 21, 783-788.]
DOI URL |
|
[23] |
Itagaki T, Sakai S ( 2006). Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var. oxysepala (Ranunculaceae). American Journal of Botany, 93, 1320-1327.
DOI URL PMID |
[24] |
Karron JD, Mitchell RJ ( 2012). Effects of floral display size on male and female reproductive success in Mimulus ringens. Annals of Botany, 109, 563-570.
DOI URL |
[25] |
Lawrence Venable D ( 1992). Size-number trade-offs and the variation of seed size with plant resource status. The American Naturalist, 140, 287-304.
DOI URL |
[26] |
Lázaro A, Jakobsson A, Totland Ø ( 2013). How do pollinator visitation rate and seed set relate to species’ floral traits and community context? Oecologia, 173, 881-893.
DOI URL |
[27] | Meng JL ( 2010). Reproductive Strategies of Three Common Species of Ranunculaceae at Alpine Meadow in Qinghai Tibetan Plateau. PhD dissertation, Lanzhou University, Lanzhou. |
[ 孟金柳 ( 2010). 青藏高原高寒草甸3种常见毛茛科植物繁殖对策的研究. 博士学位论文, 兰州大学, 兰州.] | |
[28] | Muller I, Schmid B, Weiner J ( 2000). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127. |
[29] |
Niu T, Chen LX, Zhou ZJ ( 2004). The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps. Advances in Atmospheric Sciences, 21, 193-203.
DOI URL |
[30] |
Primack RB ( 1985). Longevity of individual flowers. Annual Review of Ecology and Systematics, 16, 15-37.
DOI URL |
[31] |
Rathcke BJ ( 2003). Floral longevity and reproductive assurance: seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae). American Journal of Botany, 90, 1328-1332.
DOI URL PMID |
[32] |
Schoen DJ, Ashman TL ( 1995). The evolution of floral longevity: resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution, 49, 131-139.
DOI URL PMID |
[33] |
Spigler RB ( 2017). Plasticity of floral longevity and floral display in the self-compatible biennial Sabatia angularis (Gentianaceae): untangling the role of multiple components of pollination. Annals of Botany, 119, 167-176.
DOI URL PMID |
[34] |
Spigler RB, Woodard AJ ( 2019). Context-dependency of resource allocation trade-offs highlights constraints to the evolution of floral longevity in a monocarpic herb. New Phytologist, 221, 2298-2307.
DOI URL |
[35] |
Steinacher G, Wagner J ( 2010). Flower longevity and duration of pistil receptivity in high mountain plants. Flora, 205, 376-387.
DOI URL |
[36] |
Stratton DA ( 1989). Longevity of individual flowers in a Costa Rican cloud forest: ecological correlates and phylogenetic constraints. Biotropica, 21, 308-318.
DOI URL |
[37] |
Teixido AL, Valladares F ( 2014). Disproportionate carbon and water maintenance costs of large corollas in hot Mediterranean ecosystems. Perspectives in Plant Ecology Evolution and Systematics, 16, 83-92.
DOI URL |
[38] |
Teixido AL, Valladares F ( 2015). Temperature-limited floral longevity in the large-flowered Mediterranean shrub Cistus ladanifer (Cistaceae). International Journal of Plant Sciences, 176, 131-140.
DOI URL |
[39] |
Totland R, Sottocornola M ( 2001). Pollen limitation of reproductive success in two sympatric alpine willows (Salicaceae) with contrasting pollination strategies. American Journal of Botany, 88, 1011-1015.
URL PMID |
[40] |
Trunschke J, Stöcklin J ( 2017). Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alpine Botany, 127, 41-51.
DOI URL |
[41] |
Wang YX, Liu ZJ, Zhao ZG, Hou M, Zhang XR, Lü WL ( 2018). Responses of floral longevity to pollination environments in 11 species from two alpine meadows. Biodiversity Science, 26, 510-518.
DOI URL |
[ 王玉贤, 刘左军, 赵志刚, 侯盟, 张小瑞, 吕婉灵 ( 2018). 青藏高原高寒草甸植物花寿命对传粉环境的响应. 生物多样性, 26, 510-518.]
DOI URL |
|
[42] |
Zhang FP, Yang YJ, Yang QY, Zhang W, Brodribb TJ, Hao GY, Hu H, Zhang SB ( 2017). Floral mass per area and water maintenance traits are correlated with floral longevity in Paphiopedilum (Orchidaceae). Frontiers in Plant Science, 8, 501. DOI: 10.3389/fpls.2017.00501.
DOI URL PMID |
[43] | Zhang J ( 2013). Study on Reproductive Biology of Taraxacum species in Northeast China. PhD dissertation, Shenyang Agricultural University, Shenyang. |
[ 张建 ( 2013). 蒲公英属植物繁殖生物学研究. 博士学位论文, 沈阳农业大学, 沈阳.] | |
[44] |
Zhang ZQ, Zhang YH, Sun H ( 2011). The reproductive biology of Stellera chamaejasme (Thymelaeaceae): a self-incompatible weed with specialized flowers. Flora, 206, 567-574.
DOI URL |
[45] | Zhao ZG, Du GZ ( 2003). Characteristics of the mating system and strategies for resource allocation in Ranunculaceae. Journal of Lanzhou University (Natural Science), 39, 70-74. |
[ 赵志刚, 杜国祯 ( 2003). 毛茛科植物交配系统的特征与花期资源分配对策. 兰州大学学报(自然科学版), 39, 70-74.] | |
[46] |
Zhao ZG, Hou M, Wang YJ, Du GZ ( 2020). Phenological variation of flower longevity and duration of sex phases in a protandrous alpine plant: potential causes and fitness significance. BMC Plant Biology, 20, 137.
DOI URL PMID |
[47] |
Zhao ZG, Wang YK ( 2015). Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients. PLOS ONE, 10, e0118299. DOI: 10.1371/journal.pone.0118299.
DOI URL PMID |
[48] | Zhu WQ, Chen LX, Zhou ZJ (2001). Several characteristics of contemporary climate change in the Tibetan Plateau. Science in China Series D: Earth Sciences, 44, 410-420. |
[49] | Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009). Mixed Effects Models and Extensions in Ecology with R. Springer, New York. |
[1] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[2] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[3] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[4] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[5] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
[6] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[7] | ZHONG Nan-Die, WANG Li, XIAO Jie, WANG Qiong. Effect of pollen source on reproductive success of Impatiens oxyanthera under warming conditions [J]. Chin J Plant Ecol, 2022, 46(4): 416-427. |
[8] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[9] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[10] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
[11] | NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region [J]. Chin J Plant Ecol, 2021, 45(4): 394-403. |
[12] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[13] | TAN Yi-Bo, TIAN Hong-Deng, ZENG Chun-Yang, SHEN Hao, SHEN Wen-Hui, YE Jian-Ping, GAN Guo-Juan. Canopy mechanical abrasion between adjacent plants influences twig and leaf traits of Tsuga chinensis assemblage in the Mao’er Mountain [J]. Chin J Plant Ecol, 2021, 45(12): 1281-1291. |
[14] | LI Hao, MA Ru-Yu, QIANG Bo, HE Cong, HAN Lu, WANG Hai-Zhen. Effect of current-year twig stem configuration on the leaf display efficiency of Populus euphratica [J]. Chin J Plant Ecol, 2021, 45(11): 1251-1262. |
[15] | LI Xue-Ying, ZHU Wen-Quan, LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method [J]. Chin J Plant Ecol, 2020, 44(7): 742-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn