Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (3): 340-349.DOI: 10.17521/cjpe.2021.0266
• Research Articles • Previous Articles Next Articles
ZHU Yu-He1, XIAO Hong1,2, WANG Bing1,2,*(), WU Ying1,2, BAI Yong-Fei2, CHEN Di-Ma1,2
Received:
2021-07-15
Accepted:
2021-09-06
Online:
2022-03-20
Published:
2021-10-15
Contact:
WANG Bing
Supported by:
ZHU Yu-He, XIAO Hong, WANG Bing, WU Ying, BAI Yong-Fei, CHEN Di-Ma. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus along soil depths in response to climatic variables in grasslands on the Mongolia Plateau[J]. Chin J Plant Ecol, 2022, 46(3): 340-349.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0266
变量 Variable | 土壤深度 Soil depth (cm) | |||
---|---|---|---|---|
0-20 | 20-40 | 40-60 | 60-80 | |
SOC (mg·g-1) | 14.56 ± 1.13a | 9.11 ± 0.76b | 6.57 ± 0.64c | 3.85 ± 0.35d |
STN (mg·g-1) | 1.30 ± 0.10a | 0.82 ± 0.06b | 0.55 ± 0.05c | 0.32 ± 0.03d |
STP (mg·g-1) | 0.09 ± 0.00 | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.01 |
C:N | 12.76 ± 0.58b | 12.33 ± 0.52b | 17.56 ± 1.89ab | 23.33 ± 4.12a |
C:P | 144.17 ± 7.22a | 104.89 ± 4.74b | 80.63 ± 4.21c | 53.38 ± 3.33d |
N:P | 13.25 ± 0.75a | 9.99 ± 0.51b | 6.96 ± 0.44c | 4.75 ± 0.38d |
Table 1 Soil carbon (C), nitrogen (N), and phosphorus (P) contents and their stoichiometric ratios along soil depths in grasslands on the Mongolia Plateau (mean ± SE)
变量 Variable | 土壤深度 Soil depth (cm) | |||
---|---|---|---|---|
0-20 | 20-40 | 40-60 | 60-80 | |
SOC (mg·g-1) | 14.56 ± 1.13a | 9.11 ± 0.76b | 6.57 ± 0.64c | 3.85 ± 0.35d |
STN (mg·g-1) | 1.30 ± 0.10a | 0.82 ± 0.06b | 0.55 ± 0.05c | 0.32 ± 0.03d |
STP (mg·g-1) | 0.09 ± 0.00 | 0.09 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.01 |
C:N | 12.76 ± 0.58b | 12.33 ± 0.52b | 17.56 ± 1.89ab | 23.33 ± 4.12a |
C:P | 144.17 ± 7.22a | 104.89 ± 4.74b | 80.63 ± 4.21c | 53.38 ± 3.33d |
N:P | 13.25 ± 0.75a | 9.99 ± 0.51b | 6.96 ± 0.44c | 4.75 ± 0.38d |
Fig. 1 Relationships between soil carbon (C), nitrogen (N), and phosphorus (P) contents and climatic factors for each soil layer in grasslands on the Mongolia Plateau. MAP, mean annual precipitation; MAT, mean annual air temperature; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content. **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
土壤深度 Soil depth (cm) | 年降水量 Mean annual precipitation | 年平均温度 Mean annual air temperature | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | STN | STP | C:N | C:P | N:P | SOC | STN | STP | C:N | C:P | N:P | |
0-20 vs 20-40 | <0.001 | <0.001 | 0.887 | 0.983 | 0.008 | 0.018 | <0.001 | <0.001 | 0.847 | 1.000 | 0.003 | 0.054 |
0-20 vs 40-60 | <0.001 | <0.001 | 0.875 | 0.656 | 0.002 | 0.058 | <0.001 | <0.001 | 0.677 | 0.998 | <0.001 | 0.013 |
0-20 vs 60-80 | <0.001 | <0.001 | 0.881 | 0.520 | 0.001 | 0.040 | <0.001 | <0.001 | 0.448 | 0.405 | 0.003 | 0.002 |
20-40 vs 40-60 | 0.977 | 0.560 | 1.000 | 0.424 | 0.975 | 0.975 | 0.808 | 0.372 | 0.990 | 1.000 | 0.911 | 0.958 |
20-40 vs 60-80 | 0.508 | 0.003 | 1.000 | 0.305 | 0.928 | 0.992 | 0.421 | 0.002 | 0.909 | 0.355 | 0.998 | 0.745 |
40-60 vs 60-80 | 0.762 | 0.137 | 1.000 | 0.997 | 0.998 | 0.999 | 0.921 | 0.247 | 0.984 | 0.301 | 0.907 | 0.958 |
Table 2 Comparison results (p) of linear regression slopes between soil carbon (C), nitrogen (N), and phosphorus (P) contents and stoichiometric ratios and climatic variables along soil depths in grasslands on the Mongolia Plateau
土壤深度 Soil depth (cm) | 年降水量 Mean annual precipitation | 年平均温度 Mean annual air temperature | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | STN | STP | C:N | C:P | N:P | SOC | STN | STP | C:N | C:P | N:P | |
0-20 vs 20-40 | <0.001 | <0.001 | 0.887 | 0.983 | 0.008 | 0.018 | <0.001 | <0.001 | 0.847 | 1.000 | 0.003 | 0.054 |
0-20 vs 40-60 | <0.001 | <0.001 | 0.875 | 0.656 | 0.002 | 0.058 | <0.001 | <0.001 | 0.677 | 0.998 | <0.001 | 0.013 |
0-20 vs 60-80 | <0.001 | <0.001 | 0.881 | 0.520 | 0.001 | 0.040 | <0.001 | <0.001 | 0.448 | 0.405 | 0.003 | 0.002 |
20-40 vs 40-60 | 0.977 | 0.560 | 1.000 | 0.424 | 0.975 | 0.975 | 0.808 | 0.372 | 0.990 | 1.000 | 0.911 | 0.958 |
20-40 vs 60-80 | 0.508 | 0.003 | 1.000 | 0.305 | 0.928 | 0.992 | 0.421 | 0.002 | 0.909 | 0.355 | 0.998 | 0.745 |
40-60 vs 60-80 | 0.762 | 0.137 | 1.000 | 0.997 | 0.998 | 0.999 | 0.921 | 0.247 | 0.984 | 0.301 | 0.907 | 0.958 |
Fig. 2 Percentages of variation in soil carbon (C), nitrogen (N), and phosphorus (P) contents and stoichiometric ratios at different soil depths in grasslands on the Mongolia Plateau explained by climatic variables. SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content. MAP, mean annual precipitation; MAT, mean annual air temperature; MAP × MAT, interactive effects of MAP and MAT.
[1] |
Bai YF, Wu JG, Clark CM, Pan QM, Zhang LX, Chen SP, Wang QB, Han XG (2012). Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 49, 1204-1215.
DOI URL |
[2] | Bai YF, Zhao YJ, Wang Y, Zhou KL (2020). Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in Northern China. Bulletin of Chinese Academy of Sciences, 35, 675-689. |
[白永飞, 赵玉金, 王扬, 周楷玲 (2020). 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设. 中国科学院院刊, 35, 675-689.] | |
[3] |
Baumann F, He JS, Schmidt K, Kühn P, Scholten T (2009). Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology, 15, 3001-3017.
DOI URL |
[4] | Chapin III FS, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer Verlag, New York. |
[5] |
Chen D, Cheng J, Chu P, Hu S, Xie Y, Tuvshintogtokh I, Bai Y (2015). Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian Plateau: relationships with climate, soil, and plants. Ecography, 38, 622-631.
DOI URL |
[6] |
Chen D, Saleem M, Cheng J, Mi J, Chu P, Tuvshintogtokh I, Hu S, Bai Y (2019). Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau. Functional Ecology, 33, 1561-1571.
DOI URL |
[7] |
Deng L, Peng C, Kim DG, Li J, Liu Y, Hai X, Liu Q, Huang C, Shangguan Z, Kuzyakov Y (2021). Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 214, 103501. DOI: 10.1016/j.earscirev.2020.103501.
DOI URL |
[8] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
DOI PMID |
[9] |
Don A, Schumacher J, Scherer-Lorenzen M, Scholten T, Schulze ED (2007). Spatial and vertical variation of soil carbon at two grassland sites—Implications for measuring soil carbon stocks. Geoderma, 141, 272-282.
DOI URL |
[10] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[11] | Feng DF, Bao WK (2017). Review of the temporal and spatial patterns of soil C:N:P stoichiometry and its driving factors. Chinese Journal of Applied and Environmental Biology, 23, 400-408. |
[冯德枫, 包维楷 (2017). 土壤碳氮磷化学计量比时空格局及影响因素研究进展. 应用与环境生物学报, 23, 400-408.] | |
[12] |
Feng DF, Bao WK, Pang XY (2017). Consistent profile pattern and spatial variation of soil C:N:P stoichiometric ratios in the subalpine forests. Journal of Soils and Sediments, 17, 2054-2065.
DOI URL |
[13] |
Geng Y, Baumann F, Song C, Zhang M, Shi Y, Kühn P, Scholten T, He JS (2017). Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands. Scientific Reports, 7, 43524. DOI: 10.1038/srep43524.
DOI PMID |
[14] |
Groppo JD, Lins SRM, Camargo PB, Assad ED, Pinto HS, Martins SC, Salgado PR, Evangelista B, Vasconcellos E, Sano EE, Pavão E, Luna R, Martinelli LA (2015). Changes in soil carbon, nitrogen, and phosphorus due to land-use changes in Brazil. Biogeosciences, 12, 4765-4780.
DOI URL |
[15] |
Harpole WS, Potts DL, Suding KN (2007). Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology, 13, 2341-2348.
DOI URL |
[16] |
He NP, Wang RM, Zhang YH, Chen QS (2014). Carbon and nitrogen storage in Inner Mongolian grasslands: relationships with climate and soil texture. Pedosphere, 24, 391-398.
DOI URL |
[17] |
Homann PS, Kapchinske JS, Boyce A (2007). Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA. Biogeochemistry, 85, 303-316.
DOI URL |
[18] |
Hou EQ, Chen CR, Luo YQ, Zhou GY, Kuang YW, Zhang YG, Heenan M, Lu XK, Wen DZ (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344-3356.
DOI URL |
[19] |
Hsu JS, Powell J, Adler PB (2012). Sensitivity of mean annual primary production to precipitation. Global Change Biology, 18, 2246-2255.
DOI URL |
[20] | Huang J, Yuan ZN (2020). An overview of the ecological stoichiometry characteristics and influencing factors of soil carbon, nitrgen and phosphorus. Modern Agriculture Research, 49(1), 73-76. |
[黄郡, 苑泽宁 (2020). 土壤碳氮磷生态化学计量特征及影响因素概述. 现代农业研究, 49(1), 73-76.] | |
[21] | IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. |
[22] |
Jiao F, Shi XR, Han FP, Yuan ZY (2016). Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Scientific Reports, 6, 19601. DOI: 10.1038/srep19601.
DOI URL |
[23] |
Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-436.
DOI URL |
[24] |
Kang L, Han XG, Zhang ZB, Sun OJ (2007). Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B, 362, 997-1008.
DOI URL |
[25] |
Li JQ, Yan D, Pendall E, Pei JM, Noh NJ, He JS, Li B, Nie M, Fang CM (2018). Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions. Soil Biology & Biochemistry, 126, 82-90.
DOI URL |
[26] |
Li P, Sayer EJ, Jia Z, Liu WX, Wu YT, Yang S, Wang CZ, Yang L, Chen DM, Bai YF, Liu LL (2020). Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Global Change Biology, 26, 3015-3027.
DOI URL |
[27] |
Liu L, Gundersen P, Zhang T, Mo J (2012a). Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology & Biochemistry, 44, 31-38.
DOI URL |
[28] |
Liu NN, Hu HF, Ma WH, Deng Y, Liu YQ, Hao BH, Zhang XY, Dimitrov D, Feng XJ, Wang ZH (2019). Contrasting biogeographic patterns of bacterial and archaeal diversity in the top- and subsoils of temperate grasslands. mSystems, 4, e00566-00519. DOI: 10.1101/623264.
DOI |
[29] |
Liu WJ, Chen SY, Qin X, Baumann F, Scholten T, Zhou ZY, Sun WJ, Zhang TZ, Ren JW, Qin DH (2012b). Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters, 7, 035401. DOI: 10.1088/1748-9326/7/3/035401.
DOI URL |
[30] |
Morrow JG, Huggins DR, Reganold JP (2017). Climate change predicted to negatively influence surface soil organic matter of dryland cropping systems in the inland Pacific Northwest, USA. Frontiers in Ecology and Evolution, 5, 10. DOI: 10.3389/fevo.2017.00010.
DOI |
[31] | Ning ZY, Li YL, Yang HL, Zhang ZQ, Zhang JP (2019). Stoichiometry and effects of carbon, nitrogen, and phosphorus in soil of desertified grasslands on community productivity and species diversity. Acta Ecologica Sinica, 39, 3537-3546. |
[宁志英, 李玉霖, 杨红玲, 张子谦, 张建鹏 (2019). 沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响. 生态学报, 39, 3537-3546.] | |
[32] |
Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209-219.
DOI URL |
[33] |
Rui Y, Wang Y, Chen C, Zhou X, Wang S, Xu Z, Duan J, Kang X, Lu S, Luo C (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357, 73-87.
DOI URL |
[34] | Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996). Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison, USA. |
[35] |
Su YQ, Wu ZL, Xie PY, Zhang L, Chen H (2020). Warming effects on topsoil organic carbon and C:N:P stoichiometry in a subtropical forested landscape. Forests, 11, 66. DOI: 10.3390/f11010066.
DOI URL |
[36] |
Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[37] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL |
[38] |
Walker TW, Adams AFR (1958). Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Science, 85, 307-318.
DOI URL |
[39] | Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947. |
[王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] | |
[40] | Wu DD, Jing X, Lin L, Yang XY, Zhang ZH, He JS (2016). Responses of soil inorganic nitrogen to warming and altered precipitation in an alpine meadow on the Qinghai- Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 52, 959-966. |
[武丹丹, 井新, 林笠, 杨新宇, 张振华, 贺金生 (2016). 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报(自然科学版), 52, 959-966.] | |
[41] |
Wu JG, Zhang Q, Li A, Liang CZ (2015). Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landscape Ecology, 30, 1579-1598.
DOI URL |
[42] |
Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14, 1592-1599.
DOI URL |
[43] |
Yang ZL, Collins SL, Bixby RJ, Song HQ, Wang D, Xiao R (2021). A meta-analysis of primary productivity and rain use efficiency in terrestrial grassland ecosystems. Land Degradation & Development, 32, 842-850.
DOI URL |
[44] |
Yu YH, Chi YK (2019). Ecological stoichiometric characteristics of soil at different depths in a karst plateau mountain area of China. Polish Journal of Environmental Studies, 29, 969-978.
DOI URL |
[45] |
Yuan ZY, Chen HYH (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 5, 465-469.
DOI URL |
[46] |
Zhang K, Su YZ, Yang R (2019). Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and biogeographic factors across the desert ecosystem of Hexi Corridor, northwestern China. Journal of Soils and Sediments, 19, 49-57.
DOI |
[47] | Zhang LX, Bai YF, Han XG (2003). Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica, 45, 1009-1018. |
[48] |
Zhang NL, Wan SQ, Guo JX, Han GD, Gutknecht J, Schmid B, Yu L, Liu WX, Bi J, Wang Z, Ma KP (2015). Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biology & Biochemistry, 89, 12-23.
DOI URL |
[49] |
Zheng SM, Xia YH, Hu YJ, Chen XB, Rui YC, Gunina A, He XY, Ge TD, Wu JS, Su YR, Kuzyakov Y (2021). Stoichiometry of carbon, nitrogen, and phosphorus in soil: effects of agricultural land use and climate at a continental scale. Soil and Tillage Research, 209, 104903. DOI: 10.1016/j.still.2020.104903.
DOI URL |
[50] | Zhou W, Mu FY, Gang CC, Guan DJ, He JF, Li JL (2017). Spatio-temporal dynamics of grassland net primary productivity and their relationship with climatic factors from 1982 to 2010 in China. Acta Ecologica Sinica, 37, 4335-4345. |
[周伟, 牟凤云, 刚成诚, 官冬杰, 何锦峰, 李建龙 (2017). 1982-2010年中国草地净初级生产力时空动态及其与气候因子的关系. 生态学报, 37, 4335-4345.] |
[1] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[2] | SUN Cai-Li, QIU Mo-Sheng, HUANG Chao-Xiang, WANG Yi-Wei. Characteristics of soil extracellular enzyme activities and their stoichiometry during rocky desertification in southwestern Guizhou, China [J]. Chin J Plant Ecol, 2022, 46(7): 834-845. |
[3] | LI Dong, TIAN Qiu-Xiang, ZHAO Xiao-Xiang, LIN Qiao-Ling, YUE Peng-Yun, JIANG Qing-Hu, LIU Feng. Soil extracellular enzyme activities and their stoichiometric ratio in the alpine treeline ecotones in Gongga Mountain, China [J]. Chin J Plant Ecol, 2022, 46(2): 232-242. |
[4] | MOU Wen-Bo, XU Dang-Hui, WANG Xie-Jun, JING Wen-Mao, ZHANG Rui-Ying, GU Yu-Ling, YAO Guang-Qian, QI Shi-Hua, ZHANG Long, GOU Ya-Fei. Soil carbon, nitrogen, and phosphorus stoichiometry along an altitude gradient in shrublands in Pailugou watershed, China [J]. Chin J Plant Ecol, 2022, 46(11): 1422-1431. |
[5] | MAO Jin, DUO Ying, DENG Jun, CHENG Jie, CHENG Ji-Min, PENG Chang-Hui, GUO Liang. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau [J]. Chin J Plant Ecol, 2021, 45(8): 891-902. |
[6] | QIN Qian-Qian, QIU Cong, ZHENG Da-Cheng, LIU Yan-Hong. Soil infiltration dynamics in early period of a post-fire Pinus tabulaeformis plantation [J]. Chin J Plant Ecol, 2021, 45(8): 903-917. |
[7] | HU Qi-Juan, SHENG Mao-Yin, YIN Jie, BAI Yi-Xin. Stoichiometric characteristics of fine roots and rhizosphere soil of Broussonetia papyrifera adapted to the karst rocky desertification environment in southwest China [J]. Chin J Plant Ecol, 2020, 44(9): 962-972. |
[8] | MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests [J]. Chin J Plant Ecol, 2020, 44(12): 1273-1284. |
[9] | CHEN Yu-Han, LUO Yi-Fu, SUN Xin-Sheng, WEI Guan-Wen, HUANG Wen-Jun, LUO Fang-Li, YU Fei-Hai. Effects of waterlogging and increased soil nutrients on growth and reproduction of Polygonum hydropiper in the hydro-fluctuation belt of the Three Gorges Reservoir Region [J]. Chin J Plant Ecol, 2020, 44(11): 1184-1194. |
[10] | LI Jun-Jun, LI Meng-Ru, QI Xing-E, WANG Li-Long, XU Shi-Jian. Response of nutrient characteristics of Achnatherum splendens leaves to different levels of nitrogen and phosphorus addition [J]. Chin J Plant Ecol, 2020, 44(10): 1050-1058. |
[11] | LI Pin, Muledeer TUERHANBAI, TIAN Di, FENG Zhao-Zhong. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 532-542. |
[12] | GOU Xiao-Lin, ZHOU Qing-Ping, CHEN You-Jun, WEI Xiao-Xing, TU Wei-Guo. Characteristics of nutrients in two dominant plant species and rhizospheric soils in alpine desert of the Qinghai-Xizang Plateau under contrasting climates [J]. Chin J Plan Ecolo, 2018, 42(1): 133-142. |
[13] | Rui-Yu ZHAO, Zheng-Cai LI, Bin WANG, Xiao-Gai GE, Yun-Xi DAI, Zhi-Xia ZHAO, Yu-Jie ZHANG. Duration of mulching caused variable pools of labile organic carbon in a Phyllostachys edulis plantation [J]. Chin J Plant Ecol, 2017, 41(4): 418-429. |
[14] | Tian WANG, Shan XU, Meng-Ying ZHAO, He LI, Dan KOU, Jing-Yun FANG, Hui-Feng HU. Allocation of mass and stability of soil aggregate in different types of Nei Mongol grasslands [J]. Chin J Plant Ecol, 2017, 41(11): 1168-1176. |
[15] | Dan LI, Saruul KANG, Meng-Ying ZHAO, Qing ZHANG, Hai-Juan REN, Jing REN, Jun-Mei ZHOU, Zhen WANG, Ren-Ji WU, Jian-Ming NIU. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(10): 991-1002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn