Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (1): 16-26.DOI: 10.17521/cjpe.2018.0119
• Research Articles • Previous Articles Next Articles
LIANG Shi-Chu,LIU Run-Hong,RONG Chun-Yan,CHANG Bin,JIANG Yong()
Received:
2018-05-20
Accepted:
2018-12-08
Online:
2019-01-20
Published:
2019-04-25
Contact:
JIANG Yong
Supported by:
LIANG Shi-Chu, LIU Run-Hong, RONG Chun-Yan, CHANG Bin, JIANG Yong. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China[J]. Chin J Plant Ecol, 2019, 43(1): 16-26.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0119
河段 Reach | 样方数 Plot number | 海拔 Elevation (m) | 温度 Temperature (℃) | 降水量 Precipitation (mm) | 干扰强度 Disturbance intensity | 群落类型 Community type |
---|---|---|---|---|---|---|
上游 Upstream | 3 | 154 | 24.7 | 1 941 | 轻度 Light | 枫杨-石榕树群落 Pterocarya stenoptera-Ficus abelii communities |
3 | 148 | 23.0 | 1 941 | 轻度 Light | 枫杨+朴树-萝芙木群落 Pterocarya stenoptera + Celtis sinensis-?Rauvolfia verticillata communities | |
6 | 144 | 23.7 | 1 941 | 轻度 Light | 枫杨+阴香-石榕树群落 Pterocarya stenoptera + Cinnamomum burmannii-Ficus abelii communities | |
中游 Midstream | 4 | 138 | 26.0 | 1 900 | 重度 High | 枫杨+乌桕-细叶水团花群落 Pterocarya stenoptera + Sapium sebiferum-Adina rubella communities |
5 | 134 | 25.0 | 1 900 | 重度 High | 阴香群落 Cinnamomum burmannii communities | |
3 | 104 | 24.0 | 1 900 | 重度 High | 枫杨-萝芙木群落Pterocarya stenoptera-?Rauvolfia verticillata communities | |
下游 Downstream | 8 | 111 | 30.1 | 1 900 | 中度 Middle | 乌桕+朴树-牡荆群落Sapium sebiferum + Celtis sinensis-Vitex negundo var. cannabifolia communities |
4 | 105 | 26.8 | 1 900 | 中度 Middle | 乌桕-木槿群落 Sapium sebiferum + Hibiscus syriacus communities |
Table 1 Basic information of the sampled plots in the riparian zone along the longitudinal gradient of the Lijiang River
河段 Reach | 样方数 Plot number | 海拔 Elevation (m) | 温度 Temperature (℃) | 降水量 Precipitation (mm) | 干扰强度 Disturbance intensity | 群落类型 Community type |
---|---|---|---|---|---|---|
上游 Upstream | 3 | 154 | 24.7 | 1 941 | 轻度 Light | 枫杨-石榕树群落 Pterocarya stenoptera-Ficus abelii communities |
3 | 148 | 23.0 | 1 941 | 轻度 Light | 枫杨+朴树-萝芙木群落 Pterocarya stenoptera + Celtis sinensis-?Rauvolfia verticillata communities | |
6 | 144 | 23.7 | 1 941 | 轻度 Light | 枫杨+阴香-石榕树群落 Pterocarya stenoptera + Cinnamomum burmannii-Ficus abelii communities | |
中游 Midstream | 4 | 138 | 26.0 | 1 900 | 重度 High | 枫杨+乌桕-细叶水团花群落 Pterocarya stenoptera + Sapium sebiferum-Adina rubella communities |
5 | 134 | 25.0 | 1 900 | 重度 High | 阴香群落 Cinnamomum burmannii communities | |
3 | 104 | 24.0 | 1 900 | 重度 High | 枫杨-萝芙木群落Pterocarya stenoptera-?Rauvolfia verticillata communities | |
下游 Downstream | 8 | 111 | 30.1 | 1 900 | 中度 Middle | 乌桕+朴树-牡荆群落Sapium sebiferum + Celtis sinensis-Vitex negundo var. cannabifolia communities |
4 | 105 | 26.8 | 1 900 | 中度 Middle | 乌桕-木槿群落 Sapium sebiferum + Hibiscus syriacus communities |
Fig. 1 The scatterplot between species mean specific leaf area (i.e. lgSLAs, cm2·g-1) vs. plot mean specific leaf area (i.e. lgSLAp, cm2·g-1) between Cinnamomum burmannii and Vitex negundo in the riparian zone of the Lijiang River. Each grey point represents a species in a specific plot; the green solid points and the orange solid triangles represent Cinnamomum burmannii and Vitex negundo respectively, and a column of grey points in a black rectangle represent all the species within community. For each species, the abscissa values of the large open point show the mean position of occupied plots (i.e., the beta component of the species trait value, βi), while the ordinate values of the solid symbols are their mean species trait value (ti). The difference between βi and ti, or the distance from the y = x line is αi (because αi = ti - βi ). Regression line shows abundance-weighted least squares regression of species trait values relative to plot mean trait values, with slope bi. bi is the slope of each species’ s regression line of species mean trait values (ti) relative to plot mean trait values (pj), it reflects the intraspecific variation of the species mean specific leaf area along a gradient defined by community-level mean trait values.
Fig. 2 Redundancy analysis (RDA) ordination diagram showing the relationships between the three abundance weighted functional traits and 10 selected environmental factors of the riparian plant of the Lijiang River. AN, soil available nitrogen; DI, disturbance intensity; Dis, distance; Ele, elevation; LA, leaf area; pH, soil pH value; Pre, precipitation; Rea, reach; SLA, specific leaf area; SOM, soil organic matter content; Tem, temperature; TN, soil total nitrogen content; WD, wood density. plot 1-12, upstream; plot 12-24, midstream; plot 25-36, downstream.
环境因子 Environmental factor | RDA1 | RDA2 | R2 | p |
---|---|---|---|---|
有机质 Soil organic matter (g·kg-1) | 0.40 | 0.91 | 0.34 | 0.002** |
全氮 Soil total nitrogen (g·kg-1) | -0.45 | 0.88 | 0.19 | 0.032* |
有效氮 Soil available nitrogen (mg·kg-1) | -0.74 | -0.66 | 0.57 | 0.001*** |
pH | -0.26 | 0.96 | 0.21 | 0.015* |
干扰强度Disturbance intensity | -0.16 | 0.98 | 0.63 | 0.001*** |
距离河岸距离 Distance (m) | -0.85 | 0.51 | 0.29 | 0.004** |
降水量 Precipitation (mm) | -0.66 | 0.74 | 0.79 | 0.001*** |
温度 Temperature (℃) | -0.97 | 0.22 | 0.50 | 0.001*** |
海拔 Elevation (m) | 0.92 | -0.38 | 0.57 | 0.001*** |
河段 Reach | -0.90 | 0.41 | 0.88 | 0.001*** |
Table 2 The explained variance of environmental factors and their significant analysis in the first two axes in redundancy analysis (RDA) ordination
环境因子 Environmental factor | RDA1 | RDA2 | R2 | p |
---|---|---|---|---|
有机质 Soil organic matter (g·kg-1) | 0.40 | 0.91 | 0.34 | 0.002** |
全氮 Soil total nitrogen (g·kg-1) | -0.45 | 0.88 | 0.19 | 0.032* |
有效氮 Soil available nitrogen (mg·kg-1) | -0.74 | -0.66 | 0.57 | 0.001*** |
pH | -0.26 | 0.96 | 0.21 | 0.015* |
干扰强度Disturbance intensity | -0.16 | 0.98 | 0.63 | 0.001*** |
距离河岸距离 Distance (m) | -0.85 | 0.51 | 0.29 | 0.004** |
降水量 Precipitation (mm) | -0.66 | 0.74 | 0.79 | 0.001*** |
温度 Temperature (℃) | -0.97 | 0.22 | 0.50 | 0.001*** |
海拔 Elevation (m) | 0.92 | -0.38 | 0.57 | 0.001*** |
河段 Reach | -0.90 | 0.41 | 0.88 | 0.001*** |
河段 Reach | 功能性状 Functional trait | 性状参数 Functional trait parameter | |||
---|---|---|---|---|---|
物种性状值 ti | β 组分 βi | α 组分 αi | 群落性状值 pj | ||
上游 Upstream | 叶面积 LA (cm2) | 1.30 ± 0.35a | 1.36 ± 0.08a | -0.06 ± 0.34a | 1.34 ± 0.14ab |
比叶面积 SLA (cm2·g-1) | 2.40 ± 0.13a | 2.40 ± 0.02a | -0.00 ± 0.13a | 2.39 ± 0.03a | |
木材密度 WD (g·cm-3) | 0.47 ± 0.10a | 0.44 ± 0.02a | 0.03 ± 0.10a | 0.44 ± 0.04a | |
中游 Midstream | 叶面积 LA (cm2) | 1.16 ± 0.32a | 1.24 ± 0.08b | -0.08 ± 0.27a | 1.26 ± 0.10a |
比叶面积 SLA (cm2·g-1) | 2.47 ± 0.21a | 2.47 ± 0.06b | 0.01 ± 0.21a | 2.46 ± 0.07b | |
木材密度 WD (g·cm-3) | 0.42 ± 0.12ab | 0.47 ± 0.01b | -0.04 ± 0.12a | 0.47 ± 0.02a | |
下游 Downstream | 叶面积 LA (cm2) | 1.24 ± 0.32a | 1.45 ± 0.05c | -0.20 ± 0.30a | 1.46 ± 0.07b |
比叶面积 SLA (cm2·g-1) | 2.48 ± 0.13a | 2.53 ± 0.02c | -0.06 ± 0.12a | 2.55 ± 0.03c | |
木材密度 WD (g·cm-3) | 0.36 ± 0.10b | 0.34 ± 0.01c | 0.02 ± 0.10a | 0.34 ± 0.02b |
Table 3 Statistics of the three plant functional traits across the three reaches of Lijiang River (mean ± SD)
河段 Reach | 功能性状 Functional trait | 性状参数 Functional trait parameter | |||
---|---|---|---|---|---|
物种性状值 ti | β 组分 βi | α 组分 αi | 群落性状值 pj | ||
上游 Upstream | 叶面积 LA (cm2) | 1.30 ± 0.35a | 1.36 ± 0.08a | -0.06 ± 0.34a | 1.34 ± 0.14ab |
比叶面积 SLA (cm2·g-1) | 2.40 ± 0.13a | 2.40 ± 0.02a | -0.00 ± 0.13a | 2.39 ± 0.03a | |
木材密度 WD (g·cm-3) | 0.47 ± 0.10a | 0.44 ± 0.02a | 0.03 ± 0.10a | 0.44 ± 0.04a | |
中游 Midstream | 叶面积 LA (cm2) | 1.16 ± 0.32a | 1.24 ± 0.08b | -0.08 ± 0.27a | 1.26 ± 0.10a |
比叶面积 SLA (cm2·g-1) | 2.47 ± 0.21a | 2.47 ± 0.06b | 0.01 ± 0.21a | 2.46 ± 0.07b | |
木材密度 WD (g·cm-3) | 0.42 ± 0.12ab | 0.47 ± 0.01b | -0.04 ± 0.12a | 0.47 ± 0.02a | |
下游 Downstream | 叶面积 LA (cm2) | 1.24 ± 0.32a | 1.45 ± 0.05c | -0.20 ± 0.30a | 1.46 ± 0.07b |
比叶面积 SLA (cm2·g-1) | 2.48 ± 0.13a | 2.53 ± 0.02c | -0.06 ± 0.12a | 2.55 ± 0.03c | |
木材密度 WD (g·cm-3) | 0.36 ± 0.10b | 0.34 ± 0.01c | 0.02 ± 0.10a | 0.34 ± 0.02b |
Fig. 3 Scatterplots showing relationships between leaf area (LA), specific leaf area (SLA) and wood density (WD) for species trait values (A), beta components (B), alpha components (C), and plot mean trait values (D) of the riparian plant of the Lijiang River. The Pearson correlation coefficient (r) of these relationships are shown in each figure. Black solid dots and rm respectively represent observed values and observed correlation coefficient; black open circles and rs respectively represent random simulation values and simulation coefficient. *, p < 0.05; **, p < 0.01.
Fig. 4 Difference on beta components ranges in the observed and simulated values of the three functional traits at the three reaches in Lijiang River. Circles and squares represent simulated and observed values respectively. Filled squares indicate that the observed values differ significantly from the simulated values.
Fig. 5 Partitioning of the variance in plant functional traits explained by four scales (i.e. within-specie, among-species, communities and reaches) (A) and by two scales (i.e. within and among reaches) (B) of the riparian plant of the Lijiang River. LA, leaf area; SLA, specific leaf area; WD, wood density.
[1] |
Ackerly DD, Cornwell WK ( 2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
DOI URL |
[2] |
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP ( 2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI URL PMID |
[3] | Agricultural Chemistry Committee of Soil Science Society of China ( 1983). Conventional Methods for the Agricultural Chemical Analysis of Soil. Science Press, Beijing. |
[ 中国土壤学会农业化学专业委员会 ( 1983). 土壤农业化学常规分析方法. 科学出版社, 北京.] | |
[4] |
Baraloto C, Timothy Paine CE, Poorter L ( 2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.
DOI URL PMID |
[5] |
Bu WS, Zang RG, Ding Y, Zhang JY, Ruan YZ ( 2013). Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China. Biodiversity Science, 21, 278-287.
DOI URL |
[ 卜文圣, 臧润国, 丁易, 张俊艳, 阮云泽 ( 2013). 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化. 生物多样性, 21, 278-287.]
DOI URL |
|
[6] | Cao K ( 2014). The Phylogeny Signal of Functional Traits and Their Relationship between Each Other and Effects on Community Structure. Master degree dissertation, Zhejiang Normal University, Jinhua, Zhejiang. |
[ 曹科 ( 2014). 古田山植物功能性状的系统发育信号、不同性状之间的关系及其对群落结构的影响. 硕士学位论文, 浙江师范大学, 浙江金华.] | |
[7] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, Heijden MGA, Pausas JG, Poorter H ( 2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[8] |
Cornwell WK, Schwilk DW, Ackerly DD ( 2006). A trait-based test for habitat filtering: Convex hull volume. Ecology, 87, 1465-1471.
DOI URL PMID |
[9] |
Craine JM, Lee WG ( 2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478.
DOI URL PMID |
[10] |
Donovan LA, Maherali H, Caruso CM, Huber H, Kroom HD ( 2011). The evolution of the worldwide leaf economics spectrum. Trends in Ecology and Evolution, 26, 88-95.
DOI URL PMID |
[11] |
Duan WJ, Wang JY, Zhang LJ, Li HF, Huang HQ ( 2014). Characteristics of precipitation in Lijiang River Basin during 1960~2010. Journal of China Hydrology, 34(5), 88-93.
DOI URL |
[ 段文军, 王金叶, 张立杰, 李海防, 黄华乾 ( 2014). 1960~2010年漓江流域降水变化特征研究. 水文, 34(5), 88-93.]
DOI URL |
|
[12] |
Fonseca CR, Overton JM, Collins B, Westoby M ( 2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977.
DOI URL |
[13] |
Gewin V ( 2006). Beyond neutrality—Ecology finds its niche. PLOS Biology, 4, 1306-1310.
DOI URL PMID |
[14] |
Grime JP ( 2006). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science, 17, 255-260.
DOI URL |
[15] |
Grubb P ( 1998). A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics, 1, 3-31.
DOI URL |
[16] |
Han L, Wang HZ, Yu J ( 2013). Research progress and prospects on riparian zone ecology. Ecology and Environmental Sciences, 22, 879-886.
DOI URL |
[ 韩路, 王海珍, 于军 ( 2013). 河岸带生态学研究进展与展望. 生态环境学报, 22, 879-886.]
DOI URL |
|
[17] |
Hu YK, Pan X, Liu GF, Li WB, Dai WH, Tang SL, Zhang YL, Xiao T, Chen LY, Xiong W, Zhou MY, Song YB, Dong M ( 2015). Novel evidence for within-species leaf economics spectrum at multiple spatial scales. Frontiers in Plant Science, 6, 901. DOI: 10.3389/fpls.2015.00901.
DOI URL PMID |
[18] |
Huang D, Wang DM, Ren Y, Qin YB, Wu LC ( 2017). Responses of leaf traits to submergence stress and analysis of the economic spectrum of plant species in an aquatic-?terrestrial ecotone, the Li River. Acta Ecologica Sinica, 37, 750-759.
DOI URL |
[ 黄端, 王冬梅, 任远, 覃云斌, 吴林川 ( 2017). 漓江水陆交错带植物叶性状对水淹胁迫的响应及经济谱分析. 生态学报, 37, 750-759. ]
DOI URL |
|
[19] |
Huang Y, Que XX, Li CY ( 2013). Study on landscape ecological restoration technology of land/inland water ecotones along Li River. Journal of Southern Agriculture, 44, 1700-1704.
DOI URL |
[ 黄莹, 阙欣欣, 李彩云 ( 2013). 漓江沿岸水陆交错带景观调查与生态修复技术. 南方农业学报, 44, 1700-1704.]
DOI URL |
|
[20] |
Jung V, Violle C, Mondy C, Hoffmann L, Muller S ( 2010). Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140.
DOI URL |
[21] |
Kraft NJB, Valencia R, Ackerly DD ( 2008). Functional traits and niche-based tree community, assembly in an Amazonian forest. Science, 322, 580-582.
DOI URL PMID |
[22] |
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun I-F, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M ( 2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
DOI URL PMID |
[23] |
Li QS, Wang DM, Xin ZB, Li Y, Ren Y ( 2014). Root distribution in typical sites of Lijiang ecotone and their relationship to soil properties. Acta Ecologica Sinica, 34, 2003-2011.
DOI URL |
[ 李青山, 王冬梅, 信忠保, 李扬, 任远 ( 2014). 漓江水陆交错带典型立地根系分布与土壤性质的关系. 生态学报, 34, 2003-2011.]
DOI URL |
|
[24] |
Li Y, Wang DM, Xin ZB, Wang J, Ren Y, Li QS ( 2015). Plant diversity and soil characteristics of different inundation zones in an aquatic-terrestrial ecotone, Li River. Acta Ecologica Sinica, 35, 5121-5130.
DOI URL |
[ 李扬, 王冬梅, 信忠保, 王晶, 任远, 李青山 ( 2015). 漓江水陆交错带不同淹没区植物多样性与土壤特征. 生态学报, 35, 5121-5130.]
DOI URL |
|
[25] |
Liu JR, Feng H, Yu XL, Song GJ, Ye Q ( 2003). A preliminary discussion on the historic change of the name for the Lijiang River system. Carsologica Sinica, 22(1), 77-83.
DOI URL |
[ 刘金荣, 冯红, 俞秀兰, 宋桂金, 叶青 ( 2003). 历史上漓江(桂江)水系名称的变化浅议. 中国岩溶, 22(1), 77-83.]
DOI URL |
|
[26] |
Liu XJ, Ma KP ( 2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339.
DOI URL |
[ 刘晓娟, 马克平 ( 2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.]
DOI URL |
|
[27] |
McGill BJ, Enquist BJ, Weiher E, Westoby M ( 2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
DOI URL PMID |
[28] |
Meng TT, Ni J, Wang GH ( 2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165.
DOI URL |
[ 孟婷婷, 倪健, 王国宏 ( 2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI URL |
|
[29] |
Nilsson C, Berggren K ( 2000). Alterations of riparian ecosystems caused by river regulation. Bioscience, 50, 783-792.
DOI URL |
[30] |
Shipley B ( 1995). Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Functional Ecology, 9, 312-319.
DOI URL |
[31] |
Stubbs WJ, Wilson JB ( 2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557-567.
DOI URL |
[32] |
Suding KN, Goldstein LJ ( 2008). Testing the Holy Grail framework: Using functional traits to predict ecosystem change. New Phytologist, 180, 559-562.
DOI URL PMID |
[33] |
Sun R, Yuan XZ, Chen ZL, Zhang YW, Liu H ( 2010). Patterns of plant community species richness in the fluctuating water level zone along the Pengxihe River of the Three Gorges Reservoir. Research of Environmental Sciences, 23, 1382-1389.
DOI URL |
[ 孙荣, 袁兴中, 陈忠礼, 张跃伟, 刘红 ( 2010). 三峡水库澎溪河消落带植物群落物种丰富度格局. 环境科学研究, 23, 1382-1389.]
DOI URL |
|
[34] |
Sun SC, Jin DM, Shi PL ( 2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: An invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
DOI URL PMID |
[35] |
Vannote RL, Minshall GW, Cumins KW, Sedell JR, Cushing CE ( 1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
DOI URL |
[36] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ ( 2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL PMID |
[37] |
Xi XQ, Zhao YJ, Liu YG, Wang X, Gao XM ( 2011). Variation and correlation of plant functional traits in karst area of central Guizhou Province, China. Chinese Journal of Plant Ecology, 35, 1000-1008.
DOI URL |
[ 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明 ( 2011). 黔中喀斯特山区植物功能性状的变异与关联. 植物生态学报, 35, 1000-1008.]
DOI URL |
|
[38] | Xin ZB, Xiao YL, Wang DM, Li Y, Ren Y, Li QS ( 2014). Spatial patterns of riparian vegetations and its optimization in Lijiang River: An intensive tourism karsts river in the southern subtropical China. Ecological Science, 33, 631-641. |
[ 信忠保, 肖玉玲, 王冬梅, 李扬, 任远, 李青山 ( 2014). 广西桂林漓江河岸带植被配置类型与退化机制研究. 生态科学, 33, 631-641.] |
[1] | Wen-Wei WANG Wei-Peng HAN Wen-Wen LIU. Short-term response of leaf functional traits of invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[3] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[4] | Lingnian ZHANG Guiqing ZHU Kuan YANG Xingyue LIU Hede GONG. Niche and interspecific association of main woody plant species in Myrica nana shrub in central Yunnan [J]. Chin J Plant Ecol, 2022, 46(11): 1400-1410. |
[5] | Lu-Yu Qi Hao-Nan Chen KuLiHong SAIREBIELI Tian-Yu JI Gao-De MENG 慧颖 秦 Ning WANG Yi-Xin SONG Chun-Yu LIU Ning DU Weihua GUO. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits [J]. Chin J Plant Ecol, 2022, 46(11): 1388-1399. |
[6] | Min FAN, Yi-Tong LU, Zhao-Hua WANG, Ying-Qi HUANG, Yu PENG, Jia-Xin SHANG, Yang ZHANG. Effects of patch pattern on plant diversity and functional traits in center Hunshandak Sandland [J]. Chin J Plant Ecol, 2022, 46(1): 51-61. |
[7] | ZHANG Jing-Hui, WANG Zheng, HUANG Yong-Mei, CHEN Hui-Ying, LI Zhi-Yong, LIANG Cun-Zhu. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe [J]. Chin J Plant Ecol, 2021, 45(8): 818-833. |
[8] | XUE Feng, JIANG Yuan, DONG Man-Yu, WANG Ming-Chang, DING Xin-Yuan, YANG Xian-Ji, CUI Ming-Hao, KANG Mu-Yi. Influence of different de-trending methods on stem water relations of Picea meyeri derived from Dendrometer measurements [J]. Chin J Plant Ecol, 2021, 45(8): 880-890. |
[9] | SUN Hao-Zhe, WANG Xiang-Ping, ZHANG Shu-Bin, WU Peng, YANG Lei. Abiotic and biotic modulators of litterfall production and its temporal stability during the succession of broad-leaf and Korean pine mixed forest [J]. Chin J Plant Ecol, 2021, 45(6): 594-605. |
[10] | LI Jie, CHEN Ying-Ying, QIAO Fu-Yun, ZHI Di-Gang, GUO Zheng-Gang. Effects of disturbance by plateau pika on the β diversity of an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(5): 476-486. |
[11] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[12] | XU Guang-Lai, LI Ai-Juan, XU Xiao-Hua, YANG Xian-Cheng, YANG Qiang-Qiang. NDVIdynamics and driving climatic factors in the Protected Zones for Ecological Functions in China [J]. Chin J Plant Ecol, 2021, 45(3): 213-223. |
[13] | DAI Jing-Zhong, BAI Yu-Ting, WEI Zhi-Jun, ZHANG Chu, YAN Rui-Rui. Effects of root-cutting in the vegetative phase on plant functional traits of Leymus chinensis [J]. Chin J Plant Ecol, 2021, 45(12): 1292-1302. |
[14] | OU Wen-Hui, LIU Ya-Heng, LI Na, XU Zhi-Yan, PENG Qiu-Tong, YANG Yu-Jing, LI Zhong-Qiang. Testing multiple hypotheses for the richness pattern of macrophyte in the Qaidam Basin of Northwest China [J]. Chin J Plant Ecol, 2021, 45(11): 1213-1220. |
[15] | LIU Run-Hong, BAI Jin-Lian, BAO Han, NONG Juan-Li, ZHAO Jia-Jia, JIANG Yong, LIANG Shi-Chu, LI Yue-Juan. Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China [J]. Chin J Plant Ecol, 2020, 44(8): 828-841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn