Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (3): 265-273.DOI: 10.17521/cjpe.2020.0322
Special Issue: 青藏高原植物生态学:生理生态学
• Research Articles • Previous Articles Next Articles
Received:
2020-09-25
Accepted:
2021-01-14
Online:
2021-03-20
Published:
2021-05-17
Contact:
WANG Xiao-Dan
Supported by:
WU Jian-Bo, WANG Xiao-Dan. Analyzing leaf anatomical structure of dominant species Stipa purpurea adapting to alpine and drought environment at Qingzang Plateau[J]. Chin J Plant Ecol, 2021, 45(3): 265-273.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0322
样点 Site | 地理位置 Geographic position | 海拔 Altitude (m) | 草原类型 Grass type | 优势种 Dominant species | ≥0 ℃积温 ≥0 °C accumulated temperature (℃·d) | 年降水量 Mean annual precipitation (MAP, mm) | 年平均气温 Mean annual air temperature (MAT, ℃) | 年蒸发量 Mean annual evaporation (mm) |
---|---|---|---|---|---|---|---|---|
安多 Amdo | 32.24° N 91.61° E | 4 746 | 高寒草甸 Alpine meadow | 高山嵩草 Kobresia pygmaea | 869 | 439 | -2.8 | 1 725 |
当雄 Damxung | 32.25° N 90.66° E | 4 228 | 高寒草原化草甸 Alpine steppe meadow | 高山嵩草 K. pygmaea 紫花针茅 Stipa purpurea | 1 536 | 456 | 1.3 | 1 710 |
五道梁 Wudaoliang | 32.26° N 90.19° E | 4 576 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 683 | 259 | -5.1 | 1 421 |
班戈 Baingoin | 31.36° N 90.45° E | 4 682 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 1 048 | 321 | -0.8 | 1 994 |
尼玛 Nyima | 31.78° N 87.28° E | 4 554 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 1 453 | 200 | -0.4 | 2 200 |
改则 Gêrzê | 31.20° N 84.53° E | 4 477 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 1 453 | 170 | 0.1 | 2 255 |
革吉 Gê’gyai | 31.20° N 81.56° E | 4 502 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 1 566 | 120 | 0.4 | 2 420 |
噶尔 Gar | 32.46° N 80.10° E | 4 300 | 高寒荒漠 Alpine dessert | 紫花针茅 S. purpurea | 1 573 | 72 | 0.7 | 2 696 |
Table 1 Environmental characters of sample sites at alpine steppe of Qingzang Plateau
样点 Site | 地理位置 Geographic position | 海拔 Altitude (m) | 草原类型 Grass type | 优势种 Dominant species | ≥0 ℃积温 ≥0 °C accumulated temperature (℃·d) | 年降水量 Mean annual precipitation (MAP, mm) | 年平均气温 Mean annual air temperature (MAT, ℃) | 年蒸发量 Mean annual evaporation (mm) |
---|---|---|---|---|---|---|---|---|
安多 Amdo | 32.24° N 91.61° E | 4 746 | 高寒草甸 Alpine meadow | 高山嵩草 Kobresia pygmaea | 869 | 439 | -2.8 | 1 725 |
当雄 Damxung | 32.25° N 90.66° E | 4 228 | 高寒草原化草甸 Alpine steppe meadow | 高山嵩草 K. pygmaea 紫花针茅 Stipa purpurea | 1 536 | 456 | 1.3 | 1 710 |
五道梁 Wudaoliang | 32.26° N 90.19° E | 4 576 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 683 | 259 | -5.1 | 1 421 |
班戈 Baingoin | 31.36° N 90.45° E | 4 682 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 1 048 | 321 | -0.8 | 1 994 |
尼玛 Nyima | 31.78° N 87.28° E | 4 554 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 1 453 | 200 | -0.4 | 2 200 |
改则 Gêrzê | 31.20° N 84.53° E | 4 477 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 1 453 | 170 | 0.1 | 2 255 |
革吉 Gê’gyai | 31.20° N 81.56° E | 4 502 | 高寒草原 Alpine steppe | 紫花针茅 S. purpurea | 1 566 | 120 | 0.4 | 2 420 |
噶尔 Gar | 32.46° N 80.10° E | 4 300 | 高寒荒漠 Alpine dessert | 紫花针茅 S. purpurea | 1 573 | 72 | 0.7 | 2 696 |
Fig. 1 Folia characters of Stipa purpurea in paraffin section at alpine steppe of Qingzang Plateau. 1, cuticle; 2, outer epidermis; 3, collenchymatous cell; 4, inner epidermis; 5, vessel; 6, mainly vascular bundle; 7, stoma.
高寒草甸 Alpine meadow | 高寒草原 Alpine steppe | |||||||
---|---|---|---|---|---|---|---|---|
安多 Amdo | 当雄 Damxung | 五道梁 Wudaoliang | 班戈 Baingoin | 尼玛 Nyima | 改则 Gêrzê | 革吉 Gê’gyai | 噶尔 Gar | |
角质层厚度 Cuticle thickness (μm) | 4.75 ± 0.95 | 5.22 ± 0.46 | 5.85 ± 0.38 | 5.51 ± 0.74 | 4.36 ± 0.15 | 5.18 ± 0.40 | 4.99 ± 0.81 | 5.25 ± 0.62 |
外表皮厚度 Outer epidermal thickness (μm) | 12.16 ± 2.31 a | 8.93 ± 0.40 b | 9.51 ± 0.34 b | 7.63 ± 0.51 b | 9.76 ± 1.53 b | 7.36 ± 0.80 b | 8.89 ± 0.59 b | 8.08 ± 0.71 b |
内表皮厚度 Inner epidermal thickness (μm) | 18.82 ± 3.07 a | 7.80 ± 0.45 b | 6.95 ± 0.33 b | 5.46 ± 0.33 b | 6.35 ± 0.45 b | 6.13 ± 0.58 b | 7.83 ± 0.77 b | 8.49 ± 1.00 b |
厚角细胞厚度 Collenchymatous cell thickness (μm) | 0 | 5.16 ± 0.82 b | 4.92 ± 0.22 b | 9.18 ± 2.12 a | 13.32 ± 1.35 a | 11.67 ± 1.72 a | 10.66 ± 0.76 a | 13.97 ± 0.78 a |
气孔宽度 Stoma width (μm) | 28.33 ± 8.82 a | 12.42 ± 1.73 bc | 10.06 ± 0.60 c | 9.97 ± 1.22 c | 12.35 ± 0.50 bc | 13.55 ± 1.14 bc | 15.37 ± 1.45 b | 15.62 ± 1.05 b |
叶片厚度 Leaf thickness (μm) | 269.89 ± 19.67 a | 179.12 ± 16.49 c | 170.74 ± 2.60 c | 173.46 ± 2.69 c | 196.55 ± 11.10bc | 190.09 ± 19.18 bc | 246.28 ± 31.81 b | 212.33 ± 2.64 b |
导管直径 Vessel diameter (μm) | 16.04 ± 2.09 a | 12.13 ± 1.13 b | 9.73 ± 0.42 c | 12.83 ± 1.36 b | 11.82 ± 1.13 b | 12.73 ± 1.34 b | 21.15 ± 2.84 a | 18.36 ± 2.23 a |
主脉导管腔面积/主脉维管束面积 Catheter cavity area/area of main vascular bundle | 0.11 ± 0.00 b | 0.11 ± 0.01 b | 0.07 ± 0.00 c | 0.11 ± 0.02 b | 0.11 ± 0.00 b | 0.15 ± 0.02 a | 0.16 ± 0.03 a | 0.16 ± 0.02 a |
维管束面积/叶横切面积Vascular area/leaf cross sectional area | 0.04 ± 0.01 b | 0.05 ± 0.01 b | 0.07 ± 0.01 a | 0.08 ± 0.01 a | 0.07 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a |
Table 2 Leaf characters of Stipa purpurea at different population at alpine steppe of Qingzang Plateau (mean ± SE)
高寒草甸 Alpine meadow | 高寒草原 Alpine steppe | |||||||
---|---|---|---|---|---|---|---|---|
安多 Amdo | 当雄 Damxung | 五道梁 Wudaoliang | 班戈 Baingoin | 尼玛 Nyima | 改则 Gêrzê | 革吉 Gê’gyai | 噶尔 Gar | |
角质层厚度 Cuticle thickness (μm) | 4.75 ± 0.95 | 5.22 ± 0.46 | 5.85 ± 0.38 | 5.51 ± 0.74 | 4.36 ± 0.15 | 5.18 ± 0.40 | 4.99 ± 0.81 | 5.25 ± 0.62 |
外表皮厚度 Outer epidermal thickness (μm) | 12.16 ± 2.31 a | 8.93 ± 0.40 b | 9.51 ± 0.34 b | 7.63 ± 0.51 b | 9.76 ± 1.53 b | 7.36 ± 0.80 b | 8.89 ± 0.59 b | 8.08 ± 0.71 b |
内表皮厚度 Inner epidermal thickness (μm) | 18.82 ± 3.07 a | 7.80 ± 0.45 b | 6.95 ± 0.33 b | 5.46 ± 0.33 b | 6.35 ± 0.45 b | 6.13 ± 0.58 b | 7.83 ± 0.77 b | 8.49 ± 1.00 b |
厚角细胞厚度 Collenchymatous cell thickness (μm) | 0 | 5.16 ± 0.82 b | 4.92 ± 0.22 b | 9.18 ± 2.12 a | 13.32 ± 1.35 a | 11.67 ± 1.72 a | 10.66 ± 0.76 a | 13.97 ± 0.78 a |
气孔宽度 Stoma width (μm) | 28.33 ± 8.82 a | 12.42 ± 1.73 bc | 10.06 ± 0.60 c | 9.97 ± 1.22 c | 12.35 ± 0.50 bc | 13.55 ± 1.14 bc | 15.37 ± 1.45 b | 15.62 ± 1.05 b |
叶片厚度 Leaf thickness (μm) | 269.89 ± 19.67 a | 179.12 ± 16.49 c | 170.74 ± 2.60 c | 173.46 ± 2.69 c | 196.55 ± 11.10bc | 190.09 ± 19.18 bc | 246.28 ± 31.81 b | 212.33 ± 2.64 b |
导管直径 Vessel diameter (μm) | 16.04 ± 2.09 a | 12.13 ± 1.13 b | 9.73 ± 0.42 c | 12.83 ± 1.36 b | 11.82 ± 1.13 b | 12.73 ± 1.34 b | 21.15 ± 2.84 a | 18.36 ± 2.23 a |
主脉导管腔面积/主脉维管束面积 Catheter cavity area/area of main vascular bundle | 0.11 ± 0.00 b | 0.11 ± 0.01 b | 0.07 ± 0.00 c | 0.11 ± 0.02 b | 0.11 ± 0.00 b | 0.15 ± 0.02 a | 0.16 ± 0.03 a | 0.16 ± 0.02 a |
维管束面积/叶横切面积Vascular area/leaf cross sectional area | 0.04 ± 0.01 b | 0.05 ± 0.01 b | 0.07 ± 0.01 a | 0.08 ± 0.01 a | 0.07 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a |
外表皮厚度 Outer epidermal thickness | 内表皮厚度 Inner epidermal thickness | 角质层厚度 Cuticle thickness | 气孔宽度 Stoma width | 叶片厚度 Leaf thickness | 导管直径 Cavities diameter | 厚角细胞厚度 Collenchymatous cell thickness | 主脉导管腔面积/ 主脉维管束面积 Catheter cavity area/area of main vascular bundle | 维管束面积/ 叶横切面积 Vascular area/leaf cross sectional area | |
---|---|---|---|---|---|---|---|---|---|
年降水量 Mean annual precipitation (mm) | 0.58 | 0.42 | 0.30 | 0.21 | 0.01 | -0.55 | -0.78* | -0.87** | -0.61 |
年平均气温 Mean annual air temperature (℃) | -0.34 | -0.39 | 0.24 | -0.31 | -0.12 | 0.15 | 0.50 | 0.21 | 0.77* |
≥0 ℃积温 ≥0 °C accumulated temperature | 0.11 | 0.29 | -0.56 | 0.50 | 0.56 | 0.64 | 0.34 | 0.67 | 0.33 |
年蒸发量 Mean annual evaporation (mm) | -0.43 | -0.26 | -0.21 | -0.05 | 0.16 | 0.61 | 0.76* | 0.79* | 0.76* |
年降水量/年蒸发量 Mean annual precipitation/mean annual evaporation | 0.59 | 0.44 | 0.32 | 0.21 | 0.00 | -0.55 | -0.83* | -0.87** | -0.71* |
湿润指数 Humidity index | 0.29 | 0.07 | 0.56 | -0.18 | -0.31 | -0.69 | -0.65 | -0.91** | -0.50 |
生长季平均气温 Mean air temperature during growing season | -0.50 | -0.39 | 0.19 | -0.24 | -0.01 | 0.51 | 0.57 | 0.64 | 0.81* |
生长季降水量 Mean precipitation during growing season | 0.52 | 0.28 | 0.05 | 0.10 | -0.16 | -0.75* | -0.51 | -0.90** | -0.53 |
7月平均气温 Average air temperature at July | -0.42 | -0.27 | 0.07 | -0.10 | 0.12 | 0.59 | 0.55 | 0.70 | 0.79* |
7月降水量 Mean precipitation at July | 0.50 | 0.28 | 0.05 | 0.11 | -0.15 | -0.73* | -0.48 | -0.87** | -0.47 |
Table 3 Correlations between climatic factors and leaf structures of Stipa purpurea at alpine steppe of Qingzang Plateau
外表皮厚度 Outer epidermal thickness | 内表皮厚度 Inner epidermal thickness | 角质层厚度 Cuticle thickness | 气孔宽度 Stoma width | 叶片厚度 Leaf thickness | 导管直径 Cavities diameter | 厚角细胞厚度 Collenchymatous cell thickness | 主脉导管腔面积/ 主脉维管束面积 Catheter cavity area/area of main vascular bundle | 维管束面积/ 叶横切面积 Vascular area/leaf cross sectional area | |
---|---|---|---|---|---|---|---|---|---|
年降水量 Mean annual precipitation (mm) | 0.58 | 0.42 | 0.30 | 0.21 | 0.01 | -0.55 | -0.78* | -0.87** | -0.61 |
年平均气温 Mean annual air temperature (℃) | -0.34 | -0.39 | 0.24 | -0.31 | -0.12 | 0.15 | 0.50 | 0.21 | 0.77* |
≥0 ℃积温 ≥0 °C accumulated temperature | 0.11 | 0.29 | -0.56 | 0.50 | 0.56 | 0.64 | 0.34 | 0.67 | 0.33 |
年蒸发量 Mean annual evaporation (mm) | -0.43 | -0.26 | -0.21 | -0.05 | 0.16 | 0.61 | 0.76* | 0.79* | 0.76* |
年降水量/年蒸发量 Mean annual precipitation/mean annual evaporation | 0.59 | 0.44 | 0.32 | 0.21 | 0.00 | -0.55 | -0.83* | -0.87** | -0.71* |
湿润指数 Humidity index | 0.29 | 0.07 | 0.56 | -0.18 | -0.31 | -0.69 | -0.65 | -0.91** | -0.50 |
生长季平均气温 Mean air temperature during growing season | -0.50 | -0.39 | 0.19 | -0.24 | -0.01 | 0.51 | 0.57 | 0.64 | 0.81* |
生长季降水量 Mean precipitation during growing season | 0.52 | 0.28 | 0.05 | 0.10 | -0.16 | -0.75* | -0.51 | -0.90** | -0.53 |
7月平均气温 Average air temperature at July | -0.42 | -0.27 | 0.07 | -0.10 | 0.12 | 0.59 | 0.55 | 0.70 | 0.79* |
7月降水量 Mean precipitation at July | 0.50 | 0.28 | 0.05 | 0.11 | -0.15 | -0.73* | -0.48 | -0.87** | -0.47 |
成分 Component | 特征根植 Eigenvalue | 变异系数 Percentage of variance (%) | 累计值 Cumulative (%) |
---|---|---|---|
1 | 4.80 | 53.32 | 53.32 |
2 | 2.67 | 29.68 | 83.00 |
3 | 0.94 | 10.42 | 93.42 |
4 | 0.28 | 3.08 | 96.50 |
5 | 0.22 | 2.44 | 98.94 |
6 | 0.08 | 0.86 | 99.80 |
7 | 0.02 | 0.20 | 100.00 |
8 | 0.00 | 0.00 | 100.00 |
Table 4 Eigenvalues and extraction squared loading of principal component analysis
成分 Component | 特征根植 Eigenvalue | 变异系数 Percentage of variance (%) | 累计值 Cumulative (%) |
---|---|---|---|
1 | 4.80 | 53.32 | 53.32 |
2 | 2.67 | 29.68 | 83.00 |
3 | 0.94 | 10.42 | 93.42 |
4 | 0.28 | 3.08 | 96.50 |
5 | 0.22 | 2.44 | 98.94 |
6 | 0.08 | 0.86 | 99.80 |
7 | 0.02 | 0.20 | 100.00 |
8 | 0.00 | 0.00 | 100.00 |
第一主成分 Coefficients of PC1 | 第二主成分 Coefficients of PC2 | |
---|---|---|
外表皮厚度 Outer epidermal thickness | 0.47 | -0.05 |
角质层厚度 Cuticle thickness | 0.45 | 0.19 |
厚角细胞厚度 Collenchymatous cell thickness | 0.41 | 0.32 |
气孔宽度 Stoma width | 0.08 | -0.39 |
导管直径 Vessel diameter | 0.04 | 0.55 |
主脉导管腔面积/主脉维管束面积 Catheter cavity area/ area of main vascular bundle | -0.16 | 0.55 |
内表皮厚度 Inner epidermal thickness | -0.19 | -0.21 |
叶片厚度 Leaf thickness | -0.39 | 0.14 |
维管束面积/叶横切面积 Vascular area/ leaf cross sectional area | -0.44 | 0.19 |
Table 5 Principal component analysis of leaf structures of Stipa purpurea at alpine steppe of Qingzang Plateau
第一主成分 Coefficients of PC1 | 第二主成分 Coefficients of PC2 | |
---|---|---|
外表皮厚度 Outer epidermal thickness | 0.47 | -0.05 |
角质层厚度 Cuticle thickness | 0.45 | 0.19 |
厚角细胞厚度 Collenchymatous cell thickness | 0.41 | 0.32 |
气孔宽度 Stoma width | 0.08 | -0.39 |
导管直径 Vessel diameter | 0.04 | 0.55 |
主脉导管腔面积/主脉维管束面积 Catheter cavity area/ area of main vascular bundle | -0.16 | 0.55 |
内表皮厚度 Inner epidermal thickness | -0.19 | -0.21 |
叶片厚度 Leaf thickness | -0.39 | 0.14 |
维管束面积/叶横切面积 Vascular area/ leaf cross sectional area | -0.44 | 0.19 |
[1] |
Buckley TN, John GP, Scoffoni C, Sack L (2015). How does leaf anatomy influence water transport outside the xylem? Plant Physiology, 168, 1616-1635.
DOI PMID |
[2] | Cai YL, Song YC (2001). Adaptive ecology of lianas in Tiantong evergreen broad-leaved forest, Zhejiang, China. I. Leaf anatomical characters. Acta Phytoecologica Sinica, 25, 90-98. |
[蔡永立, 宋永昌 (2001). 浙江天童常绿阔叶林藤本植物的适应生态学: I. 叶片解剖特征的比较. 植物生态学报, 25, 90-98.] | |
[3] | Chen DL, Xu BQ, Yao TD, Guo ZT, Cui P, Chen FH, Zhang RH, Zhang XZ, Zhang YL, Fan J, Hou ZQ, Zhang TH (2015). Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin, 60, 3025-3035. |
[陈德亮, 徐柏青, 姚檀栋, 郭正堂, 崔鹏, 陈发虎, 张人禾, 张宪洲, 张镱锂, 樊杰, 侯增谦, 张天华 (2015). 青藏高原环境变化科学评估: 过去、现在与未来. 科学通报, 60, 3025-3035.] | |
[4] | Cox CB, Moorc PD (2010). Biogeography: an Ecological and Evolutionary Approach. Blackwell Publishing, Oxford, UK. |
[5] | Deng YB, Jiang YC, Liu J (1998). The xeromophic and saline mophic structure of leaves and assimilating branches in ten Chenopodiacea species in Xinjiang. Acta Phytoecologica Sinica, 22, 164-170. |
[邓彦斌, 姜彦成, 刘健 (1998). 新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究. 植物生态学报, 22, 164-170.] | |
[6] | Guo GG, Feng B, Ma BL, Zhang YL, Guo CH, Jing ZB (2013). Leaf anatomical structures of different regional Amygdalus pedunculata Pall. and their drought resistance analysis. Acta Botanica Boreali-Occidentalia Sinica, 33, 720-728. |
[郭改改, 封斌, 麻保林, 张应龙, 郭春会, 井赵斌 (2013). 不同区域长柄扁桃叶片解剖结构及其抗旱性分析. 西北植物学报, 33, 720-728.] | |
[7] | He T, Wu XM, Jia JF (2007). Research advances in morphology and anatomy of alpine plants growing in the Qinghai- Tibet Plateau and their adaptations to environments. Acta Ecologica Sinica, 27, 2574-2583. |
[何涛, 吴学明, 贾敬芬 (2007). 青藏高原高山植物的形态和解剖结构及其对环境的适应性研究进展. 生态学报, 27, 2574-2583.] | |
[8] |
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901-908.
PMID |
[9] | Holmes MG, Keiller DR (2002). Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant, Cell & Environment, 25, 85-93. |
[10] | Hu JY, Guo K, Dong M (2008). Variation of leaf structure of two dominant species in alpine grassland and the relationship between leaf structure and ecological factors. Journal of Plant Ecology (Chinese Version), 32, 370-378. |
[胡建莹, 郭柯, 董鸣 (2008). 高寒草原优势种叶片结构变化与生态因子的关系. 植物生态学报, 32, 370-378.]
DOI |
|
[11] |
Hu MY, Zhang L, Luo TX, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 36, 136-143.
DOI URL |
[胡梦瑶, 张林, 罗天祥, 沈维 (2012). 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 36, 136-143.]
DOI |
|
[12] | Hu XP, Ji CJ, An LH (2016). Leaf epidermis characteristics of the main grassland monocotyledonous plant species on the Tibetan Plateau. Acta Ecologica Sinica, 36, 6465-6474. |
[胡选萍, 吉成均, 安丽华 (2016). 青藏高原草地主要单子叶植物的叶表面特征. 生态学报, 36, 6465-6474.] | |
[13] | Ji RX, Yu X, Chang Y, Shen C, Bai XQ, Xia XL, Yin WL, Liu C (2020). Geographical provenance variation of leaf anatomical structure of Caryopteris mongholica and its significance in response to environmental changes. Chinese Joumal of Plant Ecology, 44, 277-286. |
[纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超 (2020). 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 44, 277-286.]
DOI |
|
[14] | Kang S, Niu JM, Zhang Q, Chen LP (2013). Anatomical structure of Stipa breviflora leaves and its relationship with environmental factors. Acta Prataculturae Sinica, 22, 77-86. |
[康萨如拉, 牛建明, 张庆, 陈丽萍 (2013). 短花针茅叶片解剖结构及与气候因子的关系. 草业学报, 22, 77-86.] | |
[15] | Kou M, Yin QL, Jiao JY (2019). Leaf anatomical structures and acclimation of ten monocotyledons in the Hilly-Gullied Loess Plateau region. Acta Botanica Boreal-Occidentalia Sinica, 39, 102-109. |
[寇萌, 尹秋龙, 焦菊英 (2019). 黄土丘陵沟壑区10种单子叶植物叶片解剖结构及环境适应性. 西北植物学报, 39, 102-109.] | |
[16] |
Li QF, Wang BJ, An LH, Ji CJ (2013). Leaf anatomical characteristics of the plants of grasslands in the Tibetan Plateau. Acta Ecologica Sinica, 33, 2062-2070.
DOI URL |
[李全发, 王宝娟, 安丽华, 吉成均 (2013). 青藏高原草地植物叶解剖特征. 生态学报, 33, 2062-2070.] | |
[17] | Li X, Yang SH, Yang YQ, Yin X, Sun XD, Yang YP (2015). Comparative physiological and molecular analyses of intraspecific differences of Stipa purpurea (Poaceae) response to drought. Plant Diversity and Resources, 37, 439-452. |
[李雄, 杨时海, 杨云强, 尹欣, 孙旭东, 杨永平 (2015). 不同居群紫花针茅响应干旱胁迫的生理和分子差异分析. 植物分类与资源学报, 37, 439-452.] | |
[18] | Li ZL (1981). Morphology and structure of drought vegetation. Biology of Journal, 16, 9-12. |
[李正理 (1981). 旱生植物的形态和结构. 生物学通报, 16, 9-12.] | |
[19] |
Ma B, Sun J (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18, 1-12.
DOI URL |
[20] |
Ma JJ, Ji CJ, Han M, Zhang FT, Yan XD, Hu D, Zeng H, He JS (2012). Comparative analyses of leaf anatomy of dicotyledonous species in Tibetan and Inner Mongolian grasslands. Science China, Life Science, 55, 68-79.
DOI URL |
[21] | Meng M, Ni J, Zhang ZG (2004). Aridity index and its applications in geo-ecological study. Acta Phytoecologica Sinica, 28, 853-861. |
[孟猛, 倪健, 张治国 (2004). 地理生态学的干燥度指数及其应用评述. 植物生态学报, 28, 853-861.]
DOI |
|
[22] | Sun HT, Jiang S, Liu JM, Cuo YJ, Shen GS, Gu S (2016). Structure and ecological adaptability of the leaves of three Asteracae species different altitudes on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 36, 1559-1570. |
[孙会婷, 江莎, 刘婧敏, 郭亚娇, 沈广爽, 古松 (2016). 青藏高原不同海拔3种菊科植物时片结构变化及其生态适应性. 生态学报, 36, 1559-1570.] | |
[23] | Tan CP, Yang JP, Mi R (2010). Analysis of the climatic change characteristics in the Southern Tibetan Plateau from 1971 to 2007. Journal of Glaciology and Geocryology, 32, 1111-1120. |
[谭春萍, 杨建平, 米睿 (2010). 1971-2007年青藏高原南部气候变化特征分析. 冰川冻土, 32, 1111-1120.] | |
[24] |
Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216.
DOI URL |
[王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.]
DOI |
|
[25] | Wang M, Li Y, Hang RQ, Li YL (2005). The effects of climate warming on the alpine vegetation of the Qinghai-Tibetan Plateau hinterland. Acta Ecologica Sinica, 25, 1275-1281. |
[王谋, 李勇, 黄润秋, 李亚林 (2005). 气候变暖对青藏高原腹地高寒植被的影响. 生态学报, 25, 1275-1281.] | |
[26] |
Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and 1ow-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434.
DOI URL |
[27] |
Wu JB, Wang XD (2019). Temporal stability of aboveground net primary production in northern Tibet alpine steppe in response to nitrogen addition. Journal of Mountain Science, 16, 2679-2686.
DOI URL |
[28] | Yang MB, Yang J, Yang JY, Liang N, Qing H (2007). Changes of characteristics of the leaf epidermis and genetic diversity of Caragana davazamcii in different habitats in Erdos Plateau, China. Journal of Plant Ecology (Chinese Version), 31, 1181-1189. |
[杨明博, 杨劼, 杨九艳, 梁娜, 清华 (2007). 鄂尔多斯高原不同生境条件下中间锦鸡儿植物叶片表皮特征及遗传多样性变化分析. 植物生态学报, 31, 1181-1189.]
DOI |
|
[29] | Zhong YM, Dong FY, Wang WJ, Wang JM, Li JW, Wu B, Jia XH (2017). Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats. Journal of Beijing Forestry University, 39(10), 53-61. |
[钟悦鸣, 董芳宇, 王文娟, 王健铭, 李景文, 吴波, 贾晓红 (2017). 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报, 39(10), 53-61.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn