Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (4): 416-427.DOI: 10.17521/cjpe.2021.0169
• Research Articles • Previous Articles Next Articles
ZHONG Nan-Die, WANG Li, XIAO Jie, WANG Qiong*()
Received:
2021-05-06
Accepted:
2021-11-17
Online:
2022-04-20
Published:
2022-01-30
Contact:
WANG Qiong
Supported by:
ZHONG Nan-Die, WANG Li, XIAO Jie, WANG Qiong. Effect of pollen source on reproductive success of Impatiens oxyanthera under warming conditions[J]. Chin J Plant Ecol, 2022, 46(4): 416-427.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0169
Fig. 1 Daily mean air temperature changes of three temperature treatments in offspring generation during artificial warming. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation.
Fig. 2 Schematic diagram of partial mixed pollination in 2019 (A) and single pollination in 2020 (B). Hollow circles and NP represent natural pollination, grey circles and CP represent cross-pollination, and black circles and SP represent self-pollination.
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 1.350 (0.246) | 0.236 (0.628) |
子代增温 Warming treatments in the offspring generations | 2.286 (0.103) | 2.169 (0.119) |
花粉来源 Pollen source | 16.528 (<0.001) | 8.963 (<0.001) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 2.222 (0.110) | 1.647 (0.197) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.245 (0.783) | 5.957 (0.003) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.687 (0.153) | 0.098 (0.983) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.175 (0.951) | 3.366 (0.012) |
Table 1 Effects of warming treatments in the parental and offspring generations and pollen source on seed set of Impatiens oxyanthera (three-way ANOVA)
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 1.350 (0.246) | 0.236 (0.628) |
子代增温 Warming treatments in the offspring generations | 2.286 (0.103) | 2.169 (0.119) |
花粉来源 Pollen source | 16.528 (<0.001) | 8.963 (<0.001) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 2.222 (0.110) | 1.647 (0.197) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.245 (0.783) | 5.957 (0.003) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.687 (0.153) | 0.098 (0.983) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.175 (0.951) | 3.366 (0.012) |
Fig. 3 Effects of warming treatments in the parental and offspring generations on seed set of Impatiens oxyanthera in 2019 (mean ± SE). Different uppercase letters represent significant difference among three warming treatments in the offspring generation (p < 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
Fig. 4 Effects of warming treatments in the parental and offspring generations on seed set of Impatiens oxyanthera in 2020 (mean ± SE). Same uppercase letters represent no significant difference among three warming treatments in the offspring generation (p ≥ 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 0.000 (0.991) | 0.950 (0.332) |
子代增温 Warming treatments in the offspring generations | 3.667 (0.027) | 1.681 (0.191) |
花粉来源 Pollen source | 13.769 (<0.001) | 8.147 (<0.001) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 3.208 (0.042) | 1.585 (0.209) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.214 (0.807) | 4.939 (0.009) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.686 (0.153) | 0.630 (0.642) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.602 (0.648) | 2.971 (0.022) |
Table 2 Effects of warming treatments in the parental and offspring generations and pollen source on number of unfertilized ovules of Impatiens oxyanthera (three-way ANOVA)
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 0.000 (0.991) | 0.950 (0.332) |
子代增温 Warming treatments in the offspring generations | 3.667 (0.027) | 1.681 (0.191) |
花粉来源 Pollen source | 13.769 (<0.001) | 8.147 (<0.001) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 3.208 (0.042) | 1.585 (0.209) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.214 (0.807) | 4.939 (0.009) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.686 (0.153) | 0.630 (0.642) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.602 (0.648) | 2.971 (0.022) |
Fig. 5 Effects of warming treatments in the parental and offspring generations on number of unfertilized ovules of Impatiens oxyanthera in 2019 (mean ± SE). Different uppercase letters represent significant difference among three warming treatments in the offspring generation (p < 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
Fig. 6 Effects of warming treatments in the parental and offspring generations on number of unfertilized ovules of Impatiens oxyanthera in 2020 (mean ± SE). Same uppercase letters represent no significant difference among three warming treatments in the offspring generation (p ≥ 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 1.350 (0.246) | 0.183 (0.669) |
子代增温 Warming treatments in the offspring generations | 2.286 (0.103) | 1.380 (0.256) |
花粉来源 Pollen source | 16.528 (<0.001) | 6.541 (0.002) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 2.222 (0.110) | 1.265 (0.286) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.245 (0.783) | 5.493 (0.005) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.687 (0.153) | 0.167 (0.955) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.175 (0.951) | 3.554 (0.009) |
Table 3 Effects of warming treatments in the parental and offspring generations and pollen source on seed number of Impatiens oxyanthera (three-way ANOVA)
实验处理 Experimental treatment | 2019 | 2020 |
---|---|---|
母代增温 Warming treatments in the parental generations | 1.350 (0.246) | 0.183 (0.669) |
子代增温 Warming treatments in the offspring generations | 2.286 (0.103) | 1.380 (0.256) |
花粉来源 Pollen source | 16.528 (<0.001) | 6.541 (0.002) |
母代增温×子代增温 Warming treatments in the parental generations × warming treatments in the offspring generations | 2.222 (0.110) | 1.265 (0.286) |
母代增温×花粉来源 Warming treatments in the parental generations × pollen source | 0.245 (0.783) | 5.493 (0.005) |
子代增温×花粉来源 Warming treatments in the offspring generations × pollen source | 1.687 (0.153) | 0.167 (0.955) |
母代增温×子代增温×花粉来源 Warming treatments in the parental generations × warming treatments in the offspring generations × pollen source | 0.175 (0.951) | 3.554 (0.009) |
Fig. 7 Effects of warming treatments in the parental and offspring generations on seed number of Impatiens oxyanthera in 2019 (mean ± SE). Same uppercase letters represent no significant difference among three warming treatments in the offspring generation (p ≥ 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
Fig. 8 Effects of warming treatments in the parental and offspring generations on seed number of Impatiens oxyanthera in 2020 (mean ± SE). Same uppercase letters represent no significant difference among three warming treatments in the offspring generation (p ≥ 0.05); different lowercase letters represent significant differences between different pollination treatments under the same warming treatments in the offspring generation (p < 0.05). M0, warmed 0 °C in the parental generation. M2, warmed 2 °C in the parental generation. O0, warmed 0 °C in the offspring generation; O2, warmed 2 °C in the offspring generation; O4, warmed 4 °C in the offspring generation. CP, cross-pollination; NP, natural pollination; SP, self-pollination.
[1] |
Aizen MA, Harder LD (2007). Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology, 88, 271-281.
DOI URL |
[2] | Bell G (1985). On the function of flowers. Proceedings of the Royal Society B: Biological Sciences, 224, 223-265. |
[3] |
Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313, 351-354.
DOI PMID |
[4] | Blödner C, Goebel C, Feussner I, Gatz C, Polle A (2007). Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. Plant, Cell & Environment, 30, 165-175. |
[5] | Cai XZ, Liu KM, Cong YY (2012). Floral organogenesis and development of Impatiens longicornuta (Balsaminaceae). Bulletin of Botanical Research, 32, 651-656. |
[ 蔡秀珍, 刘克明, 丛义艳 (2012). 长角凤仙花(凤仙花科)的花器官发生和发育. 植物研究, 32, 651-656.] | |
[6] |
Campbell DR, Bischoff M, Lord JM, Robertson AW (2010). Flower color influences insect visitation in alpine New Zealand. Ecology, 91, 2638-2649.
PMID |
[7] |
Charlesworth D, Charlesworth B (1987). Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics, 18, 237-268.
DOI URL |
[8] |
Chen M, Zhao XY (2017). Effect of pollen and resource limitation on reproduction of Zygophyllum xanthoxylum in fragmented habitats. Ecology and Evolution, 7, 9076-9084.
DOI PMID |
[9] | Chen YL (2001). Flora Reipublicae Popularis Sinicaae: Tomus 47(2). Science Press, Beijing. 142-143. |
[ 陈艺林 (2001). 中国植物志:第47卷(第二分册). 科学出版社, 北京. 142-143.] | |
[10] |
Cruzan MB, Thomson JD (1997). Effects of pre-dispersal selection on offspring growth and survival in Erythronium grandiflorum. Journal of Evolutionary Biology, 10, 295-314.
DOI URL |
[11] |
Dan YH, Baxter A, Zhang S, Pantazis CJ, Veilleux RE (2010). Development of efficient plant regeneration and transformation system for Impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants. BMC Plant Biology, 10, 165-176.
DOI URL |
[12] |
Diggle PK, Mulder CPH (2019). Diverse developmental responses to warming temperatures underlie changes in flowering phenologies. Integrative and Comparative Biology, 59, 559-570.
DOI URL |
[13] |
Dudash MR (1990). Relative fitness of selfed and outcrossed progeny in a self-compatible, protandrous species, Sabatia angularis L. (Gentianaceae): a comparison in three environments. Evolution, 44, 1129-1139.
DOI URL |
[14] |
Galloway LF, Etterson JR (2007). Transgenerational plasticity is adaptive in the wild. Science, 318, 1134-1136.
PMID |
[15] |
Gillet EM, Gregorius HR (2020). Effects of reproductive resource allocation and pollen density on fertilization success in plants. BMC Ecology, 20, 26. DOI: 10.11861S12898-020-00290-X.
DOI URL |
[16] |
Goodwillie C, Kalisz S, Eckert CG (2005). The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 36, 47-79.
DOI URL |
[17] |
Grant-Downton RT, Dickinson HG (2005). Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Annals of Botany, 96, 1143-1164.
PMID |
[18] | He YP, Liu JQ (2003). A review on recent advances in the studies of plant breeding system. Acta Phytoecologica Sinica, 27, 151-163. |
[ 何亚平, 刘建全 (2003). 植物繁育系统研究的最新进展和评述. 植物生态学报, 27, 151-163.]
DOI |
|
[19] |
Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184-195.
DOI PMID |
[20] |
Herlihy CR, Eckert CG (2004). Experimental dissection of inbreeding and its adaptive significance in a flowering plant, Aquilegia canadensis (Ranunculaceae). Evolution, 58, 2693-2703.
DOI URL |
[21] |
Herman JJ, Sultan SE (2011). Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Frontiers in Plant Science, 2, 102. DOI: 10.3389/fpls.2011.00102.
DOI PMID |
[22] |
Hirayama K, Ishida K, Tomaru N (2005). Effects of pollen shortage and self-pollination on seed production of an endangered tree, Magnolia stellata. Annals of Botany, 95, 1009-1015.
PMID |
[23] | Huang SQ, Guo YH, Chen JK (1998). Pollination rates and pollen tube growth in a vulnerable plant, Liriodendron chinense (Hemsl.) Sarg. (Magnoliaceae). Acta Phytotaxonomica Sinica, 36, 310-316. |
[ 黄双全, 郭友好, 陈家宽 (1998). 渐危植物鹅掌楸的授粉率及花粉管生长. 植物分类学报, 36, 310-316.] | |
[24] |
Husband BC, Schemske DW (1996). Evolution of the magnitude and timing of inbreeding depression in plants. Evolution, 50, 54-70.
DOI PMID |
[25] |
Klinkhamer PGL, van der Lugt PP (2004). Pollinator service only depends on nectar production rates in sparse populations. Oecologia, 140, 491-494.
PMID |
[26] |
Ksiazek K, Fant J, Skogen K (2012). An assessment of pollen limitation on Chicago green roofs. Landscape and Urban Planning, 107, 401-408.
DOI URL |
[27] | Lennartsson T (2002). Extinction thresholds and disrupted plant-pollinator interactions in fragmented plant populations. Ecology, 83, 3060-3072. |
[28] | Li DF (2018). Impact of Nectar Robbing on Female Reproductive Success of Impatiens oxyanthera (Balsaminaceae) Under Simulated Climate Warming. Master degree dissertation, China West Normal University, Nanchong, Sichuan. |
[ 李登飞 (2018). 模拟增温条件下盗蜜对红雉凤仙花雌性生殖成功的影响. 硕士学位论文, 西华师范大学, 四川南充.] | |
[29] | Li YH, Wang Q (2014). Pollen limitation of the seed setting of Impatiens oxyanthera. Journal of Sichuan Forestry Science and Technology, 35(4), 17-22. |
[ 李艳红, 王琼 (2014). 红雉凤仙花结籽的花粉限制. 四川林业科技, 35(4), 17-22.] | |
[30] | Liu L, Wu W, Zheng YL, Huang CY, Liu RJ (2007). Variations on the chemical components of the volatile oil of Houttuynia cordata Thunb. populations from different valleys and altitudes of Mt. Emei. Acta Ecologica Sinica, 27, 2239-2250. |
[ 刘雷, 吴卫, 郑有良, 黄春燕, 刘仁健 (2007). 峨眉山不同山峪和海拔高度鱼腥草(Houttuynia cordata Thunb.)居群挥发油成分的变化. 生态学报, 27, 2239-2250.] | |
[31] |
Liu YZ, Mu JP, Niklas KJ, Li GY, Sun SC (2012). Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan Plateau. New Phytologist, 195, 427-436.
DOI URL |
[32] |
Lloyd DG, Schoen DJ (1992). Self- and cross-fertilization in plants. I. Functional dimensions. International Journal of Plant Sciences, 153, 358-369.
DOI URL |
[33] |
Lozada-Gobilard S, Weigend M, Fischer E, Janssens SB, Ackermann M, Abrahamczyk S (2019). Breeding systems in Balsaminaceae in relation to pollen/ovule ratio, pollination syndromes, life history and climate zone. Plant Biology, 21, 157-166.
DOI PMID |
[34] | Lu LN, He X, Li QF, Yi J, He JJ (2015). Pollen and resource limitations to lifetime seed production in a wild population of Ceratoides arborescens. Acta Ecologica Sinica, 35, 1706-1712. |
[ 卢立娜, 贺晓, 李青丰, 易津, 何金军 (2015). 华北驼绒藜自然种群结实的花粉和资源限制. 生态学报, 35, 1706-1712.] | |
[35] |
Łubek A, Kukwa M, Jaroszewicz B, Czortek P (2018). Changes in the epiphytic lichen biota of Białowieża Primeval forest are not explained by climate warming. Science of the Total Environment, 643, 468-478.
DOI URL |
[36] |
Lundin O, Raderschall CA (2021). Landscape complexity benefits bumble bee visitation in faba bean (Vicia faba minor L.) but crop productivity is not pollinator-dependent. Agriculture, Ecosystems & Environment, 314, 107417. DOI: 10.1016/j.agee.2021.107417.
DOI URL |
[37] | Luo WH, Ji CH, Liu JL, Cao L, Wang RS, Cheng S, Gao LJ (2019). Study on foraging behavior and effect of pollinations by different bees on Citrus maxima (Burm) Merr. cv. Huangsha Yu. Southwest China Journal of Agricultural Sciences, 32, 1360-1365. |
[ 罗文华, 姬聪慧, 刘佳霖, 曹兰, 王瑞生, 程尚, 高丽娇 (2019). 2种蜂对黄沙白柚的访花行为及授粉效果研究. 西南农业学报, 32, 1360-1365.] | |
[38] | Mao ZB, Boehler C, Ge XJ (2011). Pollination ecology and breeding system of Impatiens lateristachys (Balsaminaceae) endemic to China. Guihaia, 31, 160-166. |
[ 毛志斌, Boehler C, 葛学军 (2011). 侧穗凤仙花的传粉生态和繁育系统. 广西植物, 31, 160-166.] | |
[39] |
Marshall DJ, Uller T (2007). When is a maternal effect adaptive? Oikos, 116, 1957-1963.
DOI URL |
[40] |
McEwan RW, Brecha RJ, Geiger DR, John GP (2011). Flowering phenology change and climate warming in southwestern Ohio. Plant Ecology, 212, 55-61.
DOI URL |
[41] | Ni SS, Peng L, Gao Y (2016). Impacts of tourist disturbance on soil properties and plant communities in Emeishan Mountain scenic region. Chinese Journal of Agricultural Resources and Regional Planning, 37(3), 93-96. |
[ 倪珊珊, 彭琳, 高越 (2016). 旅游干扰对峨眉山风景区土壤及植被的影响. 中国农业资源与区划, 37(3), 93-96.] | |
[42] |
Niesenbaum RA (1999). The effects of pollen load size and donor diversity on pollen performance, selective abortion, and progeny vigor in Mirabilis jalapa (Nyctaginaceae). American Journal of Botany, 86, 261-268.
PMID |
[43] |
Parachnowitsch AL, Kessler A (2010). Pollinators exert natural selection on flower size and floral display in Penstemon digitalis. New Phytologist, 188, 393-402.
DOI PMID |
[44] |
Petanidou T, Smets E (1996). Does temperature stress induce nectar secretion in Mediterranean plants? New Phytologist, 133, 513-518.
DOI URL |
[45] |
Ramsey M, Vaughton G (2000). Pollen quality limits seed set in Burchardia umbellata (Colchicaceae). American Journal of Botany, 87, 845-852.
PMID |
[46] | Ren YQ, Yang Q, Liao YJ, Chen R, Luo YF (2013). Effect of resource limitation and pollen sources on fruit setting rate and fruit characters of Vaccinium ashei. Northern Horticulture, (22), 35-38. |
[ 任永权, 杨芩, 廖优江, 陈容, 罗亚芬 (2013). 资源限制和花粉来源对兔眼蓝莓坐果率和果实性状的影响. 北方园艺, (22), 35-38.] | |
[47] |
Tian JP, Liu KM, Hu GW (2004). Pollination ecology and pollination system of Impatiens reptans (Balsaminaceae) endemic to China. Annals of Botany, 93, 167-175.
DOI URL |
[48] |
Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman TL (2006). Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 103, 956-961.
PMID |
[49] |
Verhoeven KJF, Verbon EH, van Gurp TP, Oplaat C, Ferreira de Carvalho J, Morse AM, Stahl M, Macel M, McIntyre LM (2018). Intergenerational environmental effects: functional signals in offspring transcriptomes and metabolomes after parental jasmonic acid treatment in apomictic dandelion. New Phytologist, 217, 871-882.
DOI PMID |
[50] |
Wang GC, Huang Y, Wei YR, Zhang W, Li TT, Zhang Q (2019). Inner Mongolian grassland plant phenological changes and their climatic drivers. Science of the Total Environment, 683, 1-8.
DOI URL |
[51] | Wang Q (2013). Biological Effects of Experimental Warming on Pollination in Impatiens oxyanthera (Balsaminaceae). PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[ 王琼 (2013). 模拟增温对红雉凤仙花传粉的生物学效应. 博士学位论文, 中国科学院大学, 北京.] | |
[52] |
Whittle CA, Otto SP, Johnston MO, Krochko JE (2009). Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thalian. Botany, 87, 650-657.
DOI URL |
[53] |
Wolf JB, Wade MJ (2016). Evolutionary genetics of maternal effects. Evolution, 70, 827-839.
DOI URL |
[54] | Xiao LX, Liu KM (2009). Floral traits and pollination system of Impatiens chinensis (Balsaminaceae). Bulletin of Botanical Research, 29, 164-168. |
[ 肖乐希, 刘克明 (2009). 华凤仙花部特征和传粉系统研究. 植物研究, 29, 164-168.] | |
[55] | Xiao YA, Li XH, Zeng JJ, Hu WH, Hu XH, Zhou B (2012). Effects of hand pollination on fruit and seed set in the endangered plant Disanthus cercidifolius var. longipes. Journal of Jinggangshan University (Natural Science), 33, 96-101. |
[ 肖宜安, 李晓红, 曾建军, 胡文海, 胡雪华, 周兵 (2012). 人工授粉对濒危植物长柄双花木结果率和结实率的影响. 井冈山大学学报: 自然科学版, 33, 96-101.] | |
[56] | Yang Q, Wan XQ, Li DP, Li XY, Zhang TT, Peng S (2017). Effects of temperature on pollen viability and stigma receptivity in ‘premier’ rabbiteye blueberry. Northern Horticulture, (14), 39-43. |
[ 杨芩, 万兴权, 李东平, 李性苑, 张婷渟, 彭舒 (2017). 温度对‘杰兔’兔眼蓝莓花粉活力及柱头可授性的影响. 北方园艺, (14), 39-43.] | |
[57] |
Young HJ, Dunning DW, von Hasseln KW (2007). Foraging behavior affects pollen removal and deposition in Impatiens capensis (Balsaminaceae). American Journal of Botany, 94, 1267-1271.
DOI URL |
[58] | Yu SX (2012). Balsaminaceae of China. Peking University Press, Beijing. |
[ 于胜祥 (2012). 中国凤仙花. 北京大学出版社, 北京.] | |
[59] | Zhao ZC, Wang SW, Luo Y (2007). Assessments and projections of temperature rising since the establishment of IPCC. Advances in Climate Change Research, 3, 183-184. |
[ 赵宗慈, 王绍武, 罗勇 (2007). IPCC成立以来对温度升高的评估与预估. 气候变化研究进展, 3, 183-184.] | |
[60] |
Zhong YF, Zhang Z, Song XQ, Zhou ZD (2014). Pollination biology of Impatiens hainanensis (Balsaminaceae) populations at different altitudes. Biodiversity Science, 22, 467-475.
DOI URL |
[ 钟云芳, 张哲, 宋希强, 周兆德 (2014). 海南凤仙花不同海拔种群的传粉生物学. 生物多样性, 22, 467-475.]
DOI |
|
[61] | Zhou BT, Qian J (2021). Changes of weather and climate extremes in the IPCC sixth assessment report. Climate Change Research, 16(1), 1-7. |
[ 周波涛, 钱进 (2021). IPCC AR6报告解读:极端天气气候事件变化. 气候变化研究进展, 16(1), 1-7.] | |
[62] | Zhu XF, Jiang WJ, Zhu LX, Jin Y (1997). Study on present environmental situation of the Emei Mountain. Sichuan Environment, (2), 9-17. |
[ 朱晓帆, 蒋文举, 朱联锡, 金燕 (1997). 峨眉山环境现状研究. 四川环境, (2), 9-17.] | |
[63] |
Zimmerman M, Pyke GH (1988). Reproduction in polemonium: assessing the factors limiting seed set. The American Naturalist, 131, 723-738.
DOI URL |
[1] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[2] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[3] | SUONAN Ji, LI Bo-Wen, LÜ Wang-Wang, WANG Wen-Ying, LA Ben, LU Xu-Wei, SONGZHA Cuo, CHEN Cheng-Hao, MIAO Qi, SUN Fang-Hui, WANG Shi-Ping. Changes of phenological sequence of Potentilla saundersiana and its frost resistance under the scenarios of warming and increasing precipitation [J]. Chin J Plant Ecol, 2024, 48(2): 158-170. |
[4] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[5] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[6] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[7] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[8] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[9] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
[10] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[11] | CHEN Xin-Yi, WU Chen, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root phenology of forests: a review [J]. Chin J Plant Ecol, 2023, 47(11): 1471-1482. |
[12] | TIAN Lei, ZHU Yi, LI Xin, HAN Guo-Dong, REN Hai-Yan. Responses of plant phenology to warming and nitrogen addition under different precipitation conditions in a desert steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(3): 290-299. |
[13] | YU Hai-Ying, YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[14] | HAN Cong, LIU Peng, MU Yan-Mei, YUAN Yuan, HAO Shao-Rong, TIAN Yun, ZHA Tian-Shan, JIA Xin. Response of ecosystem carbon balance to asymmetric daytime vs nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
[15] | MAO Jin, DUO Ying, DENG Jun, CHENG Jie, CHENG Ji-Min, PENG Chang-Hui, GUO Liang. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau [J]. Chin J Plant Ecol, 2021, 45(8): 891-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn