Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (8): 809-820.DOI: 10.3724/SP.J.1258.2014.00076
Special Issue: 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
XU Bing-Xin1,2, HU Yi-Gang1,*(), ZHANG Zhi-Shan1, CHEN Yong-Le1,2, ZHANG Peng1, LI Gang1,2
Received:
2013-12-30
Accepted:
2014-04-14
Online:
2014-12-30
Published:
2014-08-18
Contact:
HU Yi-Gang
XU Bing-Xin, HU Yi-Gang, ZHANG Zhi-Shan, CHEN Yong-Le, ZHANG Peng, LI Gang. Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region[J]. Chin J Plant Ecol, 2014, 38(8): 809-820.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00076
Fig. 1 Effects of warming on soil temperature at 5 cm depth (mean ± SE). NW, non-warming; W, warming. Different letters indicate significant differences at 0.05 level.
因素 Factor | CO2 | CH4 | N2O | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
增温 Warming (W) | 0.411 | 0.522 | 4.818 | 0.159 | 0.842 | 0.360 | ||
生物土壤结皮类型 Type of biological soil crusts (T) | 2.364 | 0.098 | 1.265 | 0.285 | 0.287 | 0.751 | ||
采样日期 Date of sampling (D) | 25.879 | <0.001 | 5.001 | <0.001 | 1.120 | 0.350 | ||
T × D | 5.124 | <0.001 | 2.421 | <0.001 | 0.658 | 0.874 | ||
W × D | 1.683 | 0.083 | 2.113 | 0.023 | 0.825 | 0.615 | ||
W × T | 1.815 | 0.167 | 1.864 | 0.159 | 0.637 | 0.530 | ||
W × T × D | 2.407 | 0.001 | 2.137 | 0.004 | 1.480 | 0.090 |
Table 1 Multivariate analysis of CO2, CH4 and N2O fluxes
因素 Factor | CO2 | CH4 | N2O | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
增温 Warming (W) | 0.411 | 0.522 | 4.818 | 0.159 | 0.842 | 0.360 | ||
生物土壤结皮类型 Type of biological soil crusts (T) | 2.364 | 0.098 | 1.265 | 0.285 | 0.287 | 0.751 | ||
采样日期 Date of sampling (D) | 25.879 | <0.001 | 5.001 | <0.001 | 1.120 | 0.350 | ||
T × D | 5.124 | <0.001 | 2.421 | <0.001 | 0.658 | 0.874 | ||
W × D | 1.683 | 0.083 | 2.113 | 0.023 | 0.825 | 0.615 | ||
W × T | 1.815 | 0.167 | 1.864 | 0.159 | 0.637 | 0.530 | ||
W × T × D | 2.407 | 0.001 | 2.137 | 0.004 | 1.480 | 0.090 |
Fig. 2 CO2 fluxes of various biological soil crust types under warming and non-warming treatments (mean ± SE). * indicate significant differences between treatments (p < 0.05). The same letters indicate no significant differences between treatments (p > 0.05). A, Moss crusts. B, Algae crusts. C, Moss & algae crusts.
Fig. 3 CH4 fluxes of various biological soil crust types under warming and non-warming treatments (mean ± SE). * indicate significant differences between treatments (p < 0.05). The same letters indicate no significant differences between treatments (p > 0.05). A, Moss crusts. B, Algae crusts. C, Moss & algae crusts.
Fig. 4 N2O fluxes of various biological soil crust types under warming and non-warming treatments (mean ± SE). * indicate significant differences between treatments (p < 0.05). The same letters indicate no significant differences between treatments (p > 0.05). A, Moss crusts. B, Algae crusts. C, Moss & algae crusts.
生物土壤结皮类型 Type of biological soil crusts | 处理 Treatment | CO2累积通量 Cumulative CO2 emission (g·m-2) | CH4累积通量 Cumulative CH4 emission (g·m-2) | N2O累积通量 Cumulative N2O emission (g·m-2) | GWP (g·m-2) |
---|---|---|---|---|---|
藓类结皮 | W | 380 ± 185.9 | -4.36 × 10-4 ± 1.74 × 10-4 | -0.060 ± 0.039 | 363 ± 197 |
Moss crusts | NW | 440 ± 110.8 | -3.29 × 10-4 ± 2.31 × 10-4 | -0.387 ± 0.037 | 429 ± 122 |
藻类结皮 | W | 306 ± 99.8 | -5.72 × 10-4 ± 2.17 × 10-4 | -0.062 ± 0.061 | 288 ± 118 |
Algae crusts | NW | 377 ± 121.2 | -9.91 × 10-5 ± 2.22 × 10-4 | -0.019 ± 0.024 | 372 ± 128 |
藓类和藻类结皮 | W | 337 ± 65.0 | -3.65 × 10-4 ± 1.17 × 10-4 | -0.089 ± 0.036 | 311 ± 76 |
Moss & algae crusts | NW | 273 ± 78.1 | -4.93 × 10-4 ± 1.30 × 10-4 | -0.027 ± 0.029 | 265 ± 87 |
Table 2 Cumulative CO2, CH4 and N2O emission (g·m-2) and annual warming potentials (GWP) (mean ± SD) under warming (W) and non-warming (NW) treatments
生物土壤结皮类型 Type of biological soil crusts | 处理 Treatment | CO2累积通量 Cumulative CO2 emission (g·m-2) | CH4累积通量 Cumulative CH4 emission (g·m-2) | N2O累积通量 Cumulative N2O emission (g·m-2) | GWP (g·m-2) |
---|---|---|---|---|---|
藓类结皮 | W | 380 ± 185.9 | -4.36 × 10-4 ± 1.74 × 10-4 | -0.060 ± 0.039 | 363 ± 197 |
Moss crusts | NW | 440 ± 110.8 | -3.29 × 10-4 ± 2.31 × 10-4 | -0.387 ± 0.037 | 429 ± 122 |
藻类结皮 | W | 306 ± 99.8 | -5.72 × 10-4 ± 2.17 × 10-4 | -0.062 ± 0.061 | 288 ± 118 |
Algae crusts | NW | 377 ± 121.2 | -9.91 × 10-5 ± 2.22 × 10-4 | -0.019 ± 0.024 | 372 ± 128 |
藓类和藻类结皮 | W | 337 ± 65.0 | -3.65 × 10-4 ± 1.17 × 10-4 | -0.089 ± 0.036 | 311 ± 76 |
Moss & algae crusts | NW | 273 ± 78.1 | -4.93 × 10-4 ± 1.30 × 10-4 | -0.027 ± 0.029 | 265 ± 87 |
Fig. 5 Relationships of CO2, CH4 and N2O fluxes with soil temperature at 5 cm depth. A, D, G, Moss crusts. B, E, H, Algae crusts. C, F, I, Moss & algae crusts.
Fig. 6 Relationships of CO2, CH4 and N2O fluxes with soil moisture at 10 cm depth. A, D, G, Moss crusts. B, E, H, Algae crusts. C, F, I, Moss & algae crusts.
生物土壤结皮类型 Type of biological soil crusts | CO2 | CH4 | N2O | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
线性方程 Linear equation | p | R2 | 线性方程 Linear equation | p | R2 | 线性方程 Linear equation | p | R2 | |||
藓类结皮 Moss crusts | y = -19.5x + 25.3 | 0.036 | 0.097 | y = -0.043x + 0.059 | 0.018 | 0.128 | y = -6.76x + 13.6 | 0.141 | 0.035 | ||
藻类结皮 Algae crusts | y = 10.9x - 26.1 | 0.216 | 0.016 | y = 0.027x - 0.099 | 0.264 | 0.008 | y = 13.1x - 27.5 | 0.051 | 0.081 | ||
藻类和藓类结皮 Moss & algae crusts | y = -3.35x + 12.8 | 0.487 | 0.000 | y = 0.022x - 0.043 | 0.125 | 0.040 | y = 2.97x - 11.4 | 0.602 | 0.000 |
Table 3 Regressions of the differences in soil temperature at 5 cm depth with the differences in fluxes of CO2, CH4 and N2O between warming and non-warming treatments
生物土壤结皮类型 Type of biological soil crusts | CO2 | CH4 | N2O | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
线性方程 Linear equation | p | R2 | 线性方程 Linear equation | p | R2 | 线性方程 Linear equation | p | R2 | |||
藓类结皮 Moss crusts | y = -19.5x + 25.3 | 0.036 | 0.097 | y = -0.043x + 0.059 | 0.018 | 0.128 | y = -6.76x + 13.6 | 0.141 | 0.035 | ||
藻类结皮 Algae crusts | y = 10.9x - 26.1 | 0.216 | 0.016 | y = 0.027x - 0.099 | 0.264 | 0.008 | y = 13.1x - 27.5 | 0.051 | 0.081 | ||
藻类和藓类结皮 Moss & algae crusts | y = -3.35x + 12.8 | 0.487 | 0.000 | y = 0.022x - 0.043 | 0.125 | 0.040 | y = 2.97x - 11.4 | 0.602 | 0.000 |
[1] |
Allison SD, Treseder KK (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 14, 2898-2909.
DOI URL |
[2] | Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791-1799. |
[3] | Barnard R, Leadley PW, Hungate BA (2005). Global change, nitrification, and denitrification: a review. Global Biogeochemical Cycles, 19(1), doi: 10.1029/2004GB002282. |
[4] | Belnap J, Lange OL (2001). Biological Soil Crusts: Structure, Function, and Management. Springer-Verlag, Berlin. |
[5] | Bollmann A, Conrad R (1998). Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biology, 4, 387-396. |
[6] |
Bremner JM (1997). Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49, 7-16.
DOI URL |
[7] |
Burford JR, Bremner JM (1975). Relationships between denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biology & Biochemistry, 7, 389-394.
DOI URL |
[8] |
Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995). Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles, 9, 1-10.
DOI URL |
[9] |
Chaban B, Ng SYM, Jarrell KF (2006). Archaeal habitats— from the extreme to the ordinary. Canadian Journal of Microbiology, 52, 73-116.
DOI URL |
[10] | Chen ZF (2012). The Effect of Simulated Warming and N Addition on Ecosystem Gas Exchange in Inner Mongolia Desert Steppe. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese) |
[ 陈志芳 (2012). 模拟增温和氮素添加对荒漠草原生态系统气体交换的影响. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[11] |
Chimner RA, Welker JM (2005). Ecosystem respiration responses to experimental manipulations of winter and summer precipitation in a Mixedgrass Prairie, WY, USA. Biogeochemistry, 73, 257-270.
DOI URL |
[12] |
Christensen TR, Prentice IC, Kaplan J, Haxeltine A, Sitch S (1996). Methane flux from northern wetlands and tundra. Tellus B, 48, 652-661.
DOI URL |
[13] |
Dalal RC, Allen DE (2008). TURNER REVIEW No. 18. Greenhouse gas fluxes from natural ecosystems. Australian Journal of Botany, 56, 369-407.
DOI URL |
[14] |
Du R, Lu D, Wang GC (2006). Diurnal, seasonal, and inter-annual variations of N2O fluxes from native semi-arid grassland soils of Inner Mongolia. Soil Biology & Biochemistry, 38, 3474-3482.
DOI URL |
[15] |
Fearnside PM (2000). Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change, 46, 115-158.
DOI URL |
[16] | Feng L, Li XR, Guo Q, Zhang JG, Zhang ZS (2011). Effects of highway on the vegetation species composition along a distance gradient from road edge in southeastern margin of Tengger Desert. Chinese Journal of Applied Ecology, 22, 1114-1120. (in Chinese with English abstract) |
[ 冯丽, 李新荣, 郭群, 张景光, 张志山 (2011). 腾格里沙漠东南缘公路对路域植被物种组成的影响. 应用生态学报, 22, 1114-1120.] | |
[17] | Gao LQ (2012). The Effect and It’s Mechanism of Biological Soil Crusts on Soil Erodibility. Master degree dissertation, Graduate University of Chinese Academy of Sciences, Beijing. (in Chinese) |
[ 高丽倩 (2012). 生物结皮对土壤可蚀性的影响及机理. 硕士学位论文, 中国科学院研究生院, 北京.] | |
[18] |
Gleick PH, Adams RM, Amasino RM, Anders E, Anderson DJ, Anderson WW, Anderson WW, Anselin LE, Arroyo MK, Asfaw B, Ayala FJ, Bax A, Bebbington AJ, Bell G, Bennett MV, Bennetzen JL, Berenbaum MR, Berlin OB, Bjorkman PJ, Blackburn E, Blamont JE, Botchan MR, Boyer JS, Boyle EA, Branton D, Briggs SP, Briggs WR, Brill WJ, Britten RJ, Broecker WS, Brown JH, Brown PO, Brunger AT, Cairns J Jr, Canfield DE, Carpenter SR, Carrington JC, Cashmore AR, Castilla JC, Cazenave A, Chapin FS 3rd, Ciechanover AJ, Clapham DE, Clark WC, Clayton RN, Coe MD, Conwell EM, Cowling EB, Cowling RM, Cox CS, Croteau RB, Crothers DM, Crutzen PJ, Daily GC, Dalrymple GB, Dangl JL, Darst SA, Davies DR, Davis MB, De Camilli PV, Dean C, DeFries RS, Deisenhofer J, Delmer DP, DeLong EF, DeRosier DJ, Diener TO, Dirzo R, Dixon JE, Donoghue MJ, Doolittle RF, Dunne T, Ehrlich PR, Eisenstadt SN, Eisner T, Emanuel KA, Englander SW, Ernst WG, Falkowski PG, Feher G, Ferejohn JA, Fersht A, Fischer EH, Fischer R, Flannery KV, Frank J, Frey PA, Fridovich I, Frieden C, Futuyma DJ, Gardner WR, Garrett CJ, Gilbert W, Goldberg RB, Goodenough WH, Goodman CS, Goodman M, Greengard P, Hake S, Hammel G, Hanson S, Harrison SC, Hart SR, Hartl DL, Haselkorn R, Hawkes K, Hayes JM, Hille B, Hökfelt T, House JS, Hout M, Hunten DM, Izquierdo IA, Jagendorf AT, Janzen DH, Jeanloz R, Jencks CS, Jury WA, Kaback HR, Kailath T, Kay P, Kay SA, Kennedy D, Kerr A, Kessler RC, Khush GS, Kieffer SW, Kirch PV, Kirk K, Kivelson MG, Klinman JP, Klug A, Knopoff L, Kornberg H, Kutzbach JE, Lagarias JC, Lambeck K, Landy A, Langmuir CH, Larkins BA, Le Pichon XT, Lenski RE, Leopold EB, Levin SA, Levitt M, Likens GE, Lippincott-Schwartz J, Lorand L, Lovejoy CO, Lynch M, Mabogunje AL, Malone TF, Manabe S, Marcus J, Massey DS, McWilliams JC, Medina E, Melosh HJ, Meltzer DJ, Michener CD, Miles EL, Mooney HA, Moore PB, Morel FM, Mosley-Thompson ES, Moss B, Munk WH, Myers N, Nair GB, Nathans J, Nester EW, Nicoll RA, Novick RP, O'Connell JF, Olsen PE, Opdyke ND, Oster GF, Ostrom E, Pace NR, Paine RT, Palmiter RD, Pedlosky J, Petsko GA, Pettengill GH, Philander SG, Piperno DR, Pollard TD, Price PB Jr, Reichard PA, Reskin BF, Ricklefs RE, Rivest RL, Roberts JD, Romney AK, Rossmann MG, Russell DW, Rutter WJ, Sabloff JA, Sagdeev RZ, Sahlins MD, Salmond A, Sanes JR, Schekman R, Schellnhuber J, Schindler DW, Schmitt J, Schneider SH, Schramm VL, Sederoff RR, Shatz CJ, Sherman F, Sidman RL, Sieh K, Simons EL, Singer BH, Singer MF, Skyrms B, Sleep NH, Smith BD, Snyder SH, Sokal RR, Spencer CS, Steitz TA, Strier KB, Südhof TC, Taylor SS, Terborgh J, Thomas DH, Thompson LG, Tjian RT, Turner MG, Uyeda S, Valentine JW, Valentine JS, Van Etten JL, van Holde KE, Vaughan M, Verba S, von Hippel PH, Wake DB, Walker A, Walker JE, Watson EB, Watson PJ, Weigel D, Wessler SR, West-Eberhard MJ, White TD, Wilson WJ, Wolfenden RV, Wood JA, Woodwell GM, Wright HE Jr, Wu C, Wunsch C, Zoback ML (2010). Climate change and the integrity of science. Science, 328, 689-691.
URL PMID |
[19] | Granli T, Bockman OC (1994). Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences, 12(suppl.), 7-128. |
[20] | Hou AX, Chen GX, Wu J (1997). Relationship between CH4 and N2O emissions from rice field and its microbiological mechanism and impacting factors. Chinese Journal of Applied Ecology, 8, 270-274. (in Chinese with English abstract) |
[ 侯爱新, 陈冠雄, 吴杰 (1997). 稻田CH4和N2O排放关系及其微生物学机理和一些影响因子. 应用生态学报, 8, 270-274.] | |
[21] |
Hu YG, Chang XF, Lin XW, Wang YF, Wang SP, Duan JC, Zhang ZH, Yang XX, Luo CY, Xu GP, Zhao XQ (2010). Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan Plateau. Soil Biology & Biochemistry, 42, 944-952.
DOI URL |
[22] | Hu YG, Feng YL, Zhang ZS, Huang L, Zhang P, Xu BX (2014). Greenhouse gases fluxes of biological soil crusts and soil ecosystem in the artificial sand-fixing vegetation region in Shapotou area. Chinese Journal of Applied Ecology, 25, 61-68. (in Chinese with English abstract). |
[ 胡宜刚, 冯玉兰, 张志山, 黄磊, 张鹏, 徐冰鑫 (2014). 沙坡头人工植被固沙区生物结皮-土壤系统温室气体通量特征. 应用生态学报, 25, 61-68.] | |
[23] | Hu ZH, Zhou YP, Cui HL, Chen ST, Xiao QT, Liu Y (2013). Effects of diurnal warming on soil N2O emission in soybean field. Environmental Science, 34, 2961-2967. (in Chinese with English abstract) |
[ 胡正华, 周迎平, 崔海羚, 陈书涛, 肖启涛, 刘艳 (2013). 昼夜增温对大豆田土壤 N2O排放的影响. 环境科学, 34, 2961-2967.] | |
[24] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[25] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: the Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[26] |
Kammann C, Hepp S, Lenhart K, Müller C (2009). Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil. Soil Biology & Biochemistry, 41, 622-629.
DOI URL |
[27] |
Kato T, Tang YH, Gu S, Cui XY, Hirota M, Du MY, Li YN, Zhao XQ, Oikawa T (2004). Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 124, 121-134.
DOI URL |
[28] |
Keller M, Kaplan WA, Wofsy SC (1986). Emissions of N2O, CH4 and CO2 from tropical forest soils. Journal of Geophysical Research: Atmospheres (1984-2012), 91(D11), 11791-11802.
DOI URL |
[29] | Le Mer J, Roger P (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25-50. |
[30] | Li N (2010). Effect of Warming and Nitrogen Addition on Soil Greenhouse Gases Fluxes of Desert Steppe Ecosystem. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese) |
[ 李娜 (2010). 增温和施氮肥对荒漠草原生态系统土壤温室气体通量的影响. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[31] | Li XR, Zhang YM, Zhao YG (2009). A study of biological soil crusts: recent development, trend and prospect. Advances in Earth Science, 24, 11-24. |
(in Chinese with English abstract) [ 李新荣, 张元明, 赵允格 (2009). 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.] | |
[32] |
Lin XW, Wang SP, Ma XZ, Xu GP, Luo CY, Li YN, Jiang GM, Xie ZB (2009). Fluxes of CO2, CH4 and N2O in an alpine meadow affected by yak excreta during summer grazing periods on the Qinghai-Tibetan Plateau. Soil Biology & Biochemistry, 41, 718-725.
DOI URL |
[33] |
Lin XW, Zhang ZH, Wang SP, Hu YG, Xu GP, Luo CY, Chang XF, Duan JC, Lin QY, Xu BX, Wang YF, Zhao XQ, Xie ZB (2011). Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 151, 792-802.
DOI URL |
[34] | Luo C, Xu G, Chao Z, Wang S, Lin X, Hu Y, Zhang Z, Duan J, Chang X, Su A, Li Y, Zhao X, Du M, Tang Y, Kimball B (2010). Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau. Global Change Biology, 16, 1606-1617. |
[35] | Nakano T, Nemoto M, Shinoda M (2008). Environmental controls on photosynthetic production and ecosystem respiration in semi-arid grasslands of Mongolia. Agricultural and Forest Meteorology, 148, 1456-1466. |
[36] | Oberbauer SF, Starr G, Pop EW (1998). Effects of extended growing season and soil warming on carbon dioxide and methane exchange of tussock tundra in Alaska. Journal of Geophysical Research, Atmospheres (1984-2012), 103(D22), 29075-29082. |
[37] | Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GH, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G (2007). Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs, 77, 221-238. |
[38] | Rodionow A, Flessa H, Kazansky O, Guggenberger G (2006). Organic matter composition and potential trace gas production of permafrost soils in the forest tundra in northern Siberia. Geoderma, 135, 49-62. |
[39] |
Rustad LE, Fernandez IJ (1998). Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA. Global Change Biology, 4, 597-605.
DOI URL |
[40] | Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. |
[41] | Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19(2), doi: 10.1029/2004GB002315. |
[42] |
Wang Y, Xue M, Zheng X, Ji B, Du R, Wang Y (2005). Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere, 58, 205-215.
DOI URL |
[43] |
Welker JM, Fahnestock JT, Henry GH, O’Dea KW, Chimner RA (2004). CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming. Global Change Biology, 10, 1981-1995.
DOI URL |
[44] | Xia JY, Niu SL, Wan SQ (2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556. |
[45] | Xu R, Wang YS, Zheng XH, Ji BM, Wang MX (2003). A comparison between measured and modeled N2O emissions from Inner Mongolian semi-arid grassland. Plant and Soil, 255, 513-528. |
[46] | Zhang P, Li XR, He MZ, Li XJ, Gao YH (2012). Effects of wintertime low temperature and simulated warming on nitrogen-fixing activity of soil biocrusts. Chinese Journal of Ecology, 31, 1653-1658. (in Chinese with English abstract) |
[ 张鹏, 李新荣, 何明珠, 李小军, 高艳红 (2012). 冬季低温及模拟升温对生物土壤结皮固氮活性的影响. 生态学杂志, 31, 1653-1658.] | |
[47] | Zhang ZS, Li XR, Nowak RS, Wu P, Gao YH, Zhao Y, Huang L, Hu YG, Jia RL (2013). Effect of sand-stabilizing shrubs on soil respiration in a temperate desert. Plant and Soil, 367, 449-463. |
[1] | Wei-Wei SHE Qin shugao Yan-Gui QIAO Yuqing Zhang. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[2] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[3] | Zumureti YUSUFUJANG, DONG Zheng-Wu, CHENG Peng, YE Mao, LIU Sui-Yun-Hao, LI Sheng-Yu, ZHAO Xiao-Ying. Response of water use strategies of Tamarix ramosissima to nebkhas accumulation process [J]. Chin J Plant Ecol, 2024, 48(1): 113-126. |
[4] | LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes [J]. Chin J Plant Ecol, 2023, 47(9): 1310-1321. |
[5] | ZHANG Ya-Qi, PANG Dan-Bo, CHEN Lin, CAO Meng-Hao, HE Wen-Qiang, LI Xue-Bin. Response of ammonia oxidizing bacteria to nitrogen fertilization and plant litter input on desert steppe [J]. Chin J Plant Ecol, 2023, 47(5): 699-712. |
[6] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[7] | SUN Cai-Li, QIU Mo-Sheng, HUANG Chao-Xiang, WANG Yi-Wei. Characteristics of soil extracellular enzyme activities and their stoichiometry during rocky desertification in southwestern Guizhou, China [J]. Chin J Plant Ecol, 2022, 46(7): 834-845. |
[8] | ZHANG Yu-Lin, YIN Ben-Feng, TAO Ye, LI Yong-Gang, ZHOU Xiao-Bing, ZHANG Yuan-Ming. Effects of the first rainfall timing and amount on morphological characteristics and chlorophyll fluorescence of two ephemeral species in the Gurbantünggüt Desert, northwestern China [J]. Chin J Plant Ecol, 2022, 46(4): 428-439. |
[9] | TIAN Lei, ZHU Yi, LI Xin, HAN Guo-Dong, REN Hai-Yan. Responses of plant phenology to warming and nitrogen addition under different precipitation conditions in a desert steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(3): 290-299. |
[10] | ZHANG Qing, YIN Ben-Feng, LI Ji-Wen, LU Yong-Xing, RONG Xiao-Ying, ZHOU Xiao-Bing, ZHANG Bing-Chang, ZHANG Yuan-Ming. Effects of moss mortality on soil enzyme activities in a temperate desert [J]. Chin J Plant Ecol, 2022, 46(3): 350-361. |
[11] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[12] | ZANG Yong-Xin, MA Jian-Ying, ZHOU Xiao-Bing, TAO Ye, YIN Ben-Feng, Shayaguli JIGEER, ZHANG Yuan-Ming. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes [J]. Chin J Plant Ecol, 2022, 46(12): 1537-1550. |
[13] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[14] | ZHANG Huan, ZHANG Yun-Ling, ZHANG Yan-Cai, YAN Ping. Main plant communities and characteristics of Desert Grassland Nature Reserve in Qitai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(8): 918-924. |
[15] | HOU Bao-Lin, ZHUANG Wei-Wei. Nitrogen uptake strategy of annual plants in Gurbantünggüt Desert [J]. Chin J Plant Ecol, 2021, 45(7): 760-770. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn