Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (2): 136-143.DOI: 10.3724/SP.J.1258.2012.00136
Special Issue: 青藏高原植物生态学:种群生态学; 植物功能性状
• Research Articles • Previous Articles Next Articles
HU Meng-Yao1,2, ZHANG Lin1,*(), LUO Tian-Xiang1, SHEN Wei1,2
Received:
2011-07-20
Accepted:
2011-12-16
Online:
2012-07-20
Published:
2012-02-22
Contact:
ZHANG Lin
HU Meng-Yao, ZHANG Lin, LUO Tian-Xiang, SHEN Wei. Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China[J]. Chin J Plant Ecol, 2012, 36(2): 136-143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.00136
研究地点 Study site | 纬度 Latitude (°) | 经度 Longitude (°) | 海拔 Altitude (m) | 年平均气温 AT (℃) | 生长季平均气温 GST (℃) | 年降水量 AP (mm) | 生长季降水量 GSP (mm) | 年降水量/年蒸发量 Ratio of rainfall to evaporation |
---|---|---|---|---|---|---|---|---|
当雄 Damxung | 30.50 | 91.05 | 4 480 | 1.66 | 9.78 | 479 | 402 | 0.25 |
纳木错 Namco | 30.77 | 90.98 | 4 730 | -0.40 | 7.99 | 404 | 338 | 0.27 |
珠穆朗玛峰 Mount Qomolangma | 28.21 | 86.56 | 4 276 | 2.50 | 10.73 | 282 | 271 | 0.10 |
改则 Gêrzê | 32.30 | 84.08 | 4 437 | 0.03 | 10.39 | 171 | 154 | 0.03 |
日土 Rutog | 33.40 | 79.72 | 4 286 | 0.50 | 11.64 | 69 | 59 | 0.07 |
Table 1 Locations and climatic factors of study sites
研究地点 Study site | 纬度 Latitude (°) | 经度 Longitude (°) | 海拔 Altitude (m) | 年平均气温 AT (℃) | 生长季平均气温 GST (℃) | 年降水量 AP (mm) | 生长季降水量 GSP (mm) | 年降水量/年蒸发量 Ratio of rainfall to evaporation |
---|---|---|---|---|---|---|---|---|
当雄 Damxung | 30.50 | 91.05 | 4 480 | 1.66 | 9.78 | 479 | 402 | 0.25 |
纳木错 Namco | 30.77 | 90.98 | 4 730 | -0.40 | 7.99 | 404 | 338 | 0.27 |
珠穆朗玛峰 Mount Qomolangma | 28.21 | 86.56 | 4 276 | 2.50 | 10.73 | 282 | 271 | 0.10 |
改则 Gêrzê | 32.30 | 84.08 | 4 437 | 0.03 | 10.39 | 171 | 154 | 0.03 |
日土 Rutog | 33.40 | 79.72 | 4 286 | 0.50 | 11.64 | 69 | 59 | 0.07 |
环境因子 Environmental factor | 叶性状 Leaf trait | ||
---|---|---|---|
比叶面积 SLA (cm·g-1) | 单位重量叶氮含量 Nmass (mg·g-1) | 单位面积叶氮含量 Narea (g·m-2) | |
生长季平均气温 Mean air temperature in growing season (℃) | 0.21 | -0.29 | -0.46** |
年平均气温 Annual mean air temperature (℃) | 0.21 | -0.27 | -0.36* |
生长季降水量 Precipitation in growing season (mm) | 0.01 | 0.20 | 0.24 |
年降水量 Annual precipitation (mm) | 0.01 | 0.21 | 0.28 |
土壤全氮含量 Total N in soil (mg·g-1) | 0.19 | 0.18 | 0.50** |
Table 2 Correlation coefficients for linear relationships between climatic factors and leaf functional traits of Stipa purpurea in pooled data across the five study sites
环境因子 Environmental factor | 叶性状 Leaf trait | ||
---|---|---|---|
比叶面积 SLA (cm·g-1) | 单位重量叶氮含量 Nmass (mg·g-1) | 单位面积叶氮含量 Narea (g·m-2) | |
生长季平均气温 Mean air temperature in growing season (℃) | 0.21 | -0.29 | -0.46** |
年平均气温 Annual mean air temperature (℃) | 0.21 | -0.27 | -0.36* |
生长季降水量 Precipitation in growing season (mm) | 0.01 | 0.20 | 0.24 |
年降水量 Annual precipitation (mm) | 0.01 | 0.21 | 0.28 |
土壤全氮含量 Total N in soil (mg·g-1) | 0.19 | 0.18 | 0.50** |
Fig. 2 Relationships of specific leaf area (SLA) with leaf thickness (A) and leaf density (B) of Stipa purpurea. Trends lines are for the data from the arid and semi-arid areas in Fig. 2A and the semi-humid areas in Fig. 2B, respectively.
Fig. 3 Relationships of (A, B) leaf density and (C, D) leaf thickness of Stipa purpurea with growing season mean temperature and precipitation. Trends lines are for all pooled data.
Fig. 4 Relationships of area-based leaf N concentration (Narea) with leaf density (A) and leaf thickness (B) of Stipa purpurea. Trends lines are for the data from the semi-humid areas.
[1] | Farquhar GD, Buckley TN, Miller JM (2002). Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica, 36, 625-637. |
[2] | Field C, Mooney HA (1986). The photosynthesis-nitrogen relationship in wild plants. In: Givinish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK, 25-55. |
[3] | Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977. |
[4] | Gouveia AC, Freitas H (2009). Modulation of leaf attributes and water use efficiency in Quercus suber along a rainfall gradient. Trees-Structure and Function, 23, 267-275. |
[5] | He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122. |
[6] |
He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 90, 2779-2791.
DOI URL PMID |
[7] |
Hodgson JG, Montserrat-Martí G, Charles M, Jones G, Wilson P, Shipley B, Sharafi M, Cerabolini BEL, Cornelissen JHC, Band SR, Bogard A, Castro-Diez P, Guerrero- Campo J, Palmer C, Pérez-Rontomé MC, Carter G, Hynd A, Romo-Díez A, de Torres Espuny L, Pla FR (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 108, 1337-1345.
DOI URL PMID |
[8] | Kitajima K, Poorter L (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist, 186, 708-721. |
[9] | Li YH (李永华), Luo TX (罗天祥), Lu Qi (卢琦), Tian XY (田晓娅), Wu B (吴波), Yang HH (杨恒华) (2005). Comparisons of leaf traits among 17 major plant species in Shazhuyu Sand Control Experimental Station of Qinghai Province. Acta Ecologica Sinica (生态学报), 25, 994-999. (in Chinese with English abstract) |
[10] | Luo TX, Li MC, Luo J (2011). Seasonal variations in leaf δ13C and nitrogen associated with foliage turnover and carbon gain for a wet subalpine fir forest in the Gongga Mountains, eastern Tibetan Plateau. Ecological Research, 26, 253-263. |
[11] | Luo TX, Zhang L, Zhu HZ, Daly C, Li MC, Luo J (2009). Correlations between net primary productivity and foliar carbon isotope ratio across a Tibetan ecosystem transect. Ecography, 32, 526-538. |
[12] |
Osunkoya OO, Daud SD, Wimmer FL (2008). Longevity, lignin content and construction cost of the assimilatory organs of Nepenthes species. Annals of Botany, 102, 845-853.
DOI URL PMID |
[13] | Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588. |
[14] | Prior LD, Bowman DMJS, Eamus D (2005). Intra-specific variation in leaf attributes of four savanna tree species across a rainfall gradient in tropical Australia. Australian Journal of Botany, 53, 323-335. |
[15] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of National Academy of Sciences of the United States of America, 101, 11001-11006. |
[16] | Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of National Academy of Sciences of the United States of America, 94, 13730-13734. |
[17] | Smith WK, Vogelmann TC, DeLucia EH., Bell DT, Shepherd KA (1997). Leaf form and photosynthesis. Bioscience, 47, 785-793. |
[18] | Song CQ (宋春桥), You SC (游松财), Ke LH (柯灵红), Liu GH (刘高焕), Zhong XK (钟新科) (2011). Spatio- temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing. Chinese Journal of Plant Ecology (植物生态学报), 35, 853-863. (in Chinese with English abstract) |
[19] |
Wei H, Wu B, Yang W, Luo T (2011). Low rainfall-induced shift in leaf trait relationship within species along a semi-arid sandy land transect in northern China. Plant Biology, 13, 85-92.
DOI URL PMID |
[20] | Wei HX (魏海霞) (2009). Mechanisms for Variations in Eco-physiological Characteristics of Sandy Plants along a Rainfall Gradient in Semi-arid Regions (半干旱区沙生植物沿降水梯度的生理生态变化机理研究). PhD dissertation, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[21] | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162. |
[22] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421. |
[23] | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[24] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot H, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[25] | Wright IJ, Westoby M (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytologist, 155, 403-416. |
[26] | Wu ZY (吴征镒) (1980). Chinese Vegetation (中国植被). Science Press, Beijing. (in Chinese) |
[27] | Yu HY, Luedeling E, Xu JC (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156. |
[28] | Zhang L (张林), Jin DM (金冬梅) (2010). Principle methods of measuring leaf area of conifer trees. Beijing: Biodiversity Conservation and Research Progress in China, VIII. 46-50. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn