Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (9): 926-937.DOI: 10.17521/cjpe.2018.0167
Special Issue: 全球变化与生态系统; 生态化学计量
• Review • Previous Articles Next Articles
SHEN Fang-Fang1,2,LI Yan-Yan1,2,LIU Wen-Fei2,DUAN Hong-Lang2,FAN Hou-Bao2,*(),HU Liang2,MENG Qing-Yin3
Received:
2018-07-16
Revised:
2018-09-10
Online:
2018-09-20
Published:
2019-01-15
Contact:
Hou-Bao FAN
Supported by:
SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation[J]. Chin J Plant Ecol, 2018, 42(9): 926-937.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0167
处理 Treatment | 林分特征 Stand characteristics | 土壤理化性质 Soil physicochemical properties | ||||||
---|---|---|---|---|---|---|---|---|
林龄 Forest age (a) | 密度 Density (No.·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | |
N0 | 12 | 1 717 | 16.1 | 11.8 | 4.59 | 19.23 | 0.86 | 0.22 |
N1 | 12 | 1 633 | 16.0 | 12.2 | 4.76 | 17.31 | 0.68 | 0.13 |
N2 | 12 | 1 683 | 16.3 | 12.2 | 4.65 | 18.88 | 0.80 | 0.17 |
N3 | 12 | 1 625 | 16.0 | 12.1 | 4.71 | 18.14 | 0.81 | 0.14 |
Table 1 Background values of the stand and soil physicochemical properties in the nitrogen addition plots
处理 Treatment | 林分特征 Stand characteristics | 土壤理化性质 Soil physicochemical properties | ||||||
---|---|---|---|---|---|---|---|---|
林龄 Forest age (a) | 密度 Density (No.·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean tree height (m) | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | |
N0 | 12 | 1 717 | 16.1 | 11.8 | 4.59 | 19.23 | 0.86 | 0.22 |
N1 | 12 | 1 633 | 16.0 | 12.2 | 4.76 | 17.31 | 0.68 | 0.13 |
N2 | 12 | 1 683 | 16.3 | 12.2 | 4.65 | 18.88 | 0.80 | 0.17 |
N3 | 12 | 1 625 | 16.0 | 12.1 | 4.71 | 18.14 | 0.81 | 0.14 |
因子 Factor | F (p)值 F (p) value | |||||
---|---|---|---|---|---|---|
C | N | P | C:N | C:P | N:P | |
叶组分 Leaf components | 1.173 (0.336) | 20.401 (<0.001) | 24.425 (<0.001) | 13.832 (<0.001) | 24.072 (<0.001) | 5.728 (0.003) |
氮沉降 N deposition | 0.573 (0.637) | 3.272 (0.034) | 1.246 (0.309) | 3.158 (0.038) | 0.853 (0.475) | 0.631 (0.601) |
叶组分×氮沉降 Leaf components × N deposition | 0.280 (0.976) | 0.893 (0.543) | 0.865 (0.565) | 0.537 (0.837) | 0.963 (0.487) | 0.575 (0.807) |
枝组分 Branch components | 1.191 (0.329) | 9.407 (<0.001) | 19.685 (<0.001) | 6.534 (0.001) | 6.010 (0.002) | 8.176 (<0.001) |
氮沉降 N deposition | 0.165 (0.919) | 1.782 (0.170) | 2.130 (0.116) | 1.229 (0.315) | 1.063 (0.378) | 5.123 (0.005) |
枝组分×氮沉降 Branch components × N deposition | 0.398 (0.927) | 0.608 (0.781) | 0.365 (0.943) | 0.429 (0.910) | 0.371 (0.940) | 0.442 (0.902) |
Table 2 Results (F values) of two-way ANOVA on the effects of components, nitrogen deposition treatment level and their interaction the ecological stoichiometry in leaves and branches of Chinese fir
因子 Factor | F (p)值 F (p) value | |||||
---|---|---|---|---|---|---|
C | N | P | C:N | C:P | N:P | |
叶组分 Leaf components | 1.173 (0.336) | 20.401 (<0.001) | 24.425 (<0.001) | 13.832 (<0.001) | 24.072 (<0.001) | 5.728 (0.003) |
氮沉降 N deposition | 0.573 (0.637) | 3.272 (0.034) | 1.246 (0.309) | 3.158 (0.038) | 0.853 (0.475) | 0.631 (0.601) |
叶组分×氮沉降 Leaf components × N deposition | 0.280 (0.976) | 0.893 (0.543) | 0.865 (0.565) | 0.537 (0.837) | 0.963 (0.487) | 0.575 (0.807) |
枝组分 Branch components | 1.191 (0.329) | 9.407 (<0.001) | 19.685 (<0.001) | 6.534 (0.001) | 6.010 (0.002) | 8.176 (<0.001) |
氮沉降 N deposition | 0.165 (0.919) | 1.782 (0.170) | 2.130 (0.116) | 1.229 (0.315) | 1.063 (0.378) | 5.123 (0.005) |
枝组分×氮沉降 Branch components × N deposition | 0.398 (0.927) | 0.608 (0.781) | 0.365 (0.943) | 0.429 (0.910) | 0.371 (0.940) | 0.442 (0.902) |
Fig. 2 Mean percentage changes of measured parameters (C, N, P, C:N, C:P, N:P) of Chinese fir leaf and branch after N deposition treatment for 14 years relative to these values under control (N0) (N0/N0 = 100%). A, One-year old leaf. B, Two-year old leaf. C, Senesced leaf. D, One-year old branch. E, Two-year old branch. F, Senesced branch. N0, N1, N2, N3, nitrogen addition 0, 60, 120, 240 kg·hm-2·a-1, respectively.
Fig. 3 Effects of long-term nitrogen deposition on N and P resorption efficiency in leaves and branches of Chinese fir (mean + SE). The black column indicates the ratio of the nutrient resorption efficiency between one-year old leaves/branches and senescent leaves/branches; light gray column indicates the ratio of the nutrient resorption efficiency between two-year old leaves/branches and senescent leaves/branches; white column indicates the ratio of the nutrient resorption efficiency between one-year old leaves/branches and two-year-old leaves. N0, N1, N2, N3, nitrogen addition 0, 60, 120, 240 kg·hm-2·a-1, respectively. Different lowercase letters indicate significant differences under different nitrogen addition treatment levels (p < 0.05).
Fig. 4 Linear relationship between N resorption efficiency (REN) and P resorption efficiency (REP), N:P and N resorption efficiency to P resorption efficiency ratio (REN:REP) of leaf and branch under long-term nitrogen deposition treatments. Data included treatments for 14 years.
Fig. 5 N and P content of mature living and senescent leaves in 2010 (mean + SE). N0, N1, N2, N3, nitrogen addition 0, 60, 120, 240 kg·hm-2·a-1, respectively.
Fig. 6 N and P resorption efficiency of leaves in 2010 and 2017 (mean + SE). N0, N1, N2, N3, nitrogen addition 0, 60, 120, 240 kg·hm-2·a-1, respectively.
处理 Treatment | 2010 | 2017 | |||
---|---|---|---|---|---|
成熟-衰叶Mature- senescent leaf | 一-衰叶 One-senesced leaf | 二-衰叶 Two-senesced leaf | 一-衰枝 One-senesced branch | 二-衰枝 Two-senesced branch | |
N0 | 0.89 | 0.69 | 0.37 | 0.69 | 0.75 |
N1 | 0.82 | 0.43 | 0.40 | 1.40 | 1.59 |
N2 | 0.87 | 0.63 | 0.34 | 1.06 | 0.67 |
N3 | 0.88 | 0.70 | 0.35 | 0.95 | 0.76 |
Table 3 The ratio of N resorption efficiency to P resorption efficiency (REN:REP) of leaves and branches in 2010 and 2017
处理 Treatment | 2010 | 2017 | |||
---|---|---|---|---|---|
成熟-衰叶Mature- senescent leaf | 一-衰叶 One-senesced leaf | 二-衰叶 Two-senesced leaf | 一-衰枝 One-senesced branch | 二-衰枝 Two-senesced branch | |
N0 | 0.89 | 0.69 | 0.37 | 0.69 | 0.75 |
N1 | 0.82 | 0.43 | 0.40 | 1.40 | 1.59 |
N2 | 0.87 | 0.63 | 0.34 | 1.06 | 0.67 |
N3 | 0.88 | 0.70 | 0.35 | 0.95 | 0.76 |
Fig. 1 C, N, P content and stoichiometry of leaves and branches of Chinese fir under long-term nitrogen deposition (mean + SE). Different lowercase letters indicate significant differences for the same life span leaf or branch under different nitrogen deposition treatment levels (p < 0.05). N0, N1, N2, N3, nitrogen addition 0, 60, 120, 240 kg·hm-2·a-1, respectively.
[1] |
Aerts R ( 1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608.
DOI URL |
[2] |
Brant AN, Chen HYH ( 2015). Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences, 34, 471-486.
DOI URL |
[3] |
Chen FS, Niklas KJ, Chen GS, Guo D ( 2012). Leaf traits and relationships differ with season as well as among species groupings in a managed Southeastern China forest landscape. Plant Ecology, 213, 1489-1502.
DOI URL |
[4] |
Chen FS, Niklas KJ, Liu Y, Fang XM, Wan SZ, Wang HM ( 2015). Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree physiology, 35, 1106-1117.
DOI URL PMID |
[5] |
Chen S, Chen SL, Guo ZW ( 2015). Effects of mulching man agement on the internal cycling of nutrients in the rhizomatous roots of Phyllostachys violascens. Acta Ecologica Sinca, 35, 5788-5796.
DOI URL |
[ 陈珊, 陈双林, 郭子武 ( 2015). 林地覆盖经营对雷竹鞭根主要养分内循环的影响. 生态学报, 35, 5788-5796.]
DOI URL |
|
[6] |
Deng Q, Hui DF, Dennis S, Reddy KC ( 2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis. Global Ecology and Biogeography, 26, 713-728.
DOI URL |
[7] |
Drenovsky RE, Richards JH ( 2006). Low leaf N and P resorption contributes to nutrient limitation in two desert shrubs. Plant Ecology, 183, 305-314.
DOI URL |
[8] |
Escudero A, Mediavilla S ( 2003). Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. Journal of Ecology, 91, 880-889.
DOI URL |
[9] | Fan HB, Liu WF, Li YY, Liao YC, Yuan YH, Xu L ( 2007). Tree growth and soil nutrients in response to nitrogen deposition in a subtropical Chinese fir plantation. Acta Ecologica Sinica, 27, 4630-4642. |
[ 樊后保, 刘文飞, 李燕燕, 廖迎春, 袁颖红, 徐雷 ( 2007). 亚热带杉木(Cunninghamia lanceolata)人工林生长与土壤养分对氮沉降的响应. 生态学报, 27, 4630-4642.] | |
[10] |
Fan HB, Su BQ, Lin DX, Chen SP ( 2000). Biogechemical cycle within ecosystem of Chinese fir plantations II: Dynamics of nutrients returning to ecosystem. Chinese Journal of Applied & Environmental Biology, 6, 133-137.
DOI URL |
[ 樊后保, 苏兵强, 林德喜, 陈世品 ( 2000). 杉木人工林生态系统的生物地球化学循环II: 氮素沉降动态. 应用与环境生物学报, 6, 133-137].
DOI URL |
|
[11] |
Fei SM ( 2001). A study on the internal transfer and cycling of nutrients in loblolly pine plantation. Scientia Silvae Sinicae, 37(3), 14-19.
DOI URL |
[ 费世民 ( 2001). 火炬松人工林养分体内转移与内循环研究. 林业科学, 37(3), 14-19.]
DOI URL |
|
[12] |
Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R ( 1998). Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem response, and management strategies. Ecological Applications, 8, 706-733.
DOI URL |
[13] |
Fife D, Nambiar E, Saur E ( 2008). Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment. Tree Physiology, 28, 187-196.
DOI URL PMID |
[14] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA ( 2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI URL PMID |
[15] |
Gundersen P, Emmett BA, Kj?nass OJ, Koopmans CJ, Tietema A ( 1998). Impact of nitrogen deposition on nitrogen cycling in forest: A synthesis of NITREX data. Forest Ecology and Management, 101, 37-55.
DOI URL |
[16] |
H?egberg P, Fan HB, Quist M, Binkley D, Tamm CO ( 2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499.
DOI URL |
[17] |
Huang G, Su YG, Mu XH, Li Y ( 2018). Foliar nutrient resorption responses of three life-form plants to water and nitrogen additions in a temperate desert. Plant and Soil, 424, 479-489.
DOI URL |
[18] |
Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH ( 2008). Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant and Soil, 306, 149-158.
DOI URL |
[19] |
Huang ZQ, He ZM, Wan XH, Hu ZH, Fan SH, Yang YS ( 2013). Harvest residue management effects on tree growth and ecosystem carbon in a Chinese fir plantation in subtropical China. Plant and Soil, 364, 303-314.
DOI URL |
[20] |
Jiang DL, Xu X, Ruan HH ( 2017). Review of nutrient resorption and its regulating in plants. Journal of Nanjing Forestry University (Natural Sciencies Edition), 41, 183-188.
DOI URL |
[ 江大龙, 徐侠, 阮宏华 ( 2017). 植物养分重吸收及其影响研究进展. 南京林业大学学报(自然科学版), 41, 183-188.]
DOI URL |
|
[21] |
Killingbeck KT ( 1996). Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
DOI URL |
[22] |
Kobe RK, Lepczyk CA, Iyer M ( 2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780-2792.
DOI URL |
[23] |
Li DJ, Mo JM, Fang YT, Cai XA, Xue JH, Xu GL ( 2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica, 24, 876-882.
DOI URL |
[ 李德军, 莫江明, 方运霆, 蔡锡安, 薛璟花, 徐国良 ( 2004). 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24, 876-882.]
DOI URL |
|
[24] |
Li XF, Zheng XB, Han SJ, Zheng JQ, Li TH ( 2010). Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China. Canadian Journal of Forest Research, 40, 2256-2261.
DOI URL |
[25] |
Lin BP, He ZM, Lin SZ, Hu HT, Qiu LJ, Liu ZM ( 2017). Needles macronutrient concentrations and retranslocation characteristics in Chinese fir plantation of different ages. Journal of Forest and Environment, 37, 34-39.
DOI URL |
[ 林宝平, 何宗明, 林思祖, 胡欢甜, 邱岭军, 刘卓明 ( 2017). 不同林龄杉木针叶大量元素转移特征. 森林与环境学报, 37, 34-39.]
DOI URL |
|
[26] |
Liu WF, Fan HB, Zhang ZW, Yang YL, Wang QQ, Xu L ( 2008). Foliar nutrient contents of Chinese fir in response to simulated nitrogen deposition. Chinese Journal of Applied & Environment Biology, 14, 319-323.
DOI URL |
[ 刘文飞, 樊后保, 张子文, 杨跃霖, 王启其, 徐雷 ( 2008). 杉木人工林针叶养分含量对模拟氮沉降增加的响应. 应用与环境生物学报, 14, 319-323.]
DOI URL |
|
[27] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen LJ, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Andreas FM, Zhang FS ( 2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI URL PMID |
[28] |
Lu JY, Duan BH, Yang M, Yang H, Yang HM ( 2018). Research process in nitrogen and phosphorus resorption from senesced leaves and the influence of ontogenetic and environmental factors. Acta Prataculturae Sinca, 27, 178-188.
DOI URL |
[ 陆姣云, 段兵红, 杨梅, 杨晗, 杨慧敏 ( 2018). 植物叶片氮磷养分重吸收规律及其调控机制研究进展. 草业学报, 27, 178-188.]
DOI URL |
|
[29] |
Matson P, Lohse KA, Hall SJ ( 2002). The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. AMBIO, 31, 113-119.
DOI URL PMID |
[30] |
Mayor JR, Wright SJ, Turner BL ( 2014). Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 102, 36-44.
DOI URL |
[31] |
Ning QR, Li SZ, Jiang LC, Zhao Y, Liu R, Zhang XY ( 2016). Foliar nutrient content and resorption efficiency of Pinus massoniana in the subtropical red soil erosion region. Acta Ecologica Sinica, 36, 3510-3517.
DOI URL |
[ 宁秋蕊, 李守中, 姜良超, 赵颖, 刘溶, 张欣影 ( 2016). 亚热带红壤侵蚀区马尾松针叶养分含量及再吸收特征. 生态学报, 36, 3510-3517.]
DOI URL |
|
[32] |
Reed SC, Townsend AR, Davidson EA, Cleveland CC ( 2012). Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 196, 173-180.
DOI URL PMID |
[33] |
Reich PB, Oleksyn J, Wright IJ ( 2009). Leaf phosphorus influences the photosynthesis-nitrogen relation: A cross-biome analysis of 314 species. Oecologia, 160, 207-212.
DOI URL PMID |
[34] | Shen FF, Wu JP, Fan HB, Guo XM, Lei XM, Wo QD ( 2018). Litterfall ecological stoichiometry and soil available nutrients under long-term nitrogen deposition in a Chinese fir plantation. Acta Ecologica Sinica, 38, 7477-7487. |
[ 沈芳芳, 吴建平, 樊后保, 郭晓敏, 雷学明, 沃奇东 ( 2018). 杉木人工林凋落物生态化学计量与土壤有效养分对长期模拟氮沉降的响应. 生态学报, 38, 7477-7487.] | |
[35] |
Sohrt J, Herschbach C, Weiler M ( 2018). Foliar P- but not N resorption efficiency depends on the P-concentration and the N:P ratio in trees of temperate forests. Trees, 32, 1443-1445.
DOI URL |
[36] |
van Heerwaarden LM, Toet S, Aerts R ( 2003). Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 91, 1060-1070.
DOI URL |
[37] |
Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB ( 2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220.
DOI URL |
[38] | Wang B, Huang G, Ma J, Li Y ( 2016). Responses of nutrients resorption of five desert ephemeral plants to water and nitrogen additions. Journal of Desert Research, 36, 415-422. |
[ 王斌, 黄刚, 马健, 李彦 ( 2016). 5种荒漠短命植物养分再吸收对水氮添加的响应. 中国沙漠, 36, 415-422.] | |
[39] |
Wang M, Murphy MT, Moore TR ( 2014). Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia, 174, 365-377.
DOI URL PMID |
[40] |
Wang R, Goll D, Balkanski Y, Hauglustaine D, Boucher O, Ciais P, Janssens I, Penuelas J, Guenet B, Sardans J, Bopp L, Vuichard N, Zhou F, Li BG, Piao SL, Peng SS, Huang Y, Tao S ( 2017). Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 23, 4854-4872.
DOI URL PMID |
[41] |
Wright IJ, Leishman MR, Read C, Westoby M ( 2006). Gradients of light availability and leaf traits with leaf age and canopy position in 28 Australian shrubs and trees. Functional Plant Biology, 33, 407-419.
DOI URL |
[42] |
Wright I J, Westoby M ( 2003). Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Functional Ecology, 17, 10-19.
DOI URL |
[43] |
Wu JP, Duan HL, Liu WF, Wei XH, Liao YC, Fan HB ( 2017). Individual size but not additional nitrogen regulates tree carbon sequestration in a subtropical forest. Scientific Reports, 7, 46293. DOI: 10.1038/srep46293.
DOI URL PMID |
[44] |
Wu PF, Ma XQ ( 2009). Research advances in the mechanisms of high nutrient use efficiency in plants. Acta Ecologica Sinica, 29, 427-437.
DOI URL |
[ 吴鹏飞, 马祥庆 ( 2009). 植物养分高效利用机制研究进展. 生态学报, 29, 427-437.]
DOI URL |
|
[45] |
Xiao J ( 2005). Formation and damage of atmospheric wet deposition of nitrogen in Zhangzhou. Energy and Enviroment, 2, 59-61.
DOI URL |
[ 肖健 ( 2005). 漳州市氮湿沉降量异常的形成及危害. 能源与环境, 2, 59-61.]
DOI URL |
|
[46] |
Yan ZB, Kim NY, Han XW, Guo YL, Han TS, Du EZ, Fang JY ( 2014). Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant and Soil, 388, 147-155.
DOI URL |
[47] |
Yuan ZY, Chen HYH ( 2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeogrphy, 18, 532-542.
DOI URL |
[48] |
Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, Wan SQ, Zhang WH, Chen QS ( 2005). Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments, 63, 191-202.
DOI URL |
[49] |
Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Pe?uelas J, Richiter A, Sardans J, Wanek W ( 2015). The application of ecological stoichiometry to plant-microbial- soil organic matter transformations. Ecological Monographs, 85, 133-155.
DOI URL |
[50] |
Zhang JH, Tang YZ, Luo YK, Chi XL, Chen YH, Fang JY, Shen HH ( 2014). Resorption efficiency of leaf nutrients in woody plants on Mt. Dongling of Beijing, North China. Journal of Plant Ecology, 8, 530-538.
DOI URL |
[51] | Zhang LY, Zhang DP ( 2003). The phloem unloading pathway and mechanism of photoassimilates. Plant Physiology Communications, 39, 399-403. |
[ 张凌云, 张大鹏 ( 2003). 光合同化物韧皮部卸载途径和机制. 植物生理学报, 39, 399-403.] | |
[52] |
Zhang QF, Xie JS, Chen NS, Chen T, Lü MK, Zhang H, Yang YS ( 2017). Effects of ecological restoration on stoichiometric characteristics and nutrient resorption efficiency of Pinus massoniana foliage. Acta Ecologica Sinica, 37, 267-276.
DOI URL |
[ 张秋芳, 谢锦升, 陈奶寿, 陈坦, 吕茂奎, 张浩, 杨玉盛 ( 2017). 生态恢复对马尾松叶片化学计量及氮磷转移的影响. 生态学报, 37, 267-276.]
DOI URL |
|
[53] |
Zhao Q, Liu XY, Hu YL, Zeng DH ( 2010). Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii. Scientia Silvae Sinicae, 46(5), 14-19.
DOI URL |
[ 赵琼, 刘兴宇, 胡亚林, 曾德慧 ( 2010). 氮添加对兴安落叶松养分分配和再吸收效率的影响. 林业科学, 46(5), 14-19.]
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn