Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (9): 916-925.DOI: 10.17521/cjpe.2020.0018
• Research Articles • Previous Articles Next Articles
ZHAO He-Ju1,2, YUE Yan-Peng1,2, JIA Xiao-Hong1,2,*(), CHENG Long1,2, WU Bo1,2, LI Yuan-Shou3, ZHOU Hong1,2, ZHAO Xue-Bin4
Received:
2020-01-17
Revised:
2020-06-15
Online:
2020-09-20
Published:
2020-07-31
Contact:
JIA Xiao-Hong
Supported by:
ZHAO He-Ju, YUE Yan-Peng, JIA Xiao-Hong, CHENG Long, WU Bo, LI Yuan-Shou, ZHOU Hong, ZHAO Xue-Bin. Effects of simulated warming on biological soil crust-soil system respiration in alpine sandy lands[J]. Chin J Plant Ecol, 2020, 44(9): 916-925.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0018
结皮类型 Crust type | 盖度 Coverage (%) | 厚度 Thickness (cm) | 生物量 Biomass (mg·cm-2) |
---|---|---|---|
藻类结皮 Algae crust | >51 | 1.01 ± 0.01 | 3.69 ± 0.21 |
苔藓结皮 Moss crust | >41 | 1.49 ± 0.06 | 4.65 ± 0.25 |
Table 1 Main characteristics of biological soil crust in the study area (mean ± SE)
结皮类型 Crust type | 盖度 Coverage (%) | 厚度 Thickness (cm) | 生物量 Biomass (mg·cm-2) |
---|---|---|---|
藻类结皮 Algae crust | >51 | 1.01 ± 0.01 | 3.69 ± 0.21 |
苔藓结皮 Moss crust | >41 | 1.49 ± 0.06 | 4.65 ± 0.25 |
年份 Year | 总降水量 Total precipitation (mm) | 增长率 Growth rate (%) |
---|---|---|
近30年平均 Average over the last 30 years | 246.3 | - |
2017 | 226.7 | -8 |
2018 | 372.4 | 51 |
Table 2 Statistics of precipitation events during the growing season in alpine sandy lands
年份 Year | 总降水量 Total precipitation (mm) | 增长率 Growth rate (%) |
---|---|---|
近30年平均 Average over the last 30 years | 246.3 | - |
2017 | 226.7 | -8 |
2018 | 372.4 | 51 |
Fig. 1 Changes of soil temperature (0-5 cm) under moss and algae crusts in open top chamber (OTC) a passive warming device with different specifications. A, Moss crust-soil system (TX). B, Algae crust-soil system (ZL). CK means control group; OTC1, OTC2, OTC3 represent different warming treatments.
Fig. 2 Increase in soil temperature (0-5 cm) under moss and algae crusts in open top chamber (OTC) a passive warming device with different specifications. TX, moss crust-soil system; ZL, algae crust-soil system.
Fig. 3 Daily dynamics of respiration rate of the biological soil crust-soil system under simulated warming. A, Moss crust-soil system (TX). B, Algae crust-soil system (ZL). CK means control group; OTC1, OTC2, OTC3 represent different warming treatments.
Fig. 4 Growing season dynamics of respiration rate of the biological soil crust-soil system under simulated warming (mean ± SE). A, Moss crust-soil system (TX). B, Algae crust-soil system (ZL). CK means control group; OTC1, OTC2, OTC3 represent different warming treatments.
类型 Type | 年份 Year | CO2释放量 CO2 emission (g·m-2) | |||
---|---|---|---|---|---|
CK (CV, %) | OTC1 (CV, %) | OTC2 (CV, %) | OTC3 (CV, %) | ||
苔藓 Moss | 2017 | 120.71 (31.62) | 239.69 (27.64) | 223.83 (30.83) | 207.96 (34.96) |
2018 | 386.97 (30.91) | 430.63 (33.54) | 442.82 (32.31) | 481.35 (33.53) | |
藻类 Algae | 2017 | 79.03 (51.98) | 115.87 (53.15) | 105.86 (56.54) | 94.94 (56.39) |
2018 | 236.80 (46.93) | 272.71 (45.30) | 285.90 (43.74) | 308.64 (42.13) |
Table 3 Cumulative CO2 emission from the biological soil crust-soil system in the growing season under simulated warming treatments
类型 Type | 年份 Year | CO2释放量 CO2 emission (g·m-2) | |||
---|---|---|---|---|---|
CK (CV, %) | OTC1 (CV, %) | OTC2 (CV, %) | OTC3 (CV, %) | ||
苔藓 Moss | 2017 | 120.71 (31.62) | 239.69 (27.64) | 223.83 (30.83) | 207.96 (34.96) |
2018 | 386.97 (30.91) | 430.63 (33.54) | 442.82 (32.31) | 481.35 (33.53) | |
藻类 Algae | 2017 | 79.03 (51.98) | 115.87 (53.15) | 105.86 (56.54) | 94.94 (56.39) |
2018 | 236.80 (46.93) | 272.71 (45.30) | 285.90 (43.74) | 308.64 (42.13) |
类型 Type | 处理 Treatment | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | R2 | Q10 | p | 回归方程 Regression equation | R2 | Q10 | p | ||
苔藓 Moss | CK | y = 0.389e0.0489x | 0.36** | 1.61 | 0.001 | y = 1.131e0.0364x | 0.37** | 1.44 | 0.000 |
OTC1 | y = 0.612e0.0422x | 0.37** | 1.53 | 0.008 | y = 1.163e0.0419x | 0.51** | 1.52 | 0.001 | |
OTC2 | y = 0.546e0.0405x | 0.53** | 1.50 | 0.000 | y = 0.901e0.047x | 0.45** | 1.60 | 0.000 | |
OTC3 | y = 0.502e0.0385x | 0.66** | 1.47 | 0.000 | y = 1.009e0.0519x | 0.58** | 1.68 | 0.009 | |
藻类 Algae | CK | y = 0.103e0.0667x | 0.76** | 1.95 | 0.001 | y = 0.615e0.0363x | 0.33** | 1.44 | 0.000 |
OTC1 | y = 0.090e0.064x | 0.35** | 1.90 | 0.005 | y = 0.554e0.0445x | 0.27** | 1.56 | 0.004 | |
OTC2 | y = 0.149e0.0501x | 0.66** | 1.65 | 0.000 | y = 0.361e0.0519x | 0.40** | 1.68 | 0.000 | |
OTC3 | y = 0.204e0.0467x | 0.31** | 1.60 | 0.000 | y = 0.522e0.0567x | 0.49** | 1.76 | 0.000 |
Table 4 Regression relationship between respiration rate of the biological soil crust-soil system and soil temperature in the 0-5 cm layer under simulated warming and comparison of temperature sensitivity (Q10) among different treatments
类型 Type | 处理 Treatment | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | R2 | Q10 | p | 回归方程 Regression equation | R2 | Q10 | p | ||
苔藓 Moss | CK | y = 0.389e0.0489x | 0.36** | 1.61 | 0.001 | y = 1.131e0.0364x | 0.37** | 1.44 | 0.000 |
OTC1 | y = 0.612e0.0422x | 0.37** | 1.53 | 0.008 | y = 1.163e0.0419x | 0.51** | 1.52 | 0.001 | |
OTC2 | y = 0.546e0.0405x | 0.53** | 1.50 | 0.000 | y = 0.901e0.047x | 0.45** | 1.60 | 0.000 | |
OTC3 | y = 0.502e0.0385x | 0.66** | 1.47 | 0.000 | y = 1.009e0.0519x | 0.58** | 1.68 | 0.009 | |
藻类 Algae | CK | y = 0.103e0.0667x | 0.76** | 1.95 | 0.001 | y = 0.615e0.0363x | 0.33** | 1.44 | 0.000 |
OTC1 | y = 0.090e0.064x | 0.35** | 1.90 | 0.005 | y = 0.554e0.0445x | 0.27** | 1.56 | 0.004 | |
OTC2 | y = 0.149e0.0501x | 0.66** | 1.65 | 0.000 | y = 0.361e0.0519x | 0.40** | 1.68 | 0.000 | |
OTC3 | y = 0.204e0.0467x | 0.31** | 1.60 | 0.000 | y = 0.522e0.0567x | 0.49** | 1.76 | 0.000 |
[1] |
Allison SD, Treseder KK (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils.Global Change Biology, 14, 2898-2909.
DOI URL |
[2] |
Almagro M, López J, Querejeta JI, Martínez-Mena M (2009). Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem.Soil Biology & Biochemistry, 41, 594-605.
DOI URL |
[3] |
Bokhorst S, Bjerke JW, Melillo J, Callaghan TV, Phoenix GK (2010). Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland.Soil Biology & Biochemistry, 42, 611-617.
DOI URL |
[4] |
Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.Global Change Biology, 19, 2940-2955.
DOI URL |
[5] | Chen QS, Li LH, Han XG, Yan ZD, Wang YF, Zhang Y, Xiong XG, Chen SP, Zhang LX, Gao YZ, Tang F, Yang J, Dong YS (2004). Temperature sensitivity of soil respiration in relation to soil moisture in 11 communities of typical temperate steppe in Inner Mongolia.Acta Ecologica Sinica, 24, 831-836. |
[陈全胜, 李凌浩, 韩兴国, 阎志丹, 王艳芬, 张焱, 熊小刚, 陈世苹, 张丽霞, 高英志, 唐芳, 杨晶, 董云社 (2004). 典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系. 生态学报, 24, 175-180.] | |
[6] | Chen ZF (2012). Effects of Simulated Warming and Nitrogen Addition on Gas Exchange in Desert Steppe Ecosystems. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[陈志芳 (2012). 模拟增温和氮素添加对荒漠草原生态系统气体交换的影响. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[7] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change.Nature, 440, 165-173.
DOI URL |
[8] |
Dore MHI (2005). Climate change and changes in global precipitation patterns: What do we know?Environment International, 31, 1167-1181.
DOI URL |
[9] | Eldridge DJ, Greene RSB (1994). Microbiotic soil crusts—A review of their roles in soil and ecological processes in the rangelands of Australia.Australian Journal of Soil Research, 32, 389-415. |
[10] | Feng W (2014). Photosynthetic Carbon Fixation of Biological Soil Crusts in MU US Desert and Their Impact on Soil Carbon Emission.PhD dissertation, Beijing Forestry University, Beijing. |
[冯薇 (2014). 毛乌素沙地生物结皮光合固碳过程及对土壤碳排放的影响. 博士学位论文, 北京林业大学, 北京.] | |
[11] | Fu W, Zhang XY, Zhao J, Du SL, Hou MT (2017). Effects of experimental warming on soil respiration during growing period in cropland in the black soil region of Northeast China.Chinese Journal of Ecology, 36, 601-608. |
[付微, 张兴义, 赵军, 杜书立, 侯美亭 (2017). 模拟增温对东北黑土农田作物生长季土壤呼吸的影响. 生态学杂志, 36, 601-608.] | |
[12] | Geng XD, Xu R, Wei D (2017). Response of greenhouse gases flux to multi-level warming in an alpine meadow of Tibetan Plateau.Ecology and Environment Sciences, 26, 445-452. |
[耿晓东, 旭日, 魏达 (2017). 多梯度增温对青藏高原高寒草甸温室气体通量的影响. 生态环境学报, 26, 445-452.] | |
[13] | Gu C, Jia XH, Wu B, Cheng L, Yang ZW, Yang DF, Zhao XB (2017). Effect of simulated precipitation on the carbon flux in biological-soil crusted soil in alpine sandy habitats.Acta Ecologica Sinica, 37, 4423-4433. |
[辜晨, 贾晓红, 吴波, 成龙, 杨占武, 杨德福, 赵雪彬 (2017). 高寒沙区生物土壤结皮覆盖土壤碳通量对模拟降水的响应. 生态学报, 37, 4423-4433.] | |
[14] |
Guan C, Zhang P, Li XR (2017). Responses of soil respiration with biocrust cover to water and temperature in the southeastern edge of Tengger Desert, Northwest China. Chinese Journal of Plant Ecology, 41, 301-310.
DOI URL |
[管超, 张鹏, 李新荣 (2017). 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应. 植物生态学报, 41, 301-310.]
DOI URL |
|
[15] |
Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291, 15-26.
DOI URL |
[16] | Han HY (2014). Biological Soil Crust Carbon Emission and Its Effects on Soil Respiration Alpine in Alpine Sandy Land. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[韩海燕 (2014). 高寒沙地生物结皮碳释放及其对土壤呼吸的影响. 博士学位论文, 中国林业科学研究院, 北京.] | |
[17] | IPCC (2013). Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[18] |
Janssens IA, Pilegaard K (2003). Large seasonal changes inQ10 of soil respiration in a beech forest. Global Change Biology, 9, 911-918.
DOI URL |
[19] |
Klimek B, Choczyński M, Juszkiewicz A (2009). Scots pine (Pinus sylvestris L.) roots and soil moisture did not affect soil thermal sensitivity. European Journal of Soil Biology, 45, 442-447.
DOI URL |
[20] |
Lan SB, Wu L, Zhang DL, Hu CX (2012). Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China).Environmental Earth Sciences, 65, 77-88.
DOI URL |
[21] |
Leifeld J, Fuhrer J (2005). The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality.Biogeochemistry, 75, 433-453.
DOI URL |
[22] | Li XR, Zhang YM, Zhao YG (2009). A study of biological soil crusts: recent development, trend and prospect.Advances in Earth Science, 24, 11-24. |
[李新荣, 张元明, 赵允格 (2009). 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.] | |
[23] |
Lin GH, Rygiewicz PT, Ehleringer JR, Johnson MG, Tingey DT (2001). Time-dependent responses of soil CO2 efflux components to elevated atmospheric [CO2] and temperature in experimental forest mesocosms.Plant and Soil, 229, 259-270.
DOI URL |
[24] | Liu DJ (2012). Responses of Soil Respiration of Prickly Prickles Community to Rainfall Increase in Extreme Arid Area. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[刘殿君 (2012). 极端干旱区泡泡刺群落土壤呼吸对增雨的响应. 博士学位论文, 中国林业科学研究院, 北京.] | |
[25] | Liu HS, Liu HJ, Wang ZP, Xu M, Han XG, Li LH (2008). The temperature sensitivity of soil respiration.Progress in Geography, 27, 51-60. |
[26] |
Luo CY, Xu GP, Chao ZG, Wang SP, Lin XW, Hu YG, Zhang ZH, Duan JC, Chang XF, Su AL, Li YN, Zhao XQ, Du MY, Tang YH, Kimball B (2010). Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau.Global Change Biology, 16, 1606-1617.
DOI URL |
[27] |
Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A (2013). Changes in biocrust cover drive carbon cycle responses to climate change in drylands.Global Change Biology, 19, 3835-3847.
DOI URL |
[28] |
Marilley L, Hartwig UA, Aragno M (1999). Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneathLolium perenne and Trifolium repens under field conditions. Microbial Ecology, 38, 39-49.
DOI URL |
[29] |
McCulley RL, Boutton TW, Archer SR (2007). Soil respiration in a subtropical savanna parkland: response to water additions.Soil Science Society of America Journal, 71, 820-828.
DOI URL |
[30] | Niklińska M, Maryański M, Laskowski R (1999). Effect of temperature on humus respiration rate and nitrogen mineralization: implications for global climate change.Biogeochemistry, 44, 239-257. |
[31] | Pan XL, Lin B, Liu Q (2008). Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in western Sichuan Province, China.Chinese Journal of Applied Ecology,19, 1637-1643. |
[潘新丽, 林波, 刘庆 (2008). 模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响. 应用生态学报, 19, 1637-1643.] | |
[32] | Qin Y, Yi SH, Li NJ, Ren SL, Wang XY, Chen JJ (2012). Advance in studies of carbon cycling on alpine grasslands of the Qinghai-Tibetan Plateau.Acta Prataculturae Sinica, 21, 275-285. |
[秦彧, 宜树华, 李乃杰, 任世龙, 王晓云, 陈建军 (2012). 青藏高原草地生态系统碳循环研究进展. 草业学报, 21, 275-285.]
DOI URL |
|
[33] |
Reichstein M, Subke JA, Angeli AC, Tenhunene JD (2005). Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time?Global Change Biology, 11, 1754-1767.
DOI URL |
[34] | Song B, Niu SL (2016). Global change and terrestrial carbon cycle: a review.Journal of Southwest University for Nationalities (Natural Science Edition), 42, 14-23. |
[宋冰, 牛书丽 (2016). 全球变化与陆地生态系统碳循环研究进展. 西南民族大学学报(自然科学版), 42, 14-23.] | |
[35] | Su YG, Wu L, Zhou ZB, Liu YB, Zhang YM (2013). Carbon flux in deserts depends on soil cover type: a case study in the Gurbantunggute desert, North China. Soil Biology & Biochemistry, 58, 332-340. |
[36] |
Wan SQ, Norby RJ, Ledford J, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland.Global Change Biology, 13, 2411-2424.
DOI URL |
[37] | Wang Z, Zhao ML, Han GD, Gao FG, Han X (2012). Response of soil respiration to simulated warming and N addition in the desert steppe.Journal of Arid Land Resources and Environment, 26, 98-103. |
[王珍, 赵萌莉, 韩国栋, 高福光, 韩雄 (2012). 模拟增温及施氮对荒漠草原土壤呼吸的影响. 干旱区资源与环境, 26, 98-103.] | |
[38] |
Xia J, Han Y, Zhang Z, Zhang Z, Wan S (2009). Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe.Biogeosciences, 6, 1361-1370.
DOI URL |
[39] |
Xiong P, Xu ZF, Lin B, Liu Q (2010). Short-term response of winter soil respiration to simulated warming in aPinus armandii plantation in the upper reaches of the Minjiang River, China. Chinese Journal of Plant Ecology,34, 1369-1376.
DOI URL |
[熊沛, 徐振锋, 林波, 刘庆 (2010). 岷江上游华山松林冬季土壤呼吸对模拟增温的短期响应. 植物生态学报, 34, 1369-1376.]
DOI URL |
|
[40] |
Xu BX, Hu YG, Zhang ZS, Chen YL, Zhang P, Li G (2014). Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region.Chinese Journal of Plant Ecology, 38, 809-820.
DOI URL |
[徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚 (2014). 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 38, 809-820.]
DOI URL |
|
[41] |
Xu M, Qi Y (2001). Spatial and seasonal variations ofQ10 determined by soil respiration measurements at a Sierra Nevadan Forest. Global Biogeochemical Cycles, 15, 687-696.
DOI URL |
[42] | Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP (2011). Impact factors and uncertainties of the temperature sensitivity of soil respiration.Acta Ecologica Sinica, 31, 2301-2311. |
[杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普 (2011). 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 31, 2301-2311.] | |
[43] | Yang Y, Huang M, Liu HS, Liu HJ (2011). The interrelation between temperature sensitivity and adaptability of soil respiration.Journal of Natural Resources, 26, 1811-1820. |
[杨毅, 黄玫, 刘洪升, 刘华杰 (2011). 土壤呼吸的温度敏感性和适应性研究进展. 自然资源学报, 26, 1811-1820.]
DOI URL |
|
[44] |
Yuste JC, Ma S, Baldocchi DD (2010). Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux.Biogeochemistry, 98, 127-138.
DOI URL |
[45] |
Zhao JX, Luo TX, Wei HX, Deng ZH, Li X, Li RC, Tang YH (2019). Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe.Agricultural and Forest Meteorology, 279, 107761. DOI: 10.1016/j.agrformet.2019.107761.
DOI URL |
[1] | Jing-Yu Xia Yang-Jian ZHANG Zhou-Tao ZHENG Zhao Guang Zhao Ran 艺旋 朱 洁 高 Ruo-Nan SHEN 文宇 李 Jia-He ZHENG Zhang YuXue Jun-Tao ZHU Osbert Jianxin SUN. The asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Naqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] |
Yuan-He YANG Dianye Zhang Wei Bin Liu Yang Feng Xuehui Mao Chao Xu Weijie He Mei Wang Lu Zheng Zhihu Wang Yuanyuan Lei-Yi CHEN.
Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[3] | ZHONG Nan-Die, WANG Li, XIAO Jie, WANG Qiong. Effect of pollen source on reproductive success of Impatiens oxyanthera under warming conditions [J]. Chin J Plant Ecol, 2022, 46(4): 416-427. |
[4] | TIAN Lei, ZHU Yi, LI Xin, HAN Guo-Dong, REN Hai-Yan. Responses of plant phenology to warming and nitrogen addition under different precipitation conditions in a desert steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(3): 290-299. |
[5] | ZHANG Qing, YIN Ben-Feng, LI Ji-Wen, LU Yong-Xing, RONG Xiao-Ying, ZHOU Xiao-Bing, ZHANG Bing-Chang, ZHANG Yuan-Ming. Effects of moss mortality on soil enzyme activities in a temperate desert [J]. Chin J Plant Ecol, 2022, 46(3): 350-361. |
[6] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[7] | Cong HAN Peng LIU MU YanMei Yuan Yuan shaorong hao yun tian Zha tianshan Xin JIA. Response of ecosystem carbon balance to asymmetric daytime vs. nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
[8] | Yang Lilin Sujing Fu Zhimin Zhang Qifu Yao. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[9] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[10] | MAO Jin, DUO Ying, DENG Jun, CHENG Jie, CHENG Ji-Min, PENG Chang-Hui, GUO Liang. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau [J]. Chin J Plant Ecol, 2021, 45(8): 891-902. |
[11] | JIANG Fen, HUANG Juan, CHU Guo-Wei, CHENG Yan, LIU Xu-Jun, LIU Ju-Xiu, LIE Zhi-Yang. Effects of warming on soil phosphorus fractions and their contributions to available phosphorus in south subtropical forests [J]. Chin J Plant Ecol, 2021, 45(2): 197-206. |
[12] | WEI Chun-Xue, YANG Lu, WANG Jin-Song, YANG Jia-Ming, SHI Jia-Wei, TIAN Da-Shuan, ZHOU Qing-Ping, NIU Shu-Li. Effects of experimental warming on root biomass in terrestrial ecosystems [J]. Chin J Plant Ecol, 2021, 45(11): 1203-1212. |
[13] | ZHANG Hong-Jin, WANG Wei. Responses of ecosystem multifunctionality to global change: progress, problem and prospect [J]. Chin J Plant Ecol, 2021, 45(10): 1112-1126. |
[14] | LUO Lin, HUANG Yan, LIANG Jin, WANG En-Tao, HU Jun, HE He-Liang, ZHAO Chun-Zhang. Effects of plant interspecific interaction and warming on soil microbial community in root zone soil of two dominant tree species in the subalpine coniferous forest in southwestern China [J]. Chin J Plant Ecol, 2020, 44(8): 875-884. |
[15] | LI Xue-Ying, ZHU Wen-Quan, LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method [J]. Chin J Plant Ecol, 2020, 44(7): 742-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn