Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (1): 7-16.DOI: 10.3773/j.issn.1005-264x.2010.01.003
Special Issue: 植物功能性状
• Special feature: Ecological Stoichiometry • Previous Articles Next Articles
ZHOU Peng1, GENG Yan1, MA Wen-Hong2, HE Jin-Sheng1,*()
Received:
2008-05-05
Accepted:
2008-07-23
Online:
2010-05-05
Published:
2010-01-01
Contact:
HE Jin-Sheng
ZHOU Peng, GENG Yan, MA Wen-Hong, HE Jin-Sheng. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China[J]. Chin J Plant Ecol, 2010, 34(1): 7-16.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3773/j.issn.1005-264x.2010.01.003
地点 Site | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 草地类型 Grassland type |
---|---|---|---|---|
1 | 120.20 | 49.35 | 669 | 草甸草原 Meadow steppe |
2 | 119.99 | 49.89 | 730 | 草甸草原 Meadow steppe |
3 | 119.56 | 46.58 | 1 213 | 草甸草原 Meadow steppe |
4 | 118.66 | 46.53 | 997 | 草甸草原 Meadow steppe |
5 | 118.66 | 45.75 | 879 | 典型草原 Typical steppe |
6 | 118.18 | 46.15 | 970 | 典型草原 Typical steppe |
7 | 118.11 | 44.36 | 1 136 | 草甸草原 Meadow steppe |
8 | 117.36 | 44.51 | 1 062 | 典型草原 Typical steppe |
9 | 117.13 | 45.32 | 865 | 典型草原 Typical steppe |
10 | 116.82 | 43.51 | 1 433 | 草甸草原 Meadow steppe |
11 | 116.74 | 43.60 | 1 213 | 典型草原 Typical steppe |
12 | 116.74 | 43.60 | 1 217 | 典型草原 Typical steppe |
13 | 116.28 | 44.07 | 1 075 | 典型草原 Typical steppe |
14 | 113.40 | 43.81 | 1 003 | 荒漠草原 Desert steppe |
15 | 112.73 | 42.95 | 1 037 | 荒漠草原 Desert steppe |
16 | 112.59 | 42.84 | 1 087 | 荒漠草原 Desert steppe |
17 | 112.23 | 43.31 | 1 018 | 荒漠草原 Desert steppe |
18 | 111.99 | 43.61 | 943 | 荒漠草原 Desert steppe |
19 | 111.82 | 41.76 | 1 435 | 荒漠草原 Desert steppe |
Table 1 Study site descriptions
地点 Site | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 草地类型 Grassland type |
---|---|---|---|---|
1 | 120.20 | 49.35 | 669 | 草甸草原 Meadow steppe |
2 | 119.99 | 49.89 | 730 | 草甸草原 Meadow steppe |
3 | 119.56 | 46.58 | 1 213 | 草甸草原 Meadow steppe |
4 | 118.66 | 46.53 | 997 | 草甸草原 Meadow steppe |
5 | 118.66 | 45.75 | 879 | 典型草原 Typical steppe |
6 | 118.18 | 46.15 | 970 | 典型草原 Typical steppe |
7 | 118.11 | 44.36 | 1 136 | 草甸草原 Meadow steppe |
8 | 117.36 | 44.51 | 1 062 | 典型草原 Typical steppe |
9 | 117.13 | 45.32 | 865 | 典型草原 Typical steppe |
10 | 116.82 | 43.51 | 1 433 | 草甸草原 Meadow steppe |
11 | 116.74 | 43.60 | 1 213 | 典型草原 Typical steppe |
12 | 116.74 | 43.60 | 1 217 | 典型草原 Typical steppe |
13 | 116.28 | 44.07 | 1 075 | 典型草原 Typical steppe |
14 | 113.40 | 43.81 | 1 003 | 荒漠草原 Desert steppe |
15 | 112.73 | 42.95 | 1 037 | 荒漠草原 Desert steppe |
16 | 112.59 | 42.84 | 1 087 | 荒漠草原 Desert steppe |
17 | 112.23 | 43.31 | 1 018 | 荒漠草原 Desert steppe |
18 | 111.99 | 43.61 | 943 | 荒漠草原 Desert steppe |
19 | 111.82 | 41.76 | 1 435 | 荒漠草原 Desert steppe |
Fig. 1 Comparisons of leaf (Le), stem (St), reproductive structure (Re), fine root (Fr) and coarse root (Cr), mean N concentrations (A), P concentrations (B), N: P ratios (C), specific leaf area, specific root length (D) and tissue density of leaves and fine roots (E) among different function groups and vegetation types in Inner Mongolia grassland. Differences between each group were tested using a One-Way ANOVA with a Tukey post hoc test of significance; significant differences at p < 0.05 are indicated by different letters. Errors bars are standard errors. SLA, specific leaf area; SRL, specific root length.
种群水平 Population level | 物种水平 Interspecific level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | N: P | SLA/SRL | N | P | N: P | SLA/SRL | |||
叶片 | P | 0.79 | P | 0.81 | ||||||
Leaf | N : P | 0.19 | - 0.46 | N: P | 0.31 | - 0.30 | ||||
SLA | - 0.21 | - 0.30 | 0.19 | SLA | - 0.22 | - 0.26 | 0.07 | |||
TD | - 0.21 | - 0.24 | 0.08 | - 0.37 | TD | - 0.08 | - 0.23 | 0.26 | - 0.35 | |
茎 | P | 0.73 | P | 0.77 | ||||||
Stem | N : P | 0.50 | - 0.23 | N: P | 0.59 | - 0.06 | ||||
生殖器官 | P | 0.87 | P | 0.83 | ||||||
Reproductive structure | N: P | 0.24 | - 0.27 | N: P | 0.43 | - 0.15 | ||||
细根 | P | 0.69 | P | 0.69 | ||||||
Fine root | N: P | 0.60 | - 0.14 | N: P | 0.65 | - 0.01 | ||||
SRL | - 0.03 | - 0.07 | - 0.04 | SRL | - 0.14 | - 0.04 | - 0.20 | |||
TD | - 0.35 | - 0.13 | - 0.41 | - 0.29 | TD | - 0.41 | - 0.18 | - 0.42 | - 0.14 | |
粗根 | P | 0.46 | P | 0.49 | ||||||
Coarse root | N: P | 0.58 | - 0.43 | N: P | 0.64 | - 0.35 |
Table 2 Pearson correlation coefficients for functional traits within different organs in Inner Monglolia grassland
种群水平 Population level | 物种水平 Interspecific level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | N: P | SLA/SRL | N | P | N: P | SLA/SRL | |||
叶片 | P | 0.79 | P | 0.81 | ||||||
Leaf | N : P | 0.19 | - 0.46 | N: P | 0.31 | - 0.30 | ||||
SLA | - 0.21 | - 0.30 | 0.19 | SLA | - 0.22 | - 0.26 | 0.07 | |||
TD | - 0.21 | - 0.24 | 0.08 | - 0.37 | TD | - 0.08 | - 0.23 | 0.26 | - 0.35 | |
茎 | P | 0.73 | P | 0.77 | ||||||
Stem | N : P | 0.50 | - 0.23 | N: P | 0.59 | - 0.06 | ||||
生殖器官 | P | 0.87 | P | 0.83 | ||||||
Reproductive structure | N: P | 0.24 | - 0.27 | N: P | 0.43 | - 0.15 | ||||
细根 | P | 0.69 | P | 0.69 | ||||||
Fine root | N: P | 0.60 | - 0.14 | N: P | 0.65 | - 0.01 | ||||
SRL | - 0.03 | - 0.07 | - 0.04 | SRL | - 0.14 | - 0.04 | - 0.20 | |||
TD | - 0.35 | - 0.13 | - 0.41 | - 0.29 | TD | - 0.41 | - 0.18 | - 0.42 | - 0.14 | |
粗根 | P | 0.46 | P | 0.49 | ||||||
Coarse root | N: P | 0.58 | - 0.43 | N: P | 0.64 | - 0.35 |
Fig. 2 Relationships between specific leaf area (SLA) and leaf N concentrations (A, E), P concentrations (B, F), N: P ratios (C, G), tissue density (D, H) at two levels across all species in Inner Mongolia grassland (type II linear regression). A-D, population level; E-H, interspecific level, using species means.
Fig. 3 Relationships between specific root length (SRL) and fine root N concentrations (A, E), P concentrations (B, F), N: P ratios (C, G), tissue density (D, H) at two levels across all species in Inner Mongolia grassland (type II linear regression). A-H see Fig. 2.
种群水平 Population level | 物种水平 Interspecific level | ||||||||
---|---|---|---|---|---|---|---|---|---|
叶片 Leaf | 茎 Stem | 生殖器官 Re | 细根 Fine root | 叶片 Leaf | 茎 Stem | 生殖器官 Re | 细根 Fine root | ||
N | |||||||||
茎 Stem | 0.75 | 0.82 | |||||||
生殖器官 Re | 0.80 | 0.62 | 0.81 | 0.62 | |||||
细根 Fine root | 0.65 | 0.41 | 0.53 | 0.72 | 0.49 | 0.55 | |||
粗根 Coarse root | 0.58 | 0.54 | 0.38 | 0.70 | 0.58 | 0.51 | 0.35 | 0.72 | |
P | |||||||||
茎 Stem | 0.67 | 0.73 | |||||||
生殖器官 Re | 0.80 | 0.57 | 0.66 | 0.40 | |||||
细根 Fine root | 0.58 | 0.32 | 0.47 | 0.50 | 0.24 | 0.36 | |||
粗根 Coarse root | 0.58 | 0.45 | 0.55 | 0.75 | 0.51 | 0.31 | 0.36 | 0.69 | |
N: P | |||||||||
茎 Stem | 0.69 | 0.74 | |||||||
生殖器官 Re | 0.75 | 0.73 | 0.82 | 0.70 | |||||
细根 Fine root | 0.42 | 0.55 | 0.53 | 0.48 | 0.54 | 0.60 | |||
粗根 Coarse root | 0.46 | 0.71 | 0.54 | 0.64 | 0.54 | 0.70 | 0.52 | 0.74 |
Table 3 Pearson correlation coefficients for N and P concentrations and N:P ratios among different organs in Inner Monglolia grassland
种群水平 Population level | 物种水平 Interspecific level | ||||||||
---|---|---|---|---|---|---|---|---|---|
叶片 Leaf | 茎 Stem | 生殖器官 Re | 细根 Fine root | 叶片 Leaf | 茎 Stem | 生殖器官 Re | 细根 Fine root | ||
N | |||||||||
茎 Stem | 0.75 | 0.82 | |||||||
生殖器官 Re | 0.80 | 0.62 | 0.81 | 0.62 | |||||
细根 Fine root | 0.65 | 0.41 | 0.53 | 0.72 | 0.49 | 0.55 | |||
粗根 Coarse root | 0.58 | 0.54 | 0.38 | 0.70 | 0.58 | 0.51 | 0.35 | 0.72 | |
P | |||||||||
茎 Stem | 0.67 | 0.73 | |||||||
生殖器官 Re | 0.80 | 0.57 | 0.66 | 0.40 | |||||
细根 Fine root | 0.58 | 0.32 | 0.47 | 0.50 | 0.24 | 0.36 | |||
粗根 Coarse root | 0.58 | 0.45 | 0.55 | 0.75 | 0.51 | 0.31 | 0.36 | 0.69 | |
N: P | |||||||||
茎 Stem | 0.69 | 0.74 | |||||||
生殖器官 Re | 0.75 | 0.73 | 0.82 | 0.70 | |||||
细根 Fine root | 0.42 | 0.55 | 0.53 | 0.48 | 0.54 | 0.60 | |||
粗根 Coarse root | 0.46 | 0.71 | 0.54 | 0.64 | 0.54 | 0.70 | 0.52 | 0.74 |
Fig. 4 Relationships between specific leaf area and specific root length (SRL) (A, C), tissue density (B, D) of leaves and fine roots, at two levels across all species in Inner Mongolia grassland (type II linear regression). A, B, Population level; C, D, Interspecific level, using species means.
[1] |
Ackerly DD, Donoghue MJ (1998). Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples ( Acer). American Naturalist, 152, 767-791.
DOI URL |
[2] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] |
Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004). Phylogenetic variation in the shoot mineral concentration of angiosperms. Journal of Experimental Botany, 55, 321-336.
DOI URL PMID |
[4] |
Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
DOI URL |
[5] |
Chapin FS III, Schulze ED, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423-447.
DOI URL |
[6] |
Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS III (2001). The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos, 93, 274-285.
DOI URL |
[7] |
Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478.
DOI URL PMID |
[8] |
Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19.
DOI URL |
[9] |
Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-42.
DOI URL |
[10] | Eviner VT, Chapin FS III (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology, Evolution and Systematics, 34, 455-485. |
[11] |
Gordon WS, Jackson RB (2000). Nutrient concentrations in fine roots. Ecology, 81, 275-280.
DOI URL |
[12] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
URL PMID |
[13] |
Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61.
DOI URL |
[14] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI URL |
[15] |
Han WY, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[16] |
He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006a). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848.
DOI URL |
[17] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006b). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grasslands of China. Oecologia, 149, 115-122.
DOI URL PMID |
[18] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen : phosphorus stoichiometry across Chinese grassland Biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[19] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area and nutrient contents. Proceedings of the National Academy of Science of the United States of America, 94, 7362-7366.
DOI URL |
[20] |
Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005). Toward a stoichiometric framework for evolutionary biology. Oikos, 109, 6-17.
DOI URL |
[21] |
Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. American Naturalist, 168, E103-E122.
DOI URL |
[22] | Kuo S (1996). Phosphorus. In: Bigham JM ed. Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison, Wis. 869-919. |
[23] |
Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12.
DOI URL |
[24] |
Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998). Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18, 665-670.
DOI URL PMID |
[25] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[26] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[27] |
Reich PB, Walters MB, Tjoelker MG, Vanderklein D, Buschena C (1998). Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 12, 395-405.
DOI URL |
[28] |
Reich PB, Tilman D, Craine J, Ellsworth D, Tjoelker MG, Knops J, Wedin D, Naeem S, Bahauddin D, Goth J, Bengston W, Lee TD (2001). Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 150, 435-448.
DOI URL |
[29] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
URL PMID |
[30] |
Ryan MG (1991). Effects of climate change on plant respiration. Ecological Applications, 1, 157-167.
URL PMID |
[31] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ. |
[32] |
Tilman D, Knops J, Wedin D (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[33] |
Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508.
DOI URL |
[34] |
Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689.
DOI URL |
[35] |
Wahl S, Ryser P (2000). Root tissue structure is linked to ecological strategies of grasses. New Phytologist, 148, 459-471.
DOI URL |
[36] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[37] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee WJ, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[38] | Wright IJ, Westoby M (2004). The economics of leaves: plants build leaves as investments that vary in cost, revenue and lifespan. Australasian Science, 25, 34-37. |
[39] | Zhang L (张林), Luo TX (罗天祥) (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Journal of Plant Ecology (Chinese version) (植物生态学报), 28, 844-852. (in Chinese with English abstract) |
[40] | Zeng DH (曾德慧), Chen GS (陈广生) (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Journal of Plant Ecology (Chinese version) (植物生态学报), 29, 1007-1019. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn