Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (10): 1000-1008.DOI: 10.3724/SP.J.1258.2011.01000
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
XI Xin-Qiang1,2, ZHAO Yu-Jie1,2, LIU Yu-Guo1,2, WANG Xin1,2, GAO Xian-Ming1,*()
Received:
2010-06-21
Accepted:
2010-12-31
Online:
2011-06-21
Published:
2011-11-07
Contact:
GAO Xian-Ming
XI Xin-Qiang, ZHAO Yu-Jie, LIU Yu-Guo, WANG Xin, GAO Xian-Ming. Variation and correlation of plant functional traits in karst area of central Guizhou Province, China[J]. Chin J Plant Ecol, 2011, 35(10): 1000-1008.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.01000
演替阶段 Succession stage | 群落类型 Community type | 海拔 Elevation (m) | 坡度 Slope (°) | 坡向 Slope aspect | 样方数 Plot number |
---|---|---|---|---|---|
灌丛 Shrub | 小果蔷薇+火棘 Rosa cymosa + Pyracantha fortuneana | 1 438 | 22 | 西南 Southwest | 3 |
异叶鼠李+火棘 Rhamnus heterophylla + Pyracantha fortuneana | 1 230 | 23 | 西南 Southwest | 3 | |
小果蔷薇 Rosa cymosa | 1 420 | 20 | 西北 Northwest | 2 | |
落叶阔叶林 Deciduous broad-leaved forest | 圆果化香树 Platycarya longipes | 1 378 | 25 | 东南 Southeast | 2 |
圆果化香树+槲栎 Platycarya longipes + Quercus aliena | 1 456 | 27 | 西北 Northwest | 2 | |
槲栎+小叶朴 Quercus aliena + Celtis bungeana | 1 389 | 27 | 西 West | 2 | |
槲栎 Quercus aliena | 1 528 | 31 | 西南 Southwest | 2 | |
落叶常绿混交林 Deciduous- evergreen forest | 云南鼠刺+圆果化香树 Quercus aliena + Platycarya longipes | 1 457 | 28 | 东南 Southeast | 3 |
云南鼠刺+窄叶石栎 Quercus aliena + Lithocarpus confines | 1 436 | 30 | 北 North | 2 | |
窄叶石栎+短萼海桐 Lithocarpus confines + Pittosporum brevicalyx | 1 387 | 32 | 西北 Northwest | 3 | |
窄叶石栎+猴樟+刺楸 Lithocarpus confines + Cinnamomum bodinieri + Kalopanax septemlobus | 1 356 | 27 | 南 South | 3 |
Table 1 Basic information of sample plots
演替阶段 Succession stage | 群落类型 Community type | 海拔 Elevation (m) | 坡度 Slope (°) | 坡向 Slope aspect | 样方数 Plot number |
---|---|---|---|---|---|
灌丛 Shrub | 小果蔷薇+火棘 Rosa cymosa + Pyracantha fortuneana | 1 438 | 22 | 西南 Southwest | 3 |
异叶鼠李+火棘 Rhamnus heterophylla + Pyracantha fortuneana | 1 230 | 23 | 西南 Southwest | 3 | |
小果蔷薇 Rosa cymosa | 1 420 | 20 | 西北 Northwest | 2 | |
落叶阔叶林 Deciduous broad-leaved forest | 圆果化香树 Platycarya longipes | 1 378 | 25 | 东南 Southeast | 2 |
圆果化香树+槲栎 Platycarya longipes + Quercus aliena | 1 456 | 27 | 西北 Northwest | 2 | |
槲栎+小叶朴 Quercus aliena + Celtis bungeana | 1 389 | 27 | 西 West | 2 | |
槲栎 Quercus aliena | 1 528 | 31 | 西南 Southwest | 2 | |
落叶常绿混交林 Deciduous- evergreen forest | 云南鼠刺+圆果化香树 Quercus aliena + Platycarya longipes | 1 457 | 28 | 东南 Southeast | 3 |
云南鼠刺+窄叶石栎 Quercus aliena + Lithocarpus confines | 1 436 | 30 | 北 North | 2 | |
窄叶石栎+短萼海桐 Lithocarpus confines + Pittosporum brevicalyx | 1 387 | 32 | 西北 Northwest | 3 | |
窄叶石栎+猴樟+刺楸 Lithocarpus confines + Cinnamomum bodinieri + Kalopanax septemlobus | 1 356 | 27 | 南 South | 3 |
植物功能性状 Plant functional trait | 单位 Unit | 定义与功能含义 Definition and functional implication |
---|---|---|
比叶面积 Specific leaf area (SLA) | cm2·g-1 | 新鲜叶片的面积与叶片干重之比, 代表植物体投入单位质量的干物质所获得的捕光面积。比叶面积较高的物种生长速率较高, 养分利用效率较低, “防御性”投入较少, 叶片寿命较短( Fresh leaf area divided by its oven-dry mass, it’s a measure of the allocation of biomass to light harvesting. Species with higher values tend to correspond with relatively low investment in leaf defense and shorter lifespan ( |
叶面积 Leaf area (LA) | cm2 | 叶面积指示的是叶片与外界接触面积的大小, 影响到植物体与外界环境的气体、能量等交换的平衡, 干旱而开阔的地区的植物一般具有较小的叶片( Leaf area is the area leave interact with environment. It’s related to the balance of gas and energy exchange, with small leaves often observed in drier and more exposed conditions ( |
最大高度 Maximum height (MH) | m | 在Westoby提出的植物功能性状四维空间中, 最大高度单独成为一个主导维度(leading dimension), 最大高度跟植物的种子散布距离等多个策略有关, 主要反映了植物对光、空间等资源的竞争能力( Maximum height is a leading dimension in Westoby’s trait spaces. It’s associated with the seed disperse and other strategies, and mainly reflect the competitive capacity for light, space and other resources ( |
Table 2 Definition and implication of plant functional traits
植物功能性状 Plant functional trait | 单位 Unit | 定义与功能含义 Definition and functional implication |
---|---|---|
比叶面积 Specific leaf area (SLA) | cm2·g-1 | 新鲜叶片的面积与叶片干重之比, 代表植物体投入单位质量的干物质所获得的捕光面积。比叶面积较高的物种生长速率较高, 养分利用效率较低, “防御性”投入较少, 叶片寿命较短( Fresh leaf area divided by its oven-dry mass, it’s a measure of the allocation of biomass to light harvesting. Species with higher values tend to correspond with relatively low investment in leaf defense and shorter lifespan ( |
叶面积 Leaf area (LA) | cm2 | 叶面积指示的是叶片与外界接触面积的大小, 影响到植物体与外界环境的气体、能量等交换的平衡, 干旱而开阔的地区的植物一般具有较小的叶片( Leaf area is the area leave interact with environment. It’s related to the balance of gas and energy exchange, with small leaves often observed in drier and more exposed conditions ( |
最大高度 Maximum height (MH) | m | 在Westoby提出的植物功能性状四维空间中, 最大高度单独成为一个主导维度(leading dimension), 最大高度跟植物的种子散布距离等多个策略有关, 主要反映了植物对光、空间等资源的竞争能力( Maximum height is a leading dimension in Westoby’s trait spaces. It’s associated with the seed disperse and other strategies, and mainly reflect the competitive capacity for light, space and other resources ( |
Fig. 1 Scatterplot of species trait values (ti) vs. plot means trait values (pj) for SLA. Triangles and squares represent the Carpinus turczaninowii and Ligustrum lucidum respectively. The abscissa values of the solid symbols are the among- community variation components (βi, on abscissa), while the ordinate values of the solid symbols are their trait values. The difference between βi and ti, or the distance from the X = Y line is αi (because αi = ti - βi).
演替阶段 Succession stage | 群落平均性状值 Plot mean trait values (mean ± SD) | ||
---|---|---|---|
叶面积 LA (cm2) | 比叶面积 SLA (cm2·g-1) | 最大高度 MH (m) | |
灌丛 Shrub (n = 8) | 7.74 ± 1.91 | 171.64 ± 15.33 | 2.56 ± 0.40 |
落叶阔叶林 Deciduous broad-leaved forest (n = 8) | 11.70 ± 4.70 | 166.56 ± 30.76 | 4.07 ± 1.25 |
常绿落叶阔叶混交林 Deciduous-evergreen forest (n = 10) | 18.33 ± 2.26 | 150.65 ± 17.58 | 6.61 ± 0.36 |
Table 3 Plot mean trait values
演替阶段 Succession stage | 群落平均性状值 Plot mean trait values (mean ± SD) | ||
---|---|---|---|
叶面积 LA (cm2) | 比叶面积 SLA (cm2·g-1) | 最大高度 MH (m) | |
灌丛 Shrub (n = 8) | 7.74 ± 1.91 | 171.64 ± 15.33 | 2.56 ± 0.40 |
落叶阔叶林 Deciduous broad-leaved forest (n = 8) | 11.70 ± 4.70 | 166.56 ± 30.76 | 4.07 ± 1.25 |
常绿落叶阔叶混交林 Deciduous-evergreen forest (n = 10) | 18.33 ± 2.26 | 150.65 ± 17.58 | 6.61 ± 0.36 |
演替阶段 Succession stage | 功能性状 Functional traits | 性状参数 Functional trait parameters (mean ± SD, CV) | ||
---|---|---|---|---|
物种性状值 ti | β组分 βi | α组分 αi | ||
灌丛 Shrub | 叶面积 LA (cm2) | 4.78 ± 2.38 (0.50) | 9.60 ± 1.92 (0.2) | -4.84 ± 2.68 (0.55) |
比叶面积 SLA (cm2·g-1) | 188.4 ± 15.33 (0.08) | 166.58 ± 5.99 (0.04) | 21.73 ± 14.15 (0.65) | |
最大高度 MH (m) | 2.47 ± 0.51 (0.21) | 3.09 ± 0.60 (0.19) | -0.62 ± 0.31 (0.5) | |
落叶阔叶林 Deciduous broad-leaved forest | 叶面积 LA (cm2) | 16.54 ± 20.45 (1.24) | 14.39 ± 2.00 (0.14) | 2.11 ± 20.2 (9.57) |
比叶面积 SLA (cm2·g-1) | 224.88 ± 66.33 (0.29) | 163.91 ± 5.34 (0.03) | 61.07 ± 62.91 (1.03) | |
最大高度 MH (m) | 6.28 ± 3.40 (0.54) | 4.91 ± 0.65 (0.13) | 0.43 ± 4.11 (9.56) | |
落叶-常绿混交林 Deciduous-evergreen forest | 叶面积 LA (cm2) | 18.99 ± 4.9 (0.26) | 15.79 ± 1.72 (0.11) | 3.06 ± 4.33 (1.42) |
比叶面积 SLA (cm2·g-1) | 121.86 ± 34.95 (0.29) | 155.29 ± 2.60 (0.02) | -33.43 ± 33.41 (1) | |
最大高度 MH (m) | 9.96 ± 4.29 (0.43) | 5.86 ± 0.47 (0.08) | 4.09 ± 4.22 (1.03) |
Table 4 Traits parameters of the dominant species of three stages
演替阶段 Succession stage | 功能性状 Functional traits | 性状参数 Functional trait parameters (mean ± SD, CV) | ||
---|---|---|---|---|
物种性状值 ti | β组分 βi | α组分 αi | ||
灌丛 Shrub | 叶面积 LA (cm2) | 4.78 ± 2.38 (0.50) | 9.60 ± 1.92 (0.2) | -4.84 ± 2.68 (0.55) |
比叶面积 SLA (cm2·g-1) | 188.4 ± 15.33 (0.08) | 166.58 ± 5.99 (0.04) | 21.73 ± 14.15 (0.65) | |
最大高度 MH (m) | 2.47 ± 0.51 (0.21) | 3.09 ± 0.60 (0.19) | -0.62 ± 0.31 (0.5) | |
落叶阔叶林 Deciduous broad-leaved forest | 叶面积 LA (cm2) | 16.54 ± 20.45 (1.24) | 14.39 ± 2.00 (0.14) | 2.11 ± 20.2 (9.57) |
比叶面积 SLA (cm2·g-1) | 224.88 ± 66.33 (0.29) | 163.91 ± 5.34 (0.03) | 61.07 ± 62.91 (1.03) | |
最大高度 MH (m) | 6.28 ± 3.40 (0.54) | 4.91 ± 0.65 (0.13) | 0.43 ± 4.11 (9.56) | |
落叶-常绿混交林 Deciduous-evergreen forest | 叶面积 LA (cm2) | 18.99 ± 4.9 (0.26) | 15.79 ± 1.72 (0.11) | 3.06 ± 4.33 (1.42) |
比叶面积 SLA (cm2·g-1) | 121.86 ± 34.95 (0.29) | 155.29 ± 2.60 (0.02) | -33.43 ± 33.41 (1) | |
最大高度 MH (m) | 9.96 ± 4.29 (0.43) | 5.86 ± 0.47 (0.08) | 4.09 ± 4.22 (1.03) |
Fig. 2 Scatter plots of maximum height (MH), leaf area (LA), specific leaf area (SLA) for species trait values (A), beta components (B), alpha components (C), plot mean trait values (D) and Pearson correlation coefficients (r). *, p < 0.05; **, p < 0.01.
[1] | Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145. |
[2] |
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI URL |
[3] | Cornelisson J, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich D, Reich P, Steege H, Morgan H, van der Heijden M (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[4] | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
[5] | Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071. |
[6] | Cortez J, Garnier E, Pérez-Harguindeguy N, Debussche M, Gillon D (2007). Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant and Soil, 296, 19-34. |
[7] | Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478. |
[8] | Díaz, S Cabido M (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16, 646-655. |
[9] | Ding SY (丁圣彦), Lu XL (卢训令), Li HM (李昊民) (2005). A comparison of light environmental characteristics for evergreen broad-leaved forest communities from different successional stages in Tiantong National Forest Park. Acta Ecological Sinica (生态学报), 25, 2862-2867. (in Chinese with English abstract) |
[10] | Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977. |
[11] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[12] | Grubb P (1998). A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics, 1, 3-31. |
[13] | Hu ZL (胡忠良), Pan GX (潘根兴), Li LQ (李恋卿), Du YX (杜有新), Wang XZ (王新洲) (2009). Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in Karst mountainous area of central Guizhou Province, China. Acta Ecologica Sinica (生态学报), 29, 4187-4195. (in Chinese with English abstract) |
[14] | Jiang YL (姜运力), Wang J (王进), Ding FJ (丁访军), Yao XH (姚小华), Zhang XS (张显松), Chu YW (褚永维) (2006). Study on the plant community in the Karst Rocky Desertification Areas in Puding County of Guizhou Province. Guizhou Forestry Science and Technology (贵州林业科技), 34(1), 55-59. (in Chinese with English abstract) |
[15] | Kraft NJB, Valencia R, Ackerly DD (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582. |
[16] | Li QK (李庆康), Ma KP (马克平) (2002). Advances in plant succession ecophysiology. Acta Phytoecologica Sinica (植物生态学报), 26(Suppl.), 9-19. (in Chinese with English abstract) |
[17] | Lindborg R, Eriksson O (2005). Functional response to land use change in grasslands: comparing species and trait data. Ecoscience, 12, 183-191. |
[18] | Liu CC (刘长成), Wei YF (魏雅芬), Liu YG (刘玉国), Guo K (郭柯) (2009). Biomass of canopy and shrub layers of Karst forests in Puding, Guizhou, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 698-705. (in Chinese with English abstract) |
[19] | McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185. |
[20] | Moles AT, Warton DI, Warman L, Find all citations by this author (default).Or filter your current search Swenson NG, Laffan SW Find all citations by this author (default).Or filter your current search, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009). Global patterns in plant height. Journal of Ecology, 97, 923-932. |
[21] | Odum EP (1969). The strategy of ecosystem development. Science, 164, 262-270. |
[22] | Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010). Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 98, 1074-1083. |
[23] | Shipley B (1995). Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Functional Ecology, 9, 312-319. |
[24] |
Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
DOI URL |
[25] |
Sutherland S (2004). What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia, 141, 24-39.
DOI URL |
[26] |
Violle C, Jiang L (2009). Towards a trait-based quantification of species niche. Journal of Plant Ecology, 2, 87-93.
DOI URL |
[27] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[28] |
Walker TW, Syers JK (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 1-19.
DOI URL |
[29] |
Wang GH (2007). Leaf trait co-variation, response and effect in a chronosequence. Journal of Vegetation Science, 18, 563-570.
DOI URL |
[30] |
Wardle DA, Bardgett RD, Walker LR, Peltzer DA, Lagerström A (2008). The response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequences. Oikos, 117, 93-103.
DOI URL |
[31] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[32] |
Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution, 21, 261-268.
DOI URL |
[33] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller- Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL |
[34] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[35] | Wu TG (吴统贵), Wu M (吴明), Xiao JH (萧江华) (2008). Ecophysiology of dominant plant species during succession in Hangzhou Bay Wetlands. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 1683-1688. (in Chinese with English abstract) |
[36] | Ye D (叶铎), Wen YG (温远光), Deng RY (邓荣艳), Liang HW (梁宏温), Zhu HG (朱宏光), Huang M (黄棉) (2009). Dynamic in changes of plant population niche in succession series of evergreen broad-leaved forest in Daming Mountain of Guangxi. Chinese Journal of Ecology (生态学杂志), 28, 417-213. (in Chinese with English abstract) |
[1] | WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica [J]. Chin J Plant Ecol, 2022, 46(6): 712-721. |
[2] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[3] | LIU Bing-Bing, WEI Jian-Xin, HU Tian-Yu, YANG Qiu-Li, LIU Xiao-Qiang, WU Fa-Yun, SU Yan-Jun, GUO Qing-Hua. Validation and uncertainty analysis of satellite remote sensing products for monitoring China’s forest ecosystems—Based on massive UAV LiDAR data [J]. Chin J Plant Ecol, 2022, 46(10): 1305-1316. |
[4] | LIU Chao, LI Ping, WU Yun-Tao, PAN Sheng-Nan, JIA Zhou, LIU Ling-Li. Estimation of grassland aboveground biomass using digital photograph and canopy structure measurements [J]. Chin J Plant Ecol, 2022, 46(10): 1280-1288. |
[5] | ZHANG Zi-Yan, JIN Guang-Ze, LIU Zhi-Li. Effects of needle age on leaf traits and their correlations of Pinus koraiensis across different regions [J]. Chin J Plant Ecol, 2021, 45(3): 253-264. |
[6] | HUANG Song-Yu, JIA Xin, ZHENG Jia-Jia, YANG Rui-Zhi, MU Yu, YUAN He-Di. Characteristics and influencing factors of Bowen ratio variation in typical terrestrial ecosystems in China [J]. Chin J Plant Ecol, 2021, 45(2): 119-130. |
[7] | QIN Tian-Zi, REN An-Zhi, FAN Xiao-Wen, GAO Yu-Bao. Effects of endophyte fungal species and host plant genotype on the leaf shape and leaf area of endophyte-grass symbionts [J]. Chin J Plant Ecol, 2020, 44(6): 654-660. |
[8] | LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696. |
[9] | YANG Huan-Ying, SONG Jian-Da, ZHOU Tao, JIN Guang-Ze, JIANG Feng, LIU Zhi-Li. Influences of stand, soil and space factors on spatial heterogeneity of leaf area index in a spruce-fir valley forest in Xiao Hinggan Ling, China [J]. Chin J Plant Ecol, 2019, 43(4): 342-351. |
[10] | LIANG Shi-Chu, LIU Run-Hong, RONG Chun-Yan, CHANG Bin, JIANG Yong. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China [J]. Chin J Plant Ecol, 2019, 43(1): 16-26. |
[11] | GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plant Ecol, 2018, 42(9): 917-925. |
[12] | PENG Xi, YAN Wen-De, WANG Feng-Qi, WANG Guang-Jun, YU Fang-Yong, ZHAO Mei-Fang. Specific leaf area estimation model building based on leaf dry matter content of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2018, 42(2): 209-219. |
[13] | Qun LI, Cheng-Zhang ZHAO, Lian-Chun ZHAO, Jian-Liang WANG, Wei-Tao ZHANG, Wen-Xiu YAO. Empirical relationship between specific leaf area and thermal dissipation of Phragmites australis in salt marshes of Qinwangchuan [J]. Chin J Plant Ecol, 2017, 41(9): 985-994. |
[14] | Ze-Bin LIU, Yan-Hui WANG, Yu LIU, Ao TIAN, Ya-Rui WANG, Hai-Jun ZUO. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China [J]. Chin J Plant Ecol, 2017, 41(7): 749-760. |
[15] | GAO Lin, WANG Xiao-Fei, GU Xing-Fa, TIAN Qing-Jiu, JIAO Jun-Nan, WANG Pei-Yan, LI Dan. Exploring the influence of soil types underneath the canopy in winter wheat leaf area index remote estimating [J]. Chin J Plant Ecol, 2017, 41(12): 1273-1288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn