Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (1): 29-38.DOI: 10.3773/j.issn.1005-264x.2010.01.006
Special Issue: 植物功能性状
• Special feature: Ecological Stoichiometry • Previous Articles Next Articles
XU Bing, CHENG Yu-Xi, GAN Hui-Jie, ZHOU Wen-Jia, HE Jin-Sheng*()
Received:
2009-01-12
Accepted:
2009-06-03
Online:
2010-01-12
Published:
2010-01-01
Contact:
HE Jin-Sheng
XU Bing, CHENG Yu-Xi, GAN Hui-Jie, ZHOU Wen-Jia, HE Jin-Sheng. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China[J]. Chin J Plant Ecol, 2010, 34(1): 29-38.
Fig. 1 The theoretical correlations between leaf and fine root traits at different scales. A, Correlations among species (date point represents mean value of each species). B, Positive correlation among species and within species. C, Positive correlation among species, but random within species. D, Positive correlation among species, but negative correlation within species.
Fig. 2 Correlations between leaf traits and fine root traits in N concentrations (A), P concentrations (B), N:P ratios (C) and log-transformed specific leaf area and specific root length (D). Values are mean ± SE.
植物功能群 Functional group | n | Leaf N-Root N | Leaf P-Root P | Leaf N:P-Root N:P | SLA-SRL | ||||
---|---|---|---|---|---|---|---|---|---|
b | R2 | b | R2 | b | R2 | b | R2 | ||
禾草 Grass | 13 | 0.083 | 0.138 | 1.052 | 0.590** | 0.177 | 0.146 | 0.970 | 0.346* |
杂类草 Forb | 36-45 | 0.376 | 0.208** | 0.293 | 0.023 | 0.621 | 0.427** | 1.521 | 0.234** |
木本植物 Woody | 5-6 | 0.767 | 0.701 | 1.524 | 0.599 | 0.886 | 0.732 | -0.324 | 0.057 |
双子叶植物 Dicotyledon | 35-44 | 0.458 | 0.251** | 0.273 | 0.017 | 0.673 | 0.379** | 1.205 | 0.156* |
单子叶植物 Monocotyledon | 19-20 | 0.079 | 0.035 | 0.916 | 0.593** | 0.196 | 0.192 | 0.582 | 0.047 |
豆科植物 Legume | 5 | 0.252 | 0.021 | 1.011 | 0.539 | -0.249 | 0.027 | -0.376 | 0.026 |
非豆科植物 Non-legume | 49-59 | 0.265 | 0.129** | 0.712 | 0.142** | 0.290 | 0.186** | 0.744 | 0.088* |
Table 1 Correlations between leaf and fine root traits among different functional groups
植物功能群 Functional group | n | Leaf N-Root N | Leaf P-Root P | Leaf N:P-Root N:P | SLA-SRL | ||||
---|---|---|---|---|---|---|---|---|---|
b | R2 | b | R2 | b | R2 | b | R2 | ||
禾草 Grass | 13 | 0.083 | 0.138 | 1.052 | 0.590** | 0.177 | 0.146 | 0.970 | 0.346* |
杂类草 Forb | 36-45 | 0.376 | 0.208** | 0.293 | 0.023 | 0.621 | 0.427** | 1.521 | 0.234** |
木本植物 Woody | 5-6 | 0.767 | 0.701 | 1.524 | 0.599 | 0.886 | 0.732 | -0.324 | 0.057 |
双子叶植物 Dicotyledon | 35-44 | 0.458 | 0.251** | 0.273 | 0.017 | 0.673 | 0.379** | 1.205 | 0.156* |
单子叶植物 Monocotyledon | 19-20 | 0.079 | 0.035 | 0.916 | 0.593** | 0.196 | 0.192 | 0.582 | 0.047 |
豆科植物 Legume | 5 | 0.252 | 0.021 | 1.011 | 0.539 | -0.249 | 0.027 | -0.376 | 0.026 |
非豆科植物 Non-legume | 49-59 | 0.265 | 0.129** | 0.712 | 0.142** | 0.290 | 0.186** | 0.744 | 0.088* |
Fig. 3 Comparison of correlations between leaf and fine root traits among monocotyledons and dicotyledons. The significant correlations between leaf and fine root traits are shown by type II regression lines. A, N concentration: y = 0.92x - 1.20 (R2 = 0.251, p = 0.001) for dicotyledons. B, P concentration: y = 1.21x - 0.04 (R2 = 0.593, p < 0.001) for monocotyledons. C, N:P ratio, y = 1.09x - 11.10 (R2 = 0.379, p < 0.001) for dicotyledons, and y = 0.45x - 1.31 (R2 = 0.192, p = 0.061) for monocotyledons. D, Log-transformed specific leaf area and specific root length: y = 3.05x - 5.38 (R2 = 0.156, p = 0.011) for dicotyledons.
物种名 Species | Leaf N-Root N | Leaf P-Root P | SLA-SRL | ||||||
---|---|---|---|---|---|---|---|---|---|
n | r | p | n | r | p | n | r | p | |
棉团铁线莲 Clematis hexapetala | 8 | 0.464 | 0.247 | 4 | -0.767 | 0.233 | 10 | 0.140 | 0.812 |
瓣蕊唐松草 Thalictrum petaloideum | 10 | 0.231 | 0.522 | 10 | -0.250 | 0.636 | |||
二裂委陵菜 Potentilla bifurca | 8 | 0.226 | 0.591 | 7 | 0.132 | 0.778 | 10 | 0.645 | 0.113 |
菊叶委陵菜 Potentilla tanacetifolia | 8 | 0.376 | 0.358 | 7 | -0.571 | 0.181 | 10 | 0.374 | 0.467 |
地榆 Sanguisorba officinalis | 5 | -0.138 | 0.825 | 5 | 0.909 | 0.042 | |||
披针叶黄华 Thermopsis lanceolata | 8 | 0.283 | 0.497 | 5 | 0.874 | 0.052 | 10 | -0.330 | 0.488 |
歪头菜 Vicia unijuga | 5 | 0.877 | 0.051 | 5 | 0.438 | 0.460 | 5 | 0.857 | 0.067 |
狭叶柴胡 Bupleurum scorzonerifolium | 5 | 0.150 | 0.809 | 4 | 0.409 | 0.591 | 7 | 0.412 | 0.365 |
阿尔泰狗娃花 Heteropappus altaicus | 8 | 0.555 | 0.153 | 4 | 0.640 | 0.360 | 10 | -0.036 | 0.786 |
全缘橐吾 Ligularia mongolica | 5 | 0.961 | 0.009 | 5 | 0.785 | 0.116 | 4 | 0.785 | 0.314 |
芨芨草 Achnatherum splendens | 4 | -0.604 | 0.396 | 5 | 0.138 | 0.825 | 5 | 0.938 | 0.115 |
雀麦 Bromus japonicus | 10 | 0.798 | 0.006 | 10 | -0.452 | 0.147 | |||
草 Koeleria cristata ![]() | 9 | -0.447 | 0.228 | 6 | -0.341 | 0.509 | 10 | 0.087 | 0.883 |
黄囊薹草 Carex korshinskii | 10 | 0.750 | 0.012 | 6 | 0.542 | 0.267 | 10 | -0.773 | 0.005 |
日阴菅 Carex pediformis | 4 | -0.624 | 0.376 | 5 | 0.796 | 0.107 | 5 | 0.548 | 0.197 |
野韭 Allium ramosum | 10 | 0.446 | 0.196 | 4 | -0.357 | 0.643 | 10 | 0.260 | 0.357 |
山韮 Allium senescens | 10 | 0.487 | 0.154 | 4 | 0.595 | 0.405 | 9 | 0.054 | 0.697 |
知母 Anemarrhena asphodeloides | 8 | -0.049 | 0.908 | 8 | 0.322 | 0.612 | |||
小黄花菜 Hemerocallis minor | 5 | 0.242 | 0.695 | 4 | 0.258 | 0.742 | 5 | -0.428 | 0.548 |
野鸢尾 Iris dichotoma | 5 | 0.003 | 0.997 | 5 | -0.318 | 0.602 | 4 | 0.579 | 0.373 |
Table 2 Correlations between leaf and fine root traits within species
物种名 Species | Leaf N-Root N | Leaf P-Root P | SLA-SRL | ||||||
---|---|---|---|---|---|---|---|---|---|
n | r | p | n | r | p | n | r | p | |
棉团铁线莲 Clematis hexapetala | 8 | 0.464 | 0.247 | 4 | -0.767 | 0.233 | 10 | 0.140 | 0.812 |
瓣蕊唐松草 Thalictrum petaloideum | 10 | 0.231 | 0.522 | 10 | -0.250 | 0.636 | |||
二裂委陵菜 Potentilla bifurca | 8 | 0.226 | 0.591 | 7 | 0.132 | 0.778 | 10 | 0.645 | 0.113 |
菊叶委陵菜 Potentilla tanacetifolia | 8 | 0.376 | 0.358 | 7 | -0.571 | 0.181 | 10 | 0.374 | 0.467 |
地榆 Sanguisorba officinalis | 5 | -0.138 | 0.825 | 5 | 0.909 | 0.042 | |||
披针叶黄华 Thermopsis lanceolata | 8 | 0.283 | 0.497 | 5 | 0.874 | 0.052 | 10 | -0.330 | 0.488 |
歪头菜 Vicia unijuga | 5 | 0.877 | 0.051 | 5 | 0.438 | 0.460 | 5 | 0.857 | 0.067 |
狭叶柴胡 Bupleurum scorzonerifolium | 5 | 0.150 | 0.809 | 4 | 0.409 | 0.591 | 7 | 0.412 | 0.365 |
阿尔泰狗娃花 Heteropappus altaicus | 8 | 0.555 | 0.153 | 4 | 0.640 | 0.360 | 10 | -0.036 | 0.786 |
全缘橐吾 Ligularia mongolica | 5 | 0.961 | 0.009 | 5 | 0.785 | 0.116 | 4 | 0.785 | 0.314 |
芨芨草 Achnatherum splendens | 4 | -0.604 | 0.396 | 5 | 0.138 | 0.825 | 5 | 0.938 | 0.115 |
雀麦 Bromus japonicus | 10 | 0.798 | 0.006 | 10 | -0.452 | 0.147 | |||
草 Koeleria cristata ![]() | 9 | -0.447 | 0.228 | 6 | -0.341 | 0.509 | 10 | 0.087 | 0.883 |
黄囊薹草 Carex korshinskii | 10 | 0.750 | 0.012 | 6 | 0.542 | 0.267 | 10 | -0.773 | 0.005 |
日阴菅 Carex pediformis | 4 | -0.624 | 0.376 | 5 | 0.796 | 0.107 | 5 | 0.548 | 0.197 |
野韭 Allium ramosum | 10 | 0.446 | 0.196 | 4 | -0.357 | 0.643 | 10 | 0.260 | 0.357 |
山韮 Allium senescens | 10 | 0.487 | 0.154 | 4 | 0.595 | 0.405 | 9 | 0.054 | 0.697 |
知母 Anemarrhena asphodeloides | 8 | -0.049 | 0.908 | 8 | 0.322 | 0.612 | |||
小黄花菜 Hemerocallis minor | 5 | 0.242 | 0.695 | 4 | 0.258 | 0.742 | 5 | -0.428 | 0.548 |
野鸢尾 Iris dichotoma | 5 | 0.003 | 0.997 | 5 | -0.318 | 0.602 | 4 | 0.579 | 0.373 |
[1] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] | Bai YF (白永飞), Li LH (李凌浩), Huang JH (黄建辉), Chen ZZ (陈佐忠) (2001). The influence of plant diversity and functional composition on ecosystem stability of four Stipa communities in the Inner Mongolia Plateau. Acta Botanica Sinica (植物学报), 43, 280-287. (in Chinese with English abstract) |
[3] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[4] | Cannon WA (1949). A tentative classification of root systems. Ecology, 30, 542-548. |
[5] | Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260. |
[6] | Comas LH, Eissenstat DM (2004). Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 18, 388-397. |
[7] |
Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478.
URL PMID |
[8] | Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19. |
[9] | Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002). Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Functional Ecology, 16, 563-574. |
[10] | Craine JM, Wedin DA, Chapin FS III, Reich PB (2003). Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecology, 165, 85-100. |
[11] | Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-42. |
[12] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL PMID |
[13] | Eviner VT, Chapin FS III (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology, Evolution and Systematics, 34, 455-485. |
[14] | Feng QH (冯秋红), Shi ZM (史作民), Dong LL (董莉莉) (2008). Response of plant functional traits to environment and its application. Scientia Silvae Sinicae (林业科学), 44, 125-131. (in Chinese with English abstract) |
[15] | Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008). Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 177, 443-456. |
[16] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
DOI URL |
[17] | Hattenschwiler S, Aeschlimann B, Couteaux MM, Roy J, Bonal D (2008). High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytologist, 179, 165-175. |
[18] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006a). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL PMID |
[19] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
URL PMID |
[20] | He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006b). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848. |
[21] |
Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems, 3, 57-69.
DOI URL |
[22] | Hooper DU, Vitousek PM (1998). Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149. |
[23] | Hu N (胡楠), Fan YL (范玉龙), Ding SY (丁圣彦), Liao BH (廖秉华) (2008). Progress in researches on plant functional groups of terrestrial ecosystems. Acta Ecologica Sinica (生态学报), 24, 3302-3311. (in Chinese with English abstract) |
[24] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
URL PMID |
[25] | Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005). Toward a stoichiometric framework for evolutionary biology. Oikos, 109, 6-17. |
[26] | Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 14, 585-598. |
[27] |
Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122.
DOI URL PMID |
[28] | Koide RT (1991). Nutrient supply, nutrient demand and plant-response to mycorrhizal infection. New Phytologist, 117, 365-386. |
[29] | Kuo S (1996). Phosphorus. In: Bigham JM ed. Method of Soil Analysis. Part 3. Chemical Method. Soil Science Society of American/American Society of Agronomy, Madison, WI, USA. 869-919. |
[30] | Luscher A, Nosberger J (1997). Interspecific and intraspecific variability in the response of grasses and legumes to free air CO2 enrichment. Acta Oecologica-International Journal of Ecology, 18, 269-275. |
[31] | McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21, 713-720. |
[32] | Meng TT (孟婷婷), Ni J (倪健), Wang GH (王国宏) (2007). Plant functional traits, enviroments and ecosystem functioning. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 150-160. (in Chinese with English abstract) |
[33] | Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12. |
[34] |
Novotny AM, Schade JD, Hobbie SE, Kay AD, Kyle M, Reich PB, Elser JJ (2007). Stoichiometric response of nitrogen- fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity. Oecologia, 151, 687-696.
DOI URL PMID |
[35] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[36] | Reich PB, Tilman D, Craine J, Ellsworth D, Tjoelker MG, Knops J, Wedin D, Naeem S, Bahauddin D, Goth J, Bengtson W, Lee TD (2001). Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 150, 435-448. |
[37] | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. |
[38] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[39] | Ryser P, Lambers H (1995). Root and leaf attributes accounting for the performance of fast-growing and slow-growing grasses at different nutrient supply. Plant and Soil, 170, 251-265. |
[40] | Shipley B, Almeida-Cortez J (2003). Interspecific consistency and intraspecific variability of specific leaf area with respect to irradiance and nutrient availability. EcoScience, 10, 74-79. |
[41] | Sun GJ (孙国钧), Zhang R (张荣), Zhou L (周立) (2003). Trends and advances in researches on plant functional diversity and functional groups. Acta Ecologica Sinica (生态学报), 23, 1430-1435. (in Chinese with English abstract) |
[42] |
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[43] | Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508. |
[44] |
Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003). Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 12, 3085-3095.
DOI URL PMID |
[45] | Weaver JE (1958). Classification of root systems of forbs of grassland and a consideration of their significance. Ecology, 39, 393-401. |
[46] | Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparison of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397. |
[47] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[48] | Zeng DH (曾德慧), Chen GS (陈广生) (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica (植物生态学报), 29, 1007-1019. (in Chinese with English abstract) |
[49] | Zhang L (张林), Luo TX (罗天祥) (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica (植物生态学报), 28, 844-852. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn