Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (7): 738-748.DOI: 10.17521/cjpe.2021.0125
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
ZHANG Xiao-Jing1,2, LIANG Xiao-Sa1,2, MA Wang1, WANG Zheng-Wen1,*()
Received:
2021-04-06
Accepted:
2021-06-16
Online:
2021-07-20
Published:
2021-10-22
Contact:
WANG Zheng-Wen ORCID:0000-0002-4507-2142
Supported by:
ZHANG Xiao-Jing, LIANG Xiao-Sa, MA Wang, WANG Zheng-Wen. Temporal variation and resorption of nutrients in plant culms and leaves in Hulun Buir grassland[J]. Chin J Plant Ecol, 2021, 45(7): 738-748.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0125
物种 Species | 生活型 Life form | 区分茎秆和叶片 Distinguishing culm and leaf |
---|---|---|
羊草 Leymus chinensis | 多年生禾草 Perennial grasses | √ |
狼针草 Stipa baicalensis | 多年生禾草 Perennial grasses | × |
糙隐子草 Cleistogenes squarrosa | 多年生禾草 Perennial grasses | √ |
![]() | 多年生禾草 Perennial grasses | × |
柄状薹草 Carex pediformis | 多年生莎草 Perennial sedges | × |
寸草 Carex duriuscula | 多年生莎草 Perennial sedges | × |
广布野豌豆 Vicia cracca | 多年生豆科 Perennial legumes | √ |
披针叶野决明 Thermopsis lanceolata | 多年生豆科 Perennial legumes | √ |
狭叶沙参 Adenophora gmelinii | 多年生杂草 Perennial forbs | √ |
龙蒿 Artemisia dracunculus | 多年生杂草 Perennial forbs | √ |
阿尔泰狗娃花 Aster altaicus | 多年生杂草 Perennial forbs | √ |
麻花头 Klasea centauroides | 多年生杂草 Perennial forbs | √ |
裂叶蒿 Artemisia tanacetifolia | 多年生杂草 Perennial forbs | × |
冷蒿 Artemisia frigida | 多年生杂草 Perennial forbs | √ |
达乌里芯芭 Cymbaria daurica | 多年生杂草 Perennial forbs | √ |
瓣蕊唐松草 Thalictrum petaloideum | 多年生杂草 Perennial forbs | √ |
白头翁 Pulsatilla chinensis | 多年生杂草 Perennial forbs | × |
二裂委陵菜 Potentilla bifurca | 多年生杂草 Perennial forbs | × |
星毛委陵菜 Potentilla acaulis | 多年生杂草 Perennial forbs | × |
菊叶委陵菜 Potentilla tanacetifolia | 多年生杂草 Perennial forbs | × |
野鸢尾 Iris dichotoma | 多年生杂草 Perennial forbs | × |
囊花鸢尾 Iris ventricosa | 多年生杂草 Perennial forbs | × |
Table 1 Sampling species name, functional groups of plants in Hulun Buir area and whether culm and leaf were distinguished or not
物种 Species | 生活型 Life form | 区分茎秆和叶片 Distinguishing culm and leaf |
---|---|---|
羊草 Leymus chinensis | 多年生禾草 Perennial grasses | √ |
狼针草 Stipa baicalensis | 多年生禾草 Perennial grasses | × |
糙隐子草 Cleistogenes squarrosa | 多年生禾草 Perennial grasses | √ |
![]() | 多年生禾草 Perennial grasses | × |
柄状薹草 Carex pediformis | 多年生莎草 Perennial sedges | × |
寸草 Carex duriuscula | 多年生莎草 Perennial sedges | × |
广布野豌豆 Vicia cracca | 多年生豆科 Perennial legumes | √ |
披针叶野决明 Thermopsis lanceolata | 多年生豆科 Perennial legumes | √ |
狭叶沙参 Adenophora gmelinii | 多年生杂草 Perennial forbs | √ |
龙蒿 Artemisia dracunculus | 多年生杂草 Perennial forbs | √ |
阿尔泰狗娃花 Aster altaicus | 多年生杂草 Perennial forbs | √ |
麻花头 Klasea centauroides | 多年生杂草 Perennial forbs | √ |
裂叶蒿 Artemisia tanacetifolia | 多年生杂草 Perennial forbs | × |
冷蒿 Artemisia frigida | 多年生杂草 Perennial forbs | √ |
达乌里芯芭 Cymbaria daurica | 多年生杂草 Perennial forbs | √ |
瓣蕊唐松草 Thalictrum petaloideum | 多年生杂草 Perennial forbs | √ |
白头翁 Pulsatilla chinensis | 多年生杂草 Perennial forbs | × |
二裂委陵菜 Potentilla bifurca | 多年生杂草 Perennial forbs | × |
星毛委陵菜 Potentilla acaulis | 多年生杂草 Perennial forbs | × |
菊叶委陵菜 Potentilla tanacetifolia | 多年生杂草 Perennial forbs | × |
野鸢尾 Iris dichotoma | 多年生杂草 Perennial forbs | × |
囊花鸢尾 Iris ventricosa | 多年生杂草 Perennial forbs | × |
器官 Organ | 样本量 n | 氮含量 Nitrogen content (mg·g-1) | 磷含量 Phosphorus content (mg·g-1) | |
---|---|---|---|---|
生长盛期 Growth stage | 叶片 Leaf | 22 | 24.14 ± 6.69a | 2.07 ± 0.71a |
茎秆 Culm | 11 | 12.46 ± 3.94b | 1.18 ± 0.31b | |
枯叶期 Senescence stage | 叶片 Leaf | 22 | 12.34 ± 4.96b | 0.73 ± 0.39c |
茎秆 Culm | 11 | 7.32 ± 2.55c | 0.40 ± 0.25c |
Table 2 Nitrogen and phosphorus contents of culm and leaf at the growth and senescence stages (mean ± SD)
器官 Organ | 样本量 n | 氮含量 Nitrogen content (mg·g-1) | 磷含量 Phosphorus content (mg·g-1) | |
---|---|---|---|---|
生长盛期 Growth stage | 叶片 Leaf | 22 | 24.14 ± 6.69a | 2.07 ± 0.71a |
茎秆 Culm | 11 | 12.46 ± 3.94b | 1.18 ± 0.31b | |
枯叶期 Senescence stage | 叶片 Leaf | 22 | 12.34 ± 4.96b | 0.73 ± 0.39c |
茎秆 Culm | 11 | 7.32 ± 2.55c | 0.40 ± 0.25c |
Fig. 1 Temporal variation of nitrogen (N) content in leaves and culms. A, Artemisia dracunculus. B, Cleistogenes squarrosa. C, Adenophora gmelinii. D, Vicia cracca. E, Cymbaria daurica. F, Aster altaicus. G, Klasea centauroides. H, Leymus chinensis. I, Thermopsis lanceolata. J, Artemisia frigida. K, Thalictrum petaloideum. Circle, leaves; triangle, culms. The solid line indicates that leaf N content is related to sampling time (p < 0.05); the dotted line indicates that culm N content is related to sampling time (p < 0.05).
Fig. 2 Temporal variation of phosphorus (P) content in leaves and culms. A, Artemisia dracunculus. B, Cleistogenes squarrosa. C, Adenophora gmelinii. D, Vicia cracca. E, Cymbaria daurica. F, Aster altaicus. G, Klasea centauroides. H, Leymus chinensis. I, Thermopsis lanceolata. J, Artemisia frigida. K, Thalictrum petaloideum. Circle, leaves; triangle, culms. The solid line indicates that leaf P content is related to sampling time (p < 0.05); The dotted line indicates that culm P content is related to sampling time (p < 0.05).
Fig. 3 Time of the highest nutrient content in different plant species. A, Nitrogen (N) content of leaves. B, N content of culms. C, Phosphorus (P) content of leaves. D, P content of culms. A.A., Aster altaicus; A.D., Artemisia dracunculus; A.F., Artemisia frigida; A.G., Adenophora gmelinii; A.T., Artemisia tanacetifolia; C.D., Carex duriuscula; C.P., Carex pediformis; C.S., Cleistogenes squarrosa; Cy.D., Cymbaria daurica; I.D., Iris dichotoma; I.V., Iris ventricosa; K.C., Klasea centauroides; K.M., Koeleria macrantha; L.C., Leymus chinensis; P.A., Potentilla acaulis; P.B., Potentilla bifurca; P.C., Pulsatilla chinensis; P.T., Potentilla tanacetifolia; S.B., Stipa baicalensis; T.L., Thermopsis lanceolata; T.P., Thalictrum petaloideum; V.C., Vicia cracca.
器官 Organ | 样本量 n | N回收效率 N resorption efficiency (%) | P回收效率 P resorption efficiency (%) | 元素间差异 Differences between elements (p) |
---|---|---|---|---|
叶片 Leaf | 11 | 65.19 ± 8.21 | 75.58 ± 7.22 | p < 0.05 |
茎秆 Culm | 11 | 61.65 ± 4.24 | 78.33 ± 9.90 | p < 0.05 |
器官间差异 Differences between organs (p) | - | p < 0.05 | p = 0.189 | - |
Table 3 Differences of nitrogen (N) and phosphorus (P) resorption efficiency in plant culm and leaf (mean ± SD)
器官 Organ | 样本量 n | N回收效率 N resorption efficiency (%) | P回收效率 P resorption efficiency (%) | 元素间差异 Differences between elements (p) |
---|---|---|---|---|
叶片 Leaf | 11 | 65.19 ± 8.21 | 75.58 ± 7.22 | p < 0.05 |
茎秆 Culm | 11 | 61.65 ± 4.24 | 78.33 ± 9.90 | p < 0.05 |
器官间差异 Differences between organs (p) | - | p < 0.05 | p = 0.189 | - |
Fig. 4 Correlations between nitrogen (N) and phosphorus (P) resorption efficiency. Circle, leaves; triangle, culms. The solid line indicates that leaf N resorption efficiency is related to P resorption efficiency (p < 0.05).
Fig. 5 Correlations between nitrogen (N) and phosphorus (P) contents at the growth and senescence stages and nutrient resorption efficiency. A, N content and N resorption efficiency at the growth stage. B, P content and P resorption efficiency at the growth stage. C, N content and N resorption efficiency at the senescence stage. D, P content and P resorption efficiency at the senescence stage. Circle, leaves; triangle, culms. The solid line indicates that leaf resorption efficiency is related to nutrient content (p < 0.05); the dotted line indicates that culm resorption efficiency is related to nutrient content (p < 0.05).
器官 Organ | 养分 Nutrient | 样本量 n | 回收效率 Resorption efficiency (%) | 低估值 Underestimation value (%) | |
---|---|---|---|---|---|
基于养分最大含量 Based on maximum nutrient content | 基于8月20日养分含量 Based on nutrient content of August 20 | ||||
叶片 Leaf | N | 22 | 66.75 ± 7.70 | 64.69 ± 8.80 | 2.06 ± 3.31 |
P | 22 | 77.26 ± 7.97 | 71.32 ± 14.32 | 5.94 ± 9.35 | |
茎秆 Culm | N | 11 | 61.65 ± 4.24 | 58.72 ± 6.55 | 2.93 ± 4.85 |
P | 11 | 78.33 ± 9.90 | 70.93 ± 15.33 | 7.39 ± 11.81 |
Table 4 Difference in nitrogen (N) and phosphorus (P) resorption efficiency of Hulun Buirr grassland plant culms and leaves obtained by different calculation methods (mean ± SD)
器官 Organ | 养分 Nutrient | 样本量 n | 回收效率 Resorption efficiency (%) | 低估值 Underestimation value (%) | |
---|---|---|---|---|---|
基于养分最大含量 Based on maximum nutrient content | 基于8月20日养分含量 Based on nutrient content of August 20 | ||||
叶片 Leaf | N | 22 | 66.75 ± 7.70 | 64.69 ± 8.80 | 2.06 ± 3.31 |
P | 22 | 77.26 ± 7.97 | 71.32 ± 14.32 | 5.94 ± 9.35 | |
茎秆 Culm | N | 11 | 61.65 ± 4.24 | 58.72 ± 6.55 | 2.93 ± 4.85 |
P | 11 | 78.33 ± 9.90 | 70.93 ± 15.33 | 7.39 ± 11.81 |
[1] |
Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608.
DOI URL |
[2] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: are-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] |
Brant AN, Chen HYH (2015). Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences, 34, 471-486.
DOI URL |
[4] |
Chapin III FS, Kedrowski RA (1983). Seasonal-changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 64, 376-391.
DOI URL |
[5] |
Chapin III FS, Moilanen L (1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72, 709-715.
DOI URL |
[6] |
Charlesedwards DA, Stutzel H, Ferraris R, Beech DF (1987). An analysis of spatial variation in the nitrogen-content of leaves from different horizons within a canopy. Annals of Botany, 60, 421-426.
DOI URL |
[7] |
Du EZ, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226.
DOI URL |
[8] |
Eckstein RL, Karlsson PS, Weih M (1999). Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist, 143, 177-189.
DOI URL |
[9] |
Estiarte M, Peñuelas J (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21, 1005-1017.
DOI PMID |
[10] | Fang JY, Yang YH, Ma WH, Mohammat A, Shen HH (2010). Ecosystem carbon stocks and their changes in China’s grasslands. Science China Life Sciences, 40, 566-576. |
[ 方精云, 杨元合, 马文红, 安尼瓦尔•买买提, 沈海花 (2010). 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 40, 566-576.] | |
[11] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: What is the link with other resource economics traits? New Phytologist, 186, 879-889.
DOI URL |
[12] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[13] |
Hättenschwiler S, Aeschlimann B, Coûteaux MM, Roy J, Bonal D (2008). High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytologist, 179, 165-175.
DOI PMID |
[14] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[15] |
Huang JY, Yu HL, Wang B, Li LH, Xiao GJ, Yuan ZY (2012). Nutrient resorption based on different estimations of five perennial herbaceous species from the grassland in Inner Mongolia, China. Journal of Arid Environments, 76, 1-8.
DOI URL |
[16] |
Kazakou E, Garnier E, Navas ML, Roumet C, Collin C, Laurent G (2007). Components of nutrient residence time and the leaf economics spectrum in species from Mediterranean old-fields differing in successional status. Functional Ecology, 21, 235-245.
DOI URL |
[17] |
Killingbeck KT (1984). Nitrogen and phosphorus resorption dynamics of five tree species in a Kansas gallery forest. American Midland Naturalist, 111, 155-164.
DOI URL |
[18] |
Killingbeck KT (1986). Litterfall dynamics and element use efficiency in a Kansas gallery forest. American Midland Naturalist, 116, 180-189.
DOI URL |
[19] |
Killingbeck KT (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
DOI URL |
[20] |
Kobe RK, Lepczyk CA, Iyer M (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780-2792.
DOI URL |
[21] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[22] | Lambers H, Chapin III FS, Pons TL (2008). Plant Physiological Ecology. Springer, New York. 163-223. |
[23] | Liu JQ, Wang XY, Guo Y, Wang SL, Zhou L, Dai LM, Yu DP (2015). Seasonal dynamics and resorption efficiencies of foliar nutrients in three dominant woody plants that grow at the treeline on Changbai Mountain. Acta Ecologica Sinica, 35, 165-171. |
[ 刘佳庆, 王晓雨, 郭焱, 王守乐, 周莉, 代力民, 于大炮 (2015). 长白山林线主要木本植物叶片养分的季节动态及回收效率. 生态学报, 35, 165-171.] | |
[24] |
Lü XT, Freschet GT, Flynn DFB, Han XG (2012). Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology, 100, 144-150.
DOI URL |
[25] |
Mariotte P, Robroek BJM, Jassey VEJ, Buttler A (2015). Subordinate plants mitigate drought effects on soil ecosystem processes by stimulating fungi. Functional Ecology, 29, 1578-1586.
DOI URL |
[26] |
McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401.
DOI URL |
[27] | Pan QM, Xue JG, Tao J, Xu MY, Zhang WH (2018). Current status of grassland degradation and measures for grassland restoration in Northern China. Chinese Science Bulletin, 63, 1642-1650. |
[ 潘庆民, 薛建国, 陶金, 徐明月, 张文浩 (2018). 中国北方草原退化现状与恢复技术. 科学通报, 63, 1642-1650.] | |
[28] |
Reed SC, Townsend AR, Davidson EA, Cleveland CC (2012). Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 196, 173-180.
DOI URL |
[29] | Ren HY, Zheng SX, Bai YF (2009). Effects of grazing on foliage biomass allocation of grassland communities in Xilin River basin, Inner Mongolia. Chinese Journal of Plant Ecology, 33, 1065-1074. |
[ 任海彦, 郑淑霞, 白永飞 (2009). 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响. 植物生态学报, 33, 1065-1074.]
DOI |
|
[30] | Shen HH, Zhu YK, Zhao X, Geng XQ, Gao SQ, Fang JY (2016). Analysis of current grassland resources in China. Chinese Science Bulletin, 61, 139-154. |
[ 沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云 (2016). 中国草地资源的现状分析. 科学通报, 61, 139-154.] | |
[31] | Shi Y, Ma YL, Ma WH, Liang CZ, Zhao XQ, Fang JY, He JS (2013). Large scale patterns of forage yield and quality across Chinese grasslands. Chinese Science Bulletin, 58, 226-239. |
[ 石岳, 马殷雷, 马文红, 梁存柱, 赵新全, 方精云, 贺金生 (2013). 中国草地的产草量和牧草品质:格局及其与环境因子之间的关系. 科学通报, 58, 226-239.] | |
[32] | Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25, 76-82. |
[ 孙书存, 陈灵芝 (2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.] | |
[33] |
Tsujii Y, Onoda Y, Kitayama K (2017). Phosphorus and nitrogen resorption from different chemical fractions in senescing leaves of tropical tree species on Mount Kinabalu, Borneo. Oecologia, 185, 171-180.
DOI PMID |
[34] |
van Heerwaarden LM, Toet S, Aerts R (2003). Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos, 101, 664-669.
DOI URL |
[35] |
Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220.
DOI URL |
[36] |
Wang HY, Wang ZW, Ding R, Hou SL, Yang GJ, Lü XT, Han XG (2018). The impacts of nitrogen deposition on community N:P stoichiometry do not depend on phosphorus availability in a temperate meadow steppe. Environmental Pollution, 242, 82-89.
DOI URL |
[37] |
Xing XR, Han XG, Chen LZ (2000). A review on research of plant nutrient use efficiency. Chinese Journal of Applied Ecology, 11, 785-790.
PMID |
[ 邢雪荣, 韩兴国, 陈灵芝 (2000). 植物养分利用效率研究综述. 应用生态学报, 11, 785-790.]
PMID |
|
[38] |
Yasumura Y, Hikosaka K, Hirose T (2006). Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellata leaves grown in high or low irradiance. Tree Physiology, 26, 1315-1323.
PMID |
[39] |
Yuan ZY, Chen HYH (2009). Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography, 18, 11-18.
DOI URL |
[40] |
Yuan ZY, Chen HYH (2015). Negative effects of fertilization on plant nutrient resorption. Ecology, 96, 373-380.
PMID |
[41] | Zong N, Shi PL, Geng SB, Ma WL (2017). Nitrogen and phosphorus resorption efficiency of forests in North China. Chinese Journal of Eco-Agriculture, 25, 520-529. |
[ 宗宁, 石培礼, 耿守保, 马维玲 (2017). 北方山区主要森林类型树木叶片氮、磷回收效率研究. 中国生态农业学报, 25, 520-529.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn