Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (11): 1168-1176.DOI: 10.17521/cjpe.2017.0220
• Research Articles • Previous Articles Next Articles
Tian WANG1,2, Shan XU3, Meng-Ying ZHAO1,2, He LI1,2, Dan KOU1,2, Jing-Yun FANG1, Hui-Feng HU1,*()
Received:
2017-08-16
Accepted:
2017-11-14
Online:
2017-11-10
Published:
2017-11-10
Contact:
Hui-Feng HU
Tian WANG, Shan XU, Meng-Ying ZHAO, He LI, Dan KOU, Jing-Yun FANG, Hui-Feng HU. Allocation of mass and stability of soil aggregate in different types of Nei Mongol grasslands[J]. Chin J Plant Ecol, 2017, 41(11): 1168-1176.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0220
草原类型 Grassland type | GSP平均值(范围)1) Mean of GSP (range) 1) (mm) | GST平均值(范围) 1) Mean of GST a(range) 1) (℃) | 氮:磷平均值(范围) 2) Mean of N:P (range) 2) | pH平均值(范围) 3) Mean of pH (range) 3) | 优势种4) Dominant species4) |
---|---|---|---|---|---|
草甸草原 Meadow steppe | 306 (277-327) | 12.50 (11.20-13.60) | 3.83 (3.25-4.37) | 7.10 (7.60-8.00) | 贝加尔针茅 Stipa baicalensis, 羊草 Leymus chinensis |
典型草原 Typical steppe | 242 (174-295) | 14.00 (12.60-18.20) | 3.02 (2.93-3.11) | 7.50 (7.26-7.73) | 大针茅 Stipa grandis, 克氏针茅 Stipa kryovii |
荒漠草原 Desert steppe | 163 (110-219) | 16.50 (14.70-17.60) | 2.48 (2.41-2.54) | 7.80 (6.65-7.56) | 小针茅 Stipa klemenzii, 短花针茅 Stipa breviflora |
Table 1 The basic information of the three types of grassland
草原类型 Grassland type | GSP平均值(范围)1) Mean of GSP (range) 1) (mm) | GST平均值(范围) 1) Mean of GST a(range) 1) (℃) | 氮:磷平均值(范围) 2) Mean of N:P (range) 2) | pH平均值(范围) 3) Mean of pH (range) 3) | 优势种4) Dominant species4) |
---|---|---|---|---|---|
草甸草原 Meadow steppe | 306 (277-327) | 12.50 (11.20-13.60) | 3.83 (3.25-4.37) | 7.10 (7.60-8.00) | 贝加尔针茅 Stipa baicalensis, 羊草 Leymus chinensis |
典型草原 Typical steppe | 242 (174-295) | 14.00 (12.60-18.20) | 3.02 (2.93-3.11) | 7.50 (7.26-7.73) | 大针茅 Stipa grandis, 克氏针茅 Stipa kryovii |
荒漠草原 Desert steppe | 163 (110-219) | 16.50 (14.70-17.60) | 2.48 (2.41-2.54) | 7.80 (6.65-7.56) | 小针茅 Stipa klemenzii, 短花针茅 Stipa breviflora |
土层 Soil layer (cm) | 草甸草原 Meadow steppe (%) | 典型草原 Typical steppe (%) | 荒漠草原 Desert steppe (%) | |
---|---|---|---|---|
0-10 | A1 | 14.15 ± 1.98a | 13.58 ± 1.20a | 14.8 ± 1.49a |
A2 | 9.33 ± 0.93a | 8.32 ± 0.44a | 5.90 ± 0.45a | |
A3 | 15.90 ± 2.96a | 10.33 ± 1.24ab | 6.76 ± 0.71b | |
A4 | 14.15 ± 4.48a | 5.93 ± 0.99b | - | |
10-20 | A1 | 18.82 ± 3.41a | 12.89 ± 1.02ab | 12.67 ± 1.30b |
A2 | 10.37 ± 1.30a | 8.30 ± 0.59a | 6.84 ± 1.09a | |
A3 | 15.43 ± 3.08a | 9.30 ± 0.93ab | 7.32 ± 0.90b | |
20-30 | A4 | 10.22 ± 2.87a | 4.51 ± 0.96b | - |
A1 | 22.86 ± 3.23a | 13.70 ± 1.39ab | 10.14 ± 1.16b | |
A2 | 12.93 ± 1.34a | 7.65 ± 0.52ab | 6.64 ± 0.65b | |
A3 | 12.39 ± 2.54a | 9.24 ± 0.95a | 7.74 ± 1.35a | |
A4 | 6.95 ± 1.35a | 3.72 ± 1.03a | - | |
30-50 | A1 | 18.97 ± 2.43a | 13.55 ± 1.16ab | 10.30 ± 1.20b |
A2 | 14.70 ± 2.61a | 8.74 ± 0.82ab | 6.93 ± 1.53b | |
A3 | 13.39 ± 2.83a | 8.02 ± 0.75ab | 6.75 ± 0.66b | |
A4 | 4.76 ± 0.79a | 3.70 ± 1.17a | - | |
50-70 | A1 | 23.89 ± 8.50a | 17.02 ± 3.26b | 9.43 ± 1.50c |
A2 | 12.34 ± 3.64a | 7.18 ± 1.09ab | 5.32 ± 0.68b | |
A3 | 17.35 ± 5.94a | 6.84 ± 1.28b | 6.29 ± 0.83b | |
A4 | - | - | - | |
70-100 | A1 | 29.72 ± 9.86a | 14.71 ± 3.01b | 10.09 ± 1.22b |
A2 | 10.79 ± 2.97a | 6.87 ± 1.08a | 5.15 ± 1.150a | |
A3 | 14.68 ± 5.49a | 6.65 ± 1.46b | 7.86 ± 2.23b | |
A4 | - | - | - |
Appendix I The mass percentage (%) of each aggregate fraction in different soil layers (mean ± SE)
土层 Soil layer (cm) | 草甸草原 Meadow steppe (%) | 典型草原 Typical steppe (%) | 荒漠草原 Desert steppe (%) | |
---|---|---|---|---|
0-10 | A1 | 14.15 ± 1.98a | 13.58 ± 1.20a | 14.8 ± 1.49a |
A2 | 9.33 ± 0.93a | 8.32 ± 0.44a | 5.90 ± 0.45a | |
A3 | 15.90 ± 2.96a | 10.33 ± 1.24ab | 6.76 ± 0.71b | |
A4 | 14.15 ± 4.48a | 5.93 ± 0.99b | - | |
10-20 | A1 | 18.82 ± 3.41a | 12.89 ± 1.02ab | 12.67 ± 1.30b |
A2 | 10.37 ± 1.30a | 8.30 ± 0.59a | 6.84 ± 1.09a | |
A3 | 15.43 ± 3.08a | 9.30 ± 0.93ab | 7.32 ± 0.90b | |
20-30 | A4 | 10.22 ± 2.87a | 4.51 ± 0.96b | - |
A1 | 22.86 ± 3.23a | 13.70 ± 1.39ab | 10.14 ± 1.16b | |
A2 | 12.93 ± 1.34a | 7.65 ± 0.52ab | 6.64 ± 0.65b | |
A3 | 12.39 ± 2.54a | 9.24 ± 0.95a | 7.74 ± 1.35a | |
A4 | 6.95 ± 1.35a | 3.72 ± 1.03a | - | |
30-50 | A1 | 18.97 ± 2.43a | 13.55 ± 1.16ab | 10.30 ± 1.20b |
A2 | 14.70 ± 2.61a | 8.74 ± 0.82ab | 6.93 ± 1.53b | |
A3 | 13.39 ± 2.83a | 8.02 ± 0.75ab | 6.75 ± 0.66b | |
A4 | 4.76 ± 0.79a | 3.70 ± 1.17a | - | |
50-70 | A1 | 23.89 ± 8.50a | 17.02 ± 3.26b | 9.43 ± 1.50c |
A2 | 12.34 ± 3.64a | 7.18 ± 1.09ab | 5.32 ± 0.68b | |
A3 | 17.35 ± 5.94a | 6.84 ± 1.28b | 6.29 ± 0.83b | |
A4 | - | - | - | |
70-100 | A1 | 29.72 ± 9.86a | 14.71 ± 3.01b | 10.09 ± 1.22b |
A2 | 10.79 ± 2.97a | 6.87 ± 1.08a | 5.15 ± 1.150a | |
A3 | 14.68 ± 5.49a | 6.65 ± 1.46b | 7.86 ± 2.23b | |
A4 | - | - | - |
因素 Factor | 团聚体质量百分数 Mass percentage of aggregate |
---|---|
土层深度 Soil depth | 0.12 |
草原类型 Grassland type | < 0.01 |
土层深度×草原类型 Soil depth × Grassland type | 0.41 |
Appendix II The two-way ANOVA results of soil depth and grassland type on the mass percentage of aggregate
因素 Factor | 团聚体质量百分数 Mass percentage of aggregate |
---|---|
土层深度 Soil depth | 0.12 |
草原类型 Grassland type | < 0.01 |
土层深度×草原类型 Soil depth × Grassland type | 0.41 |
土层 Soil layer (cm) | 草甸草原 Meadow steppe (%) | 典型草原 Typical steppe (%) | 荒漠草原 Desert steppe (%) |
---|---|---|---|
0-10 | 49.66 ± 1.12a | 35.07 ± 2.20b | 27.25 ± 1.87b |
10-20 | 48.63 ± 2.08a | 32.30 ± 2.19b | 26.84 ± 2.76b |
20-30 | 52.15 ± 5.70a | 31.80 ± 2.32b | 24.52 ± 2.68b |
30-50 | 48.20 ± 1.79a | 31.53 ± 2.28b | 24.45 ± 3.26b |
50-70 | 49.14 ± 14.21a | 31.21 ± 0.82b | 21.04 ± 2.49b |
70-100 | 48.40 ± 15.21a | 28.82 ± 1.5b | 23.10 ± 3.73b |
0-100 | 49.52 ± 2.76a | 32.32 ± 1.08b | 25.22 ± 1.17b |
Table 2 The mass percentage (%) of total soil aggregate in different soil layers (mean ± SE)
土层 Soil layer (cm) | 草甸草原 Meadow steppe (%) | 典型草原 Typical steppe (%) | 荒漠草原 Desert steppe (%) |
---|---|---|---|
0-10 | 49.66 ± 1.12a | 35.07 ± 2.20b | 27.25 ± 1.87b |
10-20 | 48.63 ± 2.08a | 32.30 ± 2.19b | 26.84 ± 2.76b |
20-30 | 52.15 ± 5.70a | 31.80 ± 2.32b | 24.52 ± 2.68b |
30-50 | 48.20 ± 1.79a | 31.53 ± 2.28b | 24.45 ± 3.26b |
50-70 | 49.14 ± 14.21a | 31.21 ± 0.82b | 21.04 ± 2.49b |
70-100 | 48.40 ± 15.21a | 28.82 ± 1.5b | 23.10 ± 3.73b |
0-100 | 49.52 ± 2.76a | 32.32 ± 1.08b | 25.22 ± 1.17b |
土层 Soil layer (cm) | 年降水量 Mean annual precipitation (MAP) (mm) | 年平均气温 Mean annual air temperature (MAT) (℃) | ||||||
---|---|---|---|---|---|---|---|---|
a | b | R2 | p | a | b | R2 | p | |
0-10 | 0.13 | -2.10 | 0.26 | < 0.01 | -2.78 | 41.06 | 0.20 | < 0.01 |
10-20 | 0.12 | 0.17 | 0.18 | < 0.01 | -2.59 | 39.65 | 0.14 | < 0.01 |
20-30 | 0.13 | -4.05 | 0.20 | < 0.01 | -3.21 | 10.24 | 0.20 | < 0.01 |
30-50 | 0.12 | -1.64 | 0.16 | < 0.01 | -3.21 | 39.26 | 0.21 | < 0.01 |
50-70 | 0.13 | -7.19 | 0.11 | 0.06 | -3.32 | 38.21 | 0.15 | 0.03 |
70-100 | 0.14 | -11.35 | 0.11 | 0.06 | -2.73 | 36.29 | 0.07 | 0.11 |
Table 3 The linear relationships between total aggregate mass percentage of different soil layers and climate factors
土层 Soil layer (cm) | 年降水量 Mean annual precipitation (MAP) (mm) | 年平均气温 Mean annual air temperature (MAT) (℃) | ||||||
---|---|---|---|---|---|---|---|---|
a | b | R2 | p | a | b | R2 | p | |
0-10 | 0.13 | -2.10 | 0.26 | < 0.01 | -2.78 | 41.06 | 0.20 | < 0.01 |
10-20 | 0.12 | 0.17 | 0.18 | < 0.01 | -2.59 | 39.65 | 0.14 | < 0.01 |
20-30 | 0.13 | -4.05 | 0.20 | < 0.01 | -3.21 | 10.24 | 0.20 | < 0.01 |
30-50 | 0.12 | -1.64 | 0.16 | < 0.01 | -3.21 | 39.26 | 0.21 | < 0.01 |
50-70 | 0.13 | -7.19 | 0.11 | 0.06 | -3.32 | 38.21 | 0.15 | 0.03 |
70-100 | 0.14 | -11.35 | 0.11 | 0.06 | -2.73 | 36.29 | 0.07 | 0.11 |
土层 Soil layer (cm) | 草甸草原 Meadow steppe | 典型草原 Typical steppe | 荒漠草原 Desert steppe | |||
---|---|---|---|---|---|---|
MMD | GMD | MMD | GMD | MMD | GMD | |
0-10 | 0.76 ± 0.11 | 0.38 ± 0.10 | 0.49 ± 0.04 | 0.20 ± 0.02 | 0.31 ± 0.02 | 0.04 ± 0.01 |
10-20 | 0.65 ± 0.09 | 0.29 ± 0.07 | 0.46 ± 0.03 | 0.17 ± 0.02 | 0.36 ± 0.02 | 0.12 ± 0.01 |
20-30 | 0.46 ± 0.06 | 0.17 ± 0.03 | 0.44 ± 0.03 | 0.16 ± 0.02 | 0.39 ± 0.03 | 0.14 ± 0.01 |
30-50 | 0.46 ± 0.05 | 0.17 ± 0.02 | 0.38 ± 0.02 | 0.14 ± 0.01 | 0.38 ± 0.01 | 0.13 ± 0.01 |
50-70 | 0.43 ± 0.02 | 0.16 ± 0.01 | 0.33 ± 0.04 | 0.12 ± 0.02 | 0.39 ± 0.03 | 0.13 ± 0.01 |
70-100 | 0.37 ± 0.05 | 0.12 ± 0.03 | 0.31 ± 0.03 | 0.11 ± 0.01 | 0.40 ± 0.05 | 0.14 ± 0.03 |
Appendix III The mean mass diameter and geometric mean diameter of soil aggregates in different soil layers (mean ± SE)
土层 Soil layer (cm) | 草甸草原 Meadow steppe | 典型草原 Typical steppe | 荒漠草原 Desert steppe | |||
---|---|---|---|---|---|---|
MMD | GMD | MMD | GMD | MMD | GMD | |
0-10 | 0.76 ± 0.11 | 0.38 ± 0.10 | 0.49 ± 0.04 | 0.20 ± 0.02 | 0.31 ± 0.02 | 0.04 ± 0.01 |
10-20 | 0.65 ± 0.09 | 0.29 ± 0.07 | 0.46 ± 0.03 | 0.17 ± 0.02 | 0.36 ± 0.02 | 0.12 ± 0.01 |
20-30 | 0.46 ± 0.06 | 0.17 ± 0.03 | 0.44 ± 0.03 | 0.16 ± 0.02 | 0.39 ± 0.03 | 0.14 ± 0.01 |
30-50 | 0.46 ± 0.05 | 0.17 ± 0.02 | 0.38 ± 0.02 | 0.14 ± 0.01 | 0.38 ± 0.01 | 0.13 ± 0.01 |
50-70 | 0.43 ± 0.02 | 0.16 ± 0.01 | 0.33 ± 0.04 | 0.12 ± 0.02 | 0.39 ± 0.03 | 0.13 ± 0.01 |
70-100 | 0.37 ± 0.05 | 0.12 ± 0.03 | 0.31 ± 0.03 | 0.11 ± 0.01 | 0.40 ± 0.05 | 0.14 ± 0.03 |
Fig. 2 Mean mass diameter (MMD) (A) and geometric mean diameter (GMD) (B) of soil aggregates at different soil depths in three types of grassland (mean ± SE). Lowercase letters represent the differences of MMD and GMD in the same soil layer among three types of grassland at the level of 5%. Uppercase letters represent the differences of MMD and GMD among different soil layers in one type of grassland at the level of 5%.
[1] |
Abiven S, Menasseri S, Chenu C (2009). The effects of organic inputs over time on soil aggregate stability—A literature analysis.Soil Biology & Biochemistry, 41, 1-12.
DOI URL PMID |
[2] | Abrishamkesh S, Gorji M, Asadi H (2011). Long-term effects of land use on soil aggregate stability.International Agrophysics, 25, 103-108. |
[3] |
Allison V, Yermakov Z, Miller R, Jastrow J, Matamala R (2007). Using landscape and depth gradients to decouple the impact of correlated environmental variables on soil microbial community composition.Soil Biology & Biochemistry, 39, 505-516.
DOI URL |
[4] |
Amezketa E (1999). Soil aggregate stability: A review.Journal of Sustainable Agriculture, 14, 83-151.
DOI URL |
[5] |
Austin MP, van Niel KP (2011). Improving species distribution models for climate change studies: Variable selection and scale.Journal of Biogeography, 38, 1-8.
DOI URL |
[6] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau.Ecology, 89, 2140-2153.
DOI URL PMID |
[7] |
Bird SB, Herrick JE, Wander M, Wright S (2002). Spatial heterogeneity of aggregate stability and soil carbon in semi- arid rangeland.Environmental Pollution, 116, 445-455.
DOI URL PMID |
[8] |
Bird SB, Herrick JE, Wander MM, Murray L (2007). Multi-scale variability in soil aggregate stability: Implications for understanding and predicting semi-arid grassland degradation.Geoderma, 140, 106-118.
DOI URL |
[9] |
Blume E, Bischoff M, Reichert J, Moorman T, Konopka A, Turco R (2002). Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season.Applied Soil Ecology, 20, 171-181.
DOI URL |
[10] |
Cavagnaro T, Jackson L, Six J, Ferris H, Goyal S, Asami D, Scow K (2006). Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production.Plant and Soil, 282, 209-225.
DOI URL |
[11] |
Chen S, Sun T (2017). Research of soil aggregate stability in different degradation stages of Songnen grassland.Pratacultural Science, 34, 217-223. (in Chinese with English abstract)[陈帅, 孙涛 (2017). 松嫩草地不同退化阶段的土壤团聚体稳定性. 草业科学, 34, 217-223.]
DOI URL |
[12] |
Chenu C, Le Bissonnais Y, Arrouays D (2000). Organic matter influence on clay wettability and soil aggregate stability.Soil Science Society of America Journal, 64, 1479-1486.
DOI URL |
[13] |
Denef K, Zotarelli L, Boddey RM, Six J (2007). Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two oxisols.Soil Biology & Biochemistry, 39, 1165-1172.
DOI URL |
[14] |
Jastrow JD (1996). Soil aggregate formation and the accrual of particulate and mineral-associated organic matter.Soil Biology & Biochemistry, 28, 665-676.
DOI URL |
[15] | Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications, 10, 423-436. |
[16] | Kemper W, Chepil W (1965). Size distribution of aggregates. In: Black CA ed. Physical and Mineralogical Properties. American Society of Agronomy, Madison. 499-510. |
[17] |
Lal R (2000). Physical management of soils of the tropics: Priorities for the 21st Century.Soil Science, 165, 191-207.
DOI URL |
[18] |
Lehrsch G, Sojka R, Carter D, Jolley P (1991). Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter.Soil Science Society of America Journal, 55, 1401-1406.
DOI URL |
[19] | Li B (1979). The general characteristics of grassland vegetation in China. Journal of Chinese Grassland, 1, 2-12. [李博 (1979). 中国草原植被的一般特征. 中国草地学报, 1, 2-12.] |
[20] |
Li JL, Jiang CS, Hao QJ (2015). Distribution characteristics of soil organic carbon and its physical fractions under the different land uses in Jinyun Mountain.Acta Ecologica Sinica, 35, 3733-3742. (in Chinese with English abstract)[李鉴霖, 江长胜, 郝庆菊 (2015). 缙云山不同土地利用方式土壤有机碳组分特征. 生态学报, 35, 3733-3742.]
DOI URL |
[21] |
Li XZ, Chen ZZ (2004). Soil microbial biomass C and N along a climatic transect in the Mongolian steppe.Biology and Fertility of Soils, 39, 344-351.
DOI URL |
[22] | Liu EK, Zhao BQ, Mei XR, Li XY, Li J (2010). Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application.Acta Ecologica Sinica, 30, 1035-1041. (in Chinese with English abstract)[刘恩科, 赵秉强, 梅旭荣, 李秀英, 李娟 (2010). 不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响. 生态学报, 30, 1035-1041.] |
[23] |
Luo YQ, Gerten D, Le Maire G, Parton WJ, Weng ES, Zhou XH, Keough C, Beier C, Ciais P, Cramer W (2008). Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones.Global Change Biology, 14, 1986-1999.
DOI URL |
[24] | Ma WH (2006). Carbon Storage in Temperate Grassland of Inner Mongolia. PhD dissertation. Peking University, Beijing. 18-19. (in Chinese with English abstract)[马文红 (2006). 内蒙古温带草地的碳储量. 博士学位论文. 北京大学, 北京. 18-19.] |
[25] |
Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010). Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites.Global Ecology and Biogeography, 19, 233-243.
DOI URL |
[26] |
Ma WH, Yang YH, He JS, Zeng H, Fang JY (2008). Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia.Science China Series C: Life Sciences, 51, 263-270.
DOI URL PMID |
[27] |
Marquez CO, Garcia VJ, Cambardella CA, Schultz RC, Isenhart TM (2004). Aggregate-size stability distribution and soil stability.Soil Science Society of America Journal, 68, 725-735.
DOI URL |
[28] | Nimmo JR, Perkins KS (2002). Aggregate stability and size distribution. In: Dane JH, Topp GC eds. Methods of Soil Analysis. American Society of Agronomy, Madison. 317-328. |
[29] |
Pinheiro E, Pereira M, Anjos L (2004). Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a red latosol from brazil.Soil and Tillage Research, 77, 79-84.
DOI URL |
[30] |
Sanderman J, Amundson R (2008). A comparative study of dissolved organic carbon transport and stabilization in california forest and grassland soils.Biogeochemistry, 89, 309-327.
DOI URL |
[31] |
Scurlock J, Hall D (1998). The global carbon sink: A grassland perspective.Global Change Biology, 4, 229-233.
DOI URL |
[32] |
Six J, Conant R, Paul EA, Paustian K (2002a). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils.Plant and Soil, 241, 155-176.
DOI URL |
[33] |
Six J, Elliott E, Paustian K, Doran JW (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils.Soil Science Society of America Journal, 62, 1367-1377.
DOI URL |
[34] |
Six J, Feller C, Denef K, Ogle SM, de Moraes Sa JC, Albrecht A (2002b). Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage.Agronomie, 22, 755-775.
DOI URL |
[35] | Tian SZ, Wang Y, Li N, Ning TY, Wang BW, Zhao HX, Li ZJ (2013). Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain.Acta Ecologica Sinica, 33, 7116-7124. (in Chinese with English abstract)[田慎重, 王瑜, 李娜, 宁堂原, 王丙文, 赵红香, 李增嘉 (2013). 耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响. 生态学报, 33, 7116-7124.] |
[36] |
Wang C, Wang XB, Liu DW, Wu HH, Lü XT, Fang YT, Cheng WX, Luo WT, Jiang P, Shi J (2014). Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands.Nature Communications, 5, 4799.
DOI URL PMID |
[37] |
Wu ZT, Dijkstra P, Koch GW, Penuelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation.Global Change Biology, 17, 927-942.
DOI URL |
[38] |
Yang YH, Fang JY, Ji CJ, Datta A, Li P, Ma WH, Mohammat A, Shen HH, Hu HF, Knapp BO, Smith P (2014). Stoichiometric shifts in surface soils over broad geographical scales: Evidence from China’s grasslands.Global Ecology and Biogeography, 23, 947-955.
DOI URL |
[39] |
Yang YH, Fang JY, Ma WH, Guo D, Mohammat A (2010a). Large-scale pattern of biomass partitioning across China’s grasslands.Global Ecology and Biogeography, 19, 268-277.
DOI URL |
[40] |
Yang YH, Fang JY, Ma WH, Smith P, Mohammat A, Wang SP, Wang W (2010b). Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s.Global Change Biology, 16, 3036-3047.
DOI URL |
[41] |
Yang YH, Ji CJ, Ma WH, Wang SF, Wang SP, Han WX, Mohammat A, Robinson D, Smith P (2012). Significant soil acidification across northern china's grasslands during 1980s-2000s.Global Change Biology, 18, 2292-2300.
DOI URL |
[42] |
Zhang ZH, Li XY, Jiang ZY, Peng HY, Li L, Zhao GQ (2013). Changes in some soil properties induced by re-conversion of cropland into grassland in the semiarid steppe zone of Inner Mongolia, China.Plant and Soil, 373, 89-106.
DOI URL |
[43] | Zhao SW, Su J, Wu JS, Yang YH, Liu NN (2006). Changes of soil aggregate organic carbon during process of vegetation restoration in Ziwuling.Journal of Soil and Water Conservation, 20, 114-117. (in Chinese with English abstract)[赵世伟, 苏静, 吴金水, 杨永辉, 刘娜娜 (2006). 子午岭植被恢复过程中土壤团聚体有机碳含量的变化. 水土保持学报, 20, 114-117.] |
[1] | ZHU Yu-He, XIAO Hong, WANG Bing, WU Ying, BAI Yong-Fei, CHEN Di-Ma. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus along soil depths in response to climatic variables in grasslands on the Mongolia Plateau [J]. Chin J Plant Ecol, 2022, 46(3): 340-349. |
[2] | QIN Qian-Qian, QIU Cong, ZHENG Da-Cheng, LIU Yan-Hong. Soil infiltration dynamics in early period of a post-fire Pinus tabulaeformis plantation [J]. Chin J Plant Ecol, 2021, 45(8): 903-917. |
[3] | LI Peng, LI Zhan_Bin, LU Ke_Xin. RELATIONSHIP BETWEEN HERBACEOUS ROOT SYSTEM AND VERTICAL SOIL SEDIMENT YIELD IN LOESS AREA [J]. Chin J Plant Ecol, 2006, 30(2): 302-306. |
[4] | ZHANG Yuan-Dong, XU Ying-Tao, GU Feng-Xue, PAN Xiao-Ling. Correlation Analysis of NDVI With Climate and Hydrological Factors in Oasis and Desert [J]. Chin J Plan Ecolo, 2003, 27(6): 816-822. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn