Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (3): 350-361.DOI: 10.17521/cjpe.2021.0127
• Research Articles • Previous Articles Next Articles
ZHANG Qing1,2, YIN Ben-Feng2,*(), LI Ji-Wen2,3, LU Yong-Xing2,4, RONG Xiao-Ying2, ZHOU Xiao-Bing2, ZHANG Bing-Chang1,*(), ZHANG Yuan-Ming2
Received:
2021-04-07
Accepted:
2021-08-08
Online:
2022-03-20
Published:
2021-09-18
Contact:
YIN Ben-Feng,ZHANG Bing-Chang
Supported by:
ZHANG Qing, YIN Ben-Feng, LI Ji-Wen, LU Yong-Xing, RONG Xiao-Ying, ZHOU Xiao-Bing, ZHANG Bing-Chang, ZHANG Yuan-Ming. Effects of moss mortality on soil enzyme activities in a temperate desert[J]. Chin J Plant Ecol, 2022, 46(3): 350-361.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0127
生物量 Biomass (g·cm-2) | 株高 Plant height (cm) | |
---|---|---|
活藓类结皮 Live moss crust | 0.151 6 | 1.79 |
藓类植物死亡结皮 Dead moss crust | 0.110 5 | 1.14 |
Table 1 Crust biomass and plant height of mosses in Gurbantünggüt Desert under different natural conditions
生物量 Biomass (g·cm-2) | 株高 Plant height (cm) | |
---|---|---|
活藓类结皮 Live moss crust | 0.151 6 | 1.79 |
藓类植物死亡结皮 Dead moss crust | 0.110 5 | 1.14 |
因子 Factor | 碳循环相关酶 Carbon-acquisition enzyme | 氮循环相关酶 Nitrogen-acquisition enzyme | 磷循环相关酶 Phosphorus-acquisition enzyme | |||||
---|---|---|---|---|---|---|---|---|
SR | BG | POD | PPO | UA | NR | Phytase | ALP | |
结皮状态 Crust state | 0.065 | 6.265* | 46.550** | 7.403* | 7.230* | 14.925** | 166.115** | 6.402* |
土层深度 Soil depth | 135.973** | 72.821** | 97.123** | 5.548** | 108.527** | 40.609** | 3.967* | 6.262** |
结皮状态×土层深度 Crust state × soil depth | 0.643 | 1.080 | 2.360 | 12.046** | 2.891* | 14.439** | 2.540 | 0.770 |
Table 2 Two-factor variance analysis of soil enzyme activities between crust state and soil depth in Gurbantünggüt Desert
因子 Factor | 碳循环相关酶 Carbon-acquisition enzyme | 氮循环相关酶 Nitrogen-acquisition enzyme | 磷循环相关酶 Phosphorus-acquisition enzyme | |||||
---|---|---|---|---|---|---|---|---|
SR | BG | POD | PPO | UA | NR | Phytase | ALP | |
结皮状态 Crust state | 0.065 | 6.265* | 46.550** | 7.403* | 7.230* | 14.925** | 166.115** | 6.402* |
土层深度 Soil depth | 135.973** | 72.821** | 97.123** | 5.548** | 108.527** | 40.609** | 3.967* | 6.262** |
结皮状态×土层深度 Crust state × soil depth | 0.643 | 1.080 | 2.360 | 12.046** | 2.891* | 14.439** | 2.540 | 0.770 |
Fig. 2 Soil enzyme activities (mean ± SE, n = 6) related to carbon cycling in different soil layers of moss crust under different conditions in Gurbantünggüt Desert. Different uppercase letters (live moss crust) and lowercase letters (dead moss crust) indicated significant differences in enzyme activities among different soil layers (p < 0.05). * and ** indicated significant (p < 0.05) and extremely significant (p < 0.01) differences in different crust states in the same soil layer.
Fig. 3 Soil enzyme activities (mean ± SE, n = 6) related to nitrogen cycling in different soil layers of moss crust under different conditions in Gurbantünggüt Desert. Different uppercase letters (live moss crust) and lowercase letters (dead moss crust) indicated significant differences in enzyme activities among different soil layers (p < 0.05). * and ** indicated significant (p < 0.05) and extremely significant (p < 0.01) differences in different crust states in the same soil layer.
Fig. 4 Soil enzyme activities (mean ± SE, n = 6) related to phosphorus cycling in different soil layers of moss crust under different conditions in Gurbantünggüt Desert. Different uppercase letters (live moss crust) and lowercase letters (dead moss crust) indicated significant differences in enzyme activities among different soil layers (p < 0.05). * and ** indicated significant (p < 0.05) and extremely significant (p < 0.01) differences in different crust states in the same soil layer.
Fig. 5 Correlation analysis of soil enzyme activities and soil physical and chemical properties under two types of crusts in Gurbantünggüt Desert. A, Live moss crust. B, Dead moss crust. C, A summary of the two types of moss crust. ALP, alkaline phosphatase activity; AP, available phosphorus content; BG, β-glucosidase activity; EC, conductivity; NH4+-N, ammonia nitrogen content; NO3--N, nitrate nitrogen content; NR, nitrate reductase activity; POD, peroxidase activity; PPO, polyphenol oxidase activity; SOC, total organic carbon content; SR, sucrase activity; SWC, soil water content; TC, total carbon content; TN, total nitrogen content; TP, total phosphorus content; UA, urease activity.
[1] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function//Shukla G, Varma A. Soil Enzymology. Springer, Berlin. 229-243. |
[2] |
Bai X, Dippold MA, An S, Wang B, Zhang H, Loeppmann S (2021). Extracellular enzyme activity and stoichiometry: the effect of soil microbial element limitation during leaf litter decomposition. Ecological Indicators, 121, 107200. DOI: 10.1016/j.ecolind.2020.107200.
DOI URL |
[3] |
Belnap J (1995). Surface disturbances: their role in accelerating desertification. Environmental Monitoring and Assessment, 37, 39-57.
DOI PMID |
[4] |
Bhattacharyya R, Rabbi SMF, Zhang Y, Young IM, Jones AR, Dennis PG, Menzies NW, Kopittke PM, Dalal RC (2021). Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. Science of the Total Environment, 788, 146286. DOI: 10.1016/j.scitotenv.2021.146286.
DOI |
[5] |
Calderón FJ, Jackson LE, Scow KM, Rolston DE (2000). Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biology & Biochemistry, 32, 1547-1559.
DOI URL |
[6] |
Chen N, Li XY, Shi HB, Hu Q, Zhang YH, Leng X (2021). Effect of biodegradable film mulching on crop yield, soil microbial and enzymatic activities, and optimal levels of irrigation and nitrogen fertilizer for the Zea mays crops in arid region. Science of the Total Environment, 776, 145970. DOI: 10.1016/j.scitotenv.2021.145970.
DOI URL |
[7] |
Ciarkowska K, Solek-Podwikaa K, Wieczorek J (2014). Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. Journal of Environmental Management, 132, 250-256.
DOI PMID |
[8] | Ge XG, Xiao WF, Zeng LX, Huang ZL, Zhou BZ (2014). Effect of soil-litter layer enzyme activities on litter decomposition in Pinus massoniana plantation in Three Gorges Reservoir Area. Acta Ecologica Sinica, 34, 2228-2237. |
[葛晓改, 肖文发, 曾立雄, 黄志霖, 周本智 (2014). 三峡库区马尾松林土壤-凋落物层酶活性对凋落物分解的影响. 生态学报, 34, 2228-2237.] | |
[9] |
Ghiloufi W, Seo J, Kim J, Chaieb M, Kang H (2019). Effects of biological soil crusts on enzyme activities and microbial community in soils of an arid ecosystem. Microbial Ecology, 77, 201-216.
DOI PMID |
[10] | Guo W, Dai JL, Wang RQ (2012). Progress in the effect of dissolved organic matter on adsorption of heavy metals by soil. Chinese Journal of Soil Science, 43, 761-768. |
[郭微, 戴九兰, 王仁卿 (2012). 溶解性有机质影响土壤吸附重金属的研究进展. 土壤通报, 43, 761-768.] | |
[11] | Han BH, Niu DC, Yuan XB, Ren YT, Shi MM, Wu R, Fu H (2016). The development of biological soil crusts and its soil nutrients characteristics of microhabitats under fenced and grazed. Acta Agrestia Sinica, 24, 1218-1225. |
[韩炳宏, 牛得草, 袁晓波, 任运涛, 石明明, 吴让, 傅华 (2016). 围封与放牧措施下生物土壤结皮发育及其微生境土壤养分特征. 草地学报, 24, 1218-1225.] | |
[12] |
Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008). Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences of the United States of America, 105, 17842-17847.
DOI PMID |
[13] | He JH (2005). Recent advances in phytate and phytase studies. Acta Zoonutrimenta Sinica, 17(1), 1-6. |
[贺建华 (2005). 植酸磷和植酸酶研究进展. 动物营养学报, 17(1), 1-6.] | |
[14] | Jia LJ, Tang K, Lan HQ, Xu HW, Guo QW, Ding Y, Tan F, Xing LH, Guo YQ, Feng FY (2018). Diversity and structure of hypolithic bacteria community of Zhongyang Gobi. Microbiology China, 45, 2603-2613. |
[贾丽娟, 唐凯, 兰慧青, 徐黄纬, 国情文, 丁悦, 谭芳, 邢丽华, 郭雨晴, 冯福应 (2018). 中央戈壁石下生物土壤结皮中细菌群落结构和多样性. 微生物学通报, 45, 2603-2613.] | |
[15] |
Jia RL, Li XR, Liu LC, Gao YH, Li XJ (2008). Responses of biological soil crusts to sand burial in a revegetated area of the Tengger Desert, northern China. Soil Biology & Biochemistry, 40, 2827-2834.
DOI URL |
[16] | Kandeler E, Gerber H (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6, 68-72. |
[17] | Li HQ, Xu HY, Ma XL, Hu GL, Wu XD, Liu GM (2017). The seasonal dynamics of soil microbial biomass and enzyme activities in permafrost area and seasonally frozen ground area of the Maxian Mountain. Journal of Glaciology and Geocryology, 39, 421-428. |
[李红琴, 徐海燕, 马小亮, 胡广录, 吴晓东, 刘桂民 (2017). 马衔山多年冻土与季节冻土区土壤微生物量及酶活性的季节动态. 冰川冻土, 39, 421-428.] | |
[18] | Li JW, Yin BF, Suo FY, Zhou XB, Tao Y, Zhang J, Li YG, Zhang YM (2021). Effects of moss mortality on soil water evaporation and infiltration of moss-dominated biological soil crusts. Acta Ecologica Sinica, 41, 6533-6541. |
[李继文, 尹本丰, 索菲娅, 周晓兵, 陶冶, 张静, 李永刚, 张元明 (2021). 荒漠结皮层藓类植物死亡对表层土壤水分蒸发和入渗的影响. 生态学报, 41, 6533-6541.] | |
[19] | Li SY, Sun J, Wang Y, Qin XJ, Ye CC (2020). Characteristics of soil enzyme activities in different degraded gradient grasslands on the Tibetan Plateau. Pratacultural Science, 37, 2389-2402. |
[李邵宇, 孙建, 王毅, 秦小静, 叶冲冲 (2020). 青藏高原不同退化梯度草地土壤酶活性特征. 草业科学, 37, 2389-2402.] | |
[20] | Li XR, Tan HJ, Hui R, Zhao Y, Huang L, Jia RL, Song G (2018). Researches in biological soil crust of China: a review. Chinese Science Bulletin, 63, 2320-2334. |
[李新荣, 谭会娟, 回嵘, 赵洋, 黄磊, 贾荣亮, 宋光 (2018). 中国荒漠与沙地生物土壤结皮研究. 科学通报, 63, 2320-2334.] | |
[21] |
Li YG, Zhou XB, Zhang YM (2019). Moss patch size and microhabitats influence stoichiometry of moss crusts in a temperate desert, central Asia. Plant and Soil, 443(4), 55-72.
DOI URL |
[22] |
Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI URL |
[23] |
Liu XZ, Liu Y, Zhang L, Yin R, Wu GL (2021). Bacterial contributions of bio-crusts and litter crusts to nutrient cycling in the Mu US Sandy Land. Catena, 199, 105090. DOI: 10.1016/j.catena.2020.105090.
DOI URL |
[24] |
Liu YM, Xing ZS, Yang HY (2017). Effect of biological soil crusts on microbial activity in soils of the Tengger Desert (China). Journal of Arid Environments, 144, 201-211.
DOI URL |
[25] | Liu YM, Yang HY, Jia RL, Li YX (2019). Effects of human trampling biocrusts on soil enzyme activities. Journal of Desert Research, 39, 54-63. |
[刘艳梅, 杨航宇, 贾荣亮, 李宜轩 (2019). 人为踩踏生物土壤结皮对土壤酶活性的影响. 中国沙漠, 39, 54-63.] | |
[26] | Ma WW, Wang LX, Li N, Zheng DH, Xie LL, Liu Q, Yin CY (2019). Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content. Acta Ecologica Sinica, 39, 7218-7228. |
[马伟伟, 王丽霞, 李娜, 郑东辉, 谢路路, 刘庆, 尹春英 (2019). 不同水氮水平对川西亚高山林地土壤酶活性的影响. 生态学报, 39, 7218-7228.] | |
[27] |
Miralles I, Domingo F, Cantón Y, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012). Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones. Soil Biology & Biochemistry, 53, 124-132.
DOI URL |
[28] | Niu B, Zhang LF, Ma RR, Liu XQ, Zhang X, Zhao L, Gu S (2016). Study of microbial biomass and enzymatic activity on the alpine meadow. Acta Scientiarum Naturalium Universitatis Nankaiensis, 49(4), 53-60. |
[牛犇, 张立峰, 马荣荣, 刘晓琴, 张翔, 赵亮, 古松 (2016). 高寒草甸土壤微生物量及酶活性的研究. 南开大学学报(自然科学版), 49(4), 53-60.] | |
[29] | Pan RC (2011). Plant Physiology. 7th ed. Higher Education Press, Beijing. 54-58. |
[潘瑞炽 (2011). 植物生理学. 7版. 高等教育出版社, 北京. 54-58.] | |
[30] |
Prăvălie R, Bandoc G, Patriche C, Sternberg T (2019). Recent changes in global drylands: evidences from two major aridity databases. Catena, 178, 209-231.
DOI URL |
[31] | Qin JH, Zhang Y, Zhao YC, Wang ZJ, Li CX, Gao HN (2014). Soil physicochemical properties and variations of nutrients and enzyme activity in the degrading grasslands in the upper reaches of the Heihe River, Qilian Mountains. Journal of Glaciology and Geocryology, 36, 335-346. |
[秦嘉海, 张勇, 赵芸晨, 王治江, 李彩霞, 高海宁 (2014). 祁连山黑河上游不同退化草地土壤理化性质及养分和酶活性的变化规律. 冰川冻土, 36, 335-346.] | |
[32] |
Rao MA, Scelza R, Acevedo F, Diez MC, Gianfreda L (2014). Enzymes as useful tools for environmental purposes. Chemosphere, 107, 145-162.
DOI PMID |
[33] |
Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012). Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nature Climate Change, 2, 752-755.
DOI URL |
[34] |
Richardson AE, Hadobas PA, Hayes JE (2001). Extracellular secretion of aspergillus phytase from arabidopsis roots enables plants to obtain phosphorus from phytate. Plant Journal, 25, 641-649.
PMID |
[35] |
Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO, Pӧschl U, Weber B (2018). Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 11, 185-189.
DOI URL |
[36] |
Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger JP (2017). Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytologist, 214, 97-107.
DOI URL |
[37] |
Rousk K, Jones DL, Deluca TH (2013). Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Frontiers in Microbiology, 4, 150. DOI: 10.3389/fmicb.2013.00150.
DOI |
[38] |
Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39, 223-235.
DOI URL |
[39] |
Singh K, Pandey VC, Singh B, Singh RR (2012). Ecological restoration of degraded sodic lands through afforestation and cropping. Ecological Engineering, 43, 70-80.
DOI URL |
[40] |
Sinsabaugh RL (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology & Biochemistry, 42, 391-404.
DOI URL |
[41] |
Stark LR, Brinda JG, McLetchie DN (2011). Effects of increased summer precipitation and N deposition on Mojave Desert populations of the biological crust moss Syntrichia caninervis. Journal of Arid Environments, 75, 457-463.
DOI URL |
[42] | Sun YQ, Feng W, Zhang YQ, Qin SG, Mao HN (2020). Effects of biological soil crusts on soil enzyme activities of Artemisia ordosica community in the Mu Us Desert of northwestern China. Journal of Beijing Forestry University, 42(11), 82-90. |
[孙永琦, 冯薇, 张宇清, 秦树高, 毛赫楠 (2020). 毛乌素沙地生物土壤结皮对油蒿群落土壤酶活性的影响. 北京林业大学学报, 42(11), 82-90.] | |
[43] |
Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002). Inositol phosphates in the environment. Philosophical Transactions of the Royal Society B, 357, 449-469.
DOI URL |
[44] | Wang D, Ma FY, Yao XF, Xin H, Song X, Zhang ZX (2012). Properties of soil microbes, nutrients and soil enzyme activities and their relationship in a degraded wetland of Yellow River Delta. Science of Soil and Water Conservation, 10(5), 94-98. |
[王笛, 马风云, 姚秀粉, 辛贺, 宋雪, 张钟心 (2012). 黄河三角洲退化湿地土壤养分、微生物与土壤酶特性及其关系分析. 中国水土保持科学, 10(5), 94-98.] | |
[45] | Wang Y, Liu BY, Liu M, Sun J, Zeng T (2019). Synergistic and inhibitory effects of soil enzymes along desertified gradients of the Zoige alpine meadow. Pratacultural Science, 36, 939-951. |
[王毅, 刘碧颖, 刘苗, 孙建, 曾涛 (2019). 若尔盖地区沙化草地土壤酶协同和抑制效应. 草业科学, 36, 939-951.] | |
[46] | Wu N, Zhang YM (2010). Distribution characters of soil enzymes in longitudinal dune areas of Gurbantunggut Desert covered by biological soil crusts. Journal of Desert Research, 30, 1128-1136. |
[吴楠, 张元明 (2010). 古尔班通古特沙漠生物土壤结皮影响下的土壤酶分布特征. 中国沙漠, 30, 1128-1136.] | |
[47] | Wu YW, Rao BQ, Liu YD, Li GB, Li DH (2013). Effects of different habitats on artificial crust development and surface soil nitrogen, phosphorus contents and enzymes activities. Soils, 45, 52-59. |
[吴易雯, 饶本强, 刘永定, 李根保, 李敦海 (2013). 不同生境对人工结皮发育及表土氮、磷含量及其代谢酶活性的影响. 土壤, 45, 52-59.] | |
[48] |
Xie MY, Feng XX, Ma HF, Hu H, Wang JY, Guo YX, Ren CJ, Wang J, Zhao FZ (2020). Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains. Chinese Journal of Plant Ecology, 44, 885-894.
DOI URL |
[解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠 (2020). 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素. 植物生态学报, 44, 885-894.] | |
[49] | Xie W, Tan XP, Tian HX, Wang ZQ, Yang R, Wei GH, He WX (2016). Effects of soil moisture on available arsenic and alkaline phosphatase activity in paddy soil. China Environmental Science, 36, 2418-2424. |
[谢伟, 谭向平, 田海霞, 王紫泉, 杨瑞, 韦革宏, 和文祥 (2016). 土壤水分对稻田土壤有效砷及碱性磷酸酶活性影响. 中国环境科学, 36, 2418-2424.] | |
[50] | Xu SJ, Chen WH, Chen YW, He M, Wang Y (2007). Effects of thermostress on the plasma membrane permeability of desert moss Tortula desertorum examined by in situ micro- FTIR analysis. Spectroscopy and Spectral Analysis, 27, 2417-2421. |
[许书军, 陈蔚红, 陈颖雯, 何明, 王艳 (2007). 原位显微红外法检测热胁迫对荒漠植物刺叶墙藓质膜透性的影响. 光谱学与光谱分析, 27, 2417-2421.] | |
[51] | Yan DR, Zhang SN, Huang HG, Yan T (2020). Effect of decomposition of desert moss crust plant on soil improvement retraction. Research of Soil and Water Conservation, 27, 225-229. |
[闫德仁, 张胜男, 黄海广, 闫婷 (2020). 沙漠苔藓植物分解的土壤改良效应. 水土保持研究, 27, 225-229.] | |
[52] | Yan ZQ, Qi YC, Peng Q, Dong YS, Guo SF, He YL, Wang LQ, Li ZL (2017). Effects of increased precipitation and nitrogen deposition on soil enzyme activities. Acta Ecologica Sinica, 37, 3019-3027. |
[闫钟清, 齐玉春, 彭琴, 董云社, 郭树芳, 贺云龙, 王丽芹, 李兆林 (2017). 降水和氮沉降增加对草地土壤酶活性的影响. 生态学报, 37, 3019-3027.] | |
[53] |
Yang H, Liu C, Liu Y, Xing Z (2018). Impact of human trampling on biological soil crusts determined by soil microbial biomass, enzyme activities and nematode communities in a desert ecosystem. European Journal of Soil Biology, 87, 61-71.
DOI URL |
[54] |
Zelikova TJ, Housman DC, Grote EE, Neher DA, Belnap J (2012). Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes. Plant and Soil, 355, 265-282.
DOI URL |
[55] | Zhang GX, Zhao YG, Xu MX, Gao LQ (2012). Impacts of biological soil crust on availability of phosphorus and phosphatase activity in hilly regions of the Loess Plateau, China. Plant Nutrition and Fertilizer Science, 18, 621-628. |
[张国秀, 赵允格, 许明祥, 高丽倩 (2012). 黄土丘陵区生物结皮对土壤磷素有效性及碱性磷酸酶活性的影响. 植物营养与肥料学报, 18, 621-628.] | |
[56] | Zhang YM, Cao T, Pan BR (2002). A review on the studies of bryophyte ecology in arid and semi-arid areas. Acta Ecologica Sinica, 22, 1129-1134. |
[张元明, 曹同, 潘伯荣 (2002). 干旱与半干旱地区苔藓植物生态学研究综述. 生态学报, 22, 1129-1134.] | |
[57] |
Zhou B, Zhao LX, Wang YB, Sun Y, Li XJ, Xu HJ, Weng LP, Pan Z, Yang SD, Chang XP, Li YT (2020). Spatial distribution of phthalate esters and the associated response of enzyme activities and microbial community composition in typical plastic-shed vegetable soils in China. Ecotoxicology and Environmental Safety, 195, 110495. DOI: 10.1016/j.ecoenv.2020.110495.
DOI URL |
[58] | Zhou FR, Wang JX, Yang N, Zhang Q (2013). Effects of water and lead stress on soil enzyme activities. Acta Agrestia Sinica, 21, 479-484. |
[周芙蓉, 王进鑫, 杨楠, 张青 (2013). 水分和铅胁迫对土壤酶活性的影响. 草地学报, 21, 479-484.] | |
[59] |
Zhou HF, Li Y, Tang Y, Zhou BJ, Xu HW (2009). The characteristics of the snow-cover and snowmelt water storage in Gurbantunggut desert. Arid Zone Research, 26, 312-317.
DOI URL |
[周宏飞, 李彦, 汤英, 周宝佳, 徐宏伟 (2009). 古尔班通古特沙漠的积雪及雪融水储存特征. 干旱区研究, 26, 312-317.] | |
[60] | Zhou XB, Yin BF, Zhang YM (2016). The effects of simulated nitrogen deposition on growth and photosynthetic physiology of three types of biocrusts. Acta Ecologica Sinica, 36, 3197-3205. |
[周晓兵, 尹本丰, 张元明 (2016). 模拟氮沉降对不同类型生物土壤结皮生长和光合生理的影响. 生态学报, 36, 3197-3205.] | |
[61] | Zhu ML, Gong L, Zhang LL (2015). Soil enzyme activities and their relationships to environmental factors in a typical oasis in the upper reaches of the Tarim River. Environmental Science, 36, 2678-2685. |
[朱美玲, 贡璐, 张龙龙 (2015). 塔里木河上游典型绿洲土壤酶活性与环境因子相关分析. 环境科学, 36, 2678-2685.] | |
[62] |
Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, García-Orenes F, Mataix-Beneyto J (2006). Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions. Soil Biology & Biochemistry, 38, 2125-2134.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn