Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (4): 333-345.DOI: 10.3724/SP.J.1258.2012.00333
• Research Articles • Previous Articles Next Articles
QIN Feng-Fei(),LI Qiang,CUI Zhao-Ming,LI Hong-Ping,YANG Zhi-Ran
Received:
2011-11-23
Accepted:
2012-02-15
Online:
2012-11-23
Published:
2012-03-28
Contact:
QIN Feng-Fei
QIN Feng-Fei,LI Qiang,CUI Zhao-Ming,LI Hong-Ping,YANG Zhi-Ran. Leaf anatomical structures and ecological adaptabilities to light of three alfalfa cultivars with different fall dormancies under shading during overwintering[J]. Chin J Plant Ecol, 2012, 36(4): 333-345.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.00333
Fig. 1 Light micrographs of leaf transverse paraffin sections of three alfalfa cultivars with different fall dormancy under different shading conditions. A, ‘Ameristand 201’; B, ‘Victoria’; C, ‘Eureka’. L0, L1, L2, L3 is full light intensity, (43.4 ± 1.9)% of full light intensity, (20.5 ± 0.6)% of full light intensity and (7.1 ± 0.2)% of full light intensity, respectively. CLE, cuticle of lower epidermis; CUE, cuticle of upper epidermis; LE, lower epidermis; PP, palisade parenchyma; S, stomata; SP, spongy parenchyma; UE, upper epidermis.
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
上表皮角质层厚度 Cuticle thickness of upper epidermis (μm) | L0 | 3.73 ± 0.26a | 3.97 ± 0.13a | 3.82 ± 0.12a |
L1 | 3.55 ± 0.21a | 3.58 ± 0.09b | 3.63 ± 0.14a | |
L2 | 3.42 ± 0.11ab | 3.56 ± 0.13b | 3.23 ± 0.10b | |
L3 | 2.89 ± 0.18b | 3.48 ± 0.13b | 3.14 ± 0.07b | |
p 可塑性指数 PI | 0.046* 0.225 | 0.027* 0.123 | 0.000** 0.178 | |
下表皮角质层厚度 Cuticle thickness of lower epidermis (μm) | L0 | 4.41 ± 0.27a | 3.48 ± 0.20a | 3.32 ± 0.18a |
L1 | 3.23 ± 0.15b | 3.30 ± 0.09ab | 3.24 ± 0.12a | |
L2 | 3.05 ± 0.09b | 3.25 ± 0.12ab | 3.07 ± 0.08ab | |
L3 | 2.97 ± 0.15b | 2.89 ± 0.09b | 2.86 ± 0.12b | |
p 可塑性指数 PI | 0.000** 0.327 | 0.041* 0.170 | 0.054 0.139 | |
上表皮厚度 Thickness of upper epidermis (μm) | L0 | 21.75 ± 1.21a | 17.46 ± 0.54a | 18.19 ± 0.72a |
L1 | 22.11 ± 1.31a | 18.92 ± 0.75ab | 18.26 ± 0.62a | |
L2 | 24.04 ± 0.90a | 20.60 ± 1.11bc | 18.44 ± 0.80a | |
L3 | 24.31 ± 1.18a | 21.78 ± 0.95c | 18.54 ± 0.66a | |
p 可塑性指数 PI | 0.357 0.105 | 0.003** 0.198 | 0.984 0.019 | |
下表皮厚度 Thickness of lower epidermis (μm) | L0 | 15.64 ± 0.46a | 16.00 ± 0.54a | 15.47 ± 0.69a |
L1 | 16.16 ± 0.73a | 17.04 ± 0.90ab | 15.43 ± 0.58a | |
L2 | 19.74 ± 0.98b | 17.28 ± 0.89ab | 14.36 ± 0.48a | |
L3 | 20.96 ± 0.99b | 18.76 ± 0.73b | 13.85 ± 0.40a | |
p 可塑性指数 PI | 0.000** 0.254 | 0.096 0.147 | 0.096 0.104 | |
气孔密度(个/叶片横切面) Stomatal density (number of leaf transverse section ) | L0 | 9.67 ± 1.26a | 13.83 ± 1.05a | 11.00 ± 1.52a |
L1 | 6.83 ± 0.79ab | 5.67 ± 0.21b | 7.67 ± 0.33b | |
L2 | 5.25 ± 0.48b | 5.17 ± 0.54b | 5.83 ± 0.48b | |
L3 | 5.00 ± 0.82b | 4.50 ± 0.56b | 5.17 ± 0.95b | |
p 可塑性指数 PI | 0.013* 0.483 | 0.000** 0.675 | 0.001** 0.530 | |
气孔开度 Stomata aperture (μm) | L0 | 3.78 ± 0.41a | 2.73 ± 0.20a | 2.65 ± 0.21a |
L1 | 2.94 ± 0.27ab | 2.94 ± 0.25a | 2.82 ± 0.32a | |
L2 | 2.39 ± 0.30bc | 1.86 ± 0.24b | 1.48 ± 0.25b | |
L3 | 1.90 ± 0.29c | 1.73 ± 0.17b | 1.39 ± 0.21b | |
p 可塑性指数 PI | 0.003** 0.497 | 0.000** 0.412 | 0.000** 0.507 |
Table 1 Comparison of structures of leaf epidermis of three alfalfa cultivars under different shading conditions (mean ± SE)
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
上表皮角质层厚度 Cuticle thickness of upper epidermis (μm) | L0 | 3.73 ± 0.26a | 3.97 ± 0.13a | 3.82 ± 0.12a |
L1 | 3.55 ± 0.21a | 3.58 ± 0.09b | 3.63 ± 0.14a | |
L2 | 3.42 ± 0.11ab | 3.56 ± 0.13b | 3.23 ± 0.10b | |
L3 | 2.89 ± 0.18b | 3.48 ± 0.13b | 3.14 ± 0.07b | |
p 可塑性指数 PI | 0.046* 0.225 | 0.027* 0.123 | 0.000** 0.178 | |
下表皮角质层厚度 Cuticle thickness of lower epidermis (μm) | L0 | 4.41 ± 0.27a | 3.48 ± 0.20a | 3.32 ± 0.18a |
L1 | 3.23 ± 0.15b | 3.30 ± 0.09ab | 3.24 ± 0.12a | |
L2 | 3.05 ± 0.09b | 3.25 ± 0.12ab | 3.07 ± 0.08ab | |
L3 | 2.97 ± 0.15b | 2.89 ± 0.09b | 2.86 ± 0.12b | |
p 可塑性指数 PI | 0.000** 0.327 | 0.041* 0.170 | 0.054 0.139 | |
上表皮厚度 Thickness of upper epidermis (μm) | L0 | 21.75 ± 1.21a | 17.46 ± 0.54a | 18.19 ± 0.72a |
L1 | 22.11 ± 1.31a | 18.92 ± 0.75ab | 18.26 ± 0.62a | |
L2 | 24.04 ± 0.90a | 20.60 ± 1.11bc | 18.44 ± 0.80a | |
L3 | 24.31 ± 1.18a | 21.78 ± 0.95c | 18.54 ± 0.66a | |
p 可塑性指数 PI | 0.357 0.105 | 0.003** 0.198 | 0.984 0.019 | |
下表皮厚度 Thickness of lower epidermis (μm) | L0 | 15.64 ± 0.46a | 16.00 ± 0.54a | 15.47 ± 0.69a |
L1 | 16.16 ± 0.73a | 17.04 ± 0.90ab | 15.43 ± 0.58a | |
L2 | 19.74 ± 0.98b | 17.28 ± 0.89ab | 14.36 ± 0.48a | |
L3 | 20.96 ± 0.99b | 18.76 ± 0.73b | 13.85 ± 0.40a | |
p 可塑性指数 PI | 0.000** 0.254 | 0.096 0.147 | 0.096 0.104 | |
气孔密度(个/叶片横切面) Stomatal density (number of leaf transverse section ) | L0 | 9.67 ± 1.26a | 13.83 ± 1.05a | 11.00 ± 1.52a |
L1 | 6.83 ± 0.79ab | 5.67 ± 0.21b | 7.67 ± 0.33b | |
L2 | 5.25 ± 0.48b | 5.17 ± 0.54b | 5.83 ± 0.48b | |
L3 | 5.00 ± 0.82b | 4.50 ± 0.56b | 5.17 ± 0.95b | |
p 可塑性指数 PI | 0.013* 0.483 | 0.000** 0.675 | 0.001** 0.530 | |
气孔开度 Stomata aperture (μm) | L0 | 3.78 ± 0.41a | 2.73 ± 0.20a | 2.65 ± 0.21a |
L1 | 2.94 ± 0.27ab | 2.94 ± 0.25a | 2.82 ± 0.32a | |
L2 | 2.39 ± 0.30bc | 1.86 ± 0.24b | 1.48 ± 0.25b | |
L3 | 1.90 ± 0.29c | 1.73 ± 0.17b | 1.39 ± 0.21b | |
p 可塑性指数 PI | 0.003** 0.497 | 0.000** 0.412 | 0.000** 0.507 |
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
栅栏组织厚度 Thickness of palisade parenchyma (μm) | L0 | 96.11 ± 2.12a | 89.71 ± 3.27a | 101.08 ± 2.72a |
L1 | 71.83 ± 3.73b | 66.60 ± 1.22b | 74.44 ± 2.78b | |
L2 | 54.41 ± 3.56c | 65.85 ± 2.07b | 51.70 ± 1.32c | |
L3 | 47.12 ± 1.49c | 55.77 ± 3.00c | 48.78 ± 2.53c | |
p 可塑性指数 PI | 0.000** 0.510 | 0.000** 0.378 | 0.000** 0.517 | |
栅栏细胞宽度 Width of palisade cell (μm) | L0 | 16.60 ± 0.54a | 14.67 ± 0.35a | 15.75 ± 0.47a |
L1 | 16.41 ± 0.38a | 14.74 ± 0.44a | 15.06 ± 0.48a | |
L2 | 14.03 ± 0.31b | 14.85 ± 0.30a | 12.90 ± 0.28b | |
L3 | 12.85 ± 0.45b | 16.35 ± 0.30b | 12.58 ± 0.34b | |
p 可塑性指数 PI | 0.000** 0.226 | 0.003** 0.119 | 0.000** 0.201 | |
栅栏组织细胞层数 Layer of palisade cell | L0 | 2-3 | 2-3 | 2-3 |
L1 | 2-3 | 1-2 | 1-2 | |
L2 | 1-2 | 1-2 | 1-2 | |
L3 | 1-2 | 1 | 1 | |
海绵组织厚度 Thickness of spongy parenchyma (μm) | L0 | 70.90 ± 1.97a | 57.82 ± 2.12a | 67.91 ± 3.44a |
L1 | 67.86 ± 4.16a | 57.67 ± 1.17a | 63.68 ± 2.09a | |
L2 | 66.76 ± 2.13a | 64.35 ± 2.08a | 55.79 ± 1.38b | |
L3 | 61.48 ± 3.43b | 79.41 ± 3.25b | 54.18 ± 2.35b | |
p 可塑性指数 PI | 0.248 0.133 | 0.000** 0.274 | 0.000** 0.202 | |
海绵细胞宽度 Width of spongy cell (μm) | L0 | 9.13 ± 0.42a | 11.67 ± 0.38a | 11.78 ± 0.46a |
L1 | 12.20 ± 0.40b | 11.91 ± 0.46a | 12.11 ± 0.36a | |
L2 | 12.84 ± 0.33b | 12.57 ± 0.34a | 12.26 ± 0.21a | |
L3 | 12.96 ± 0.26b | 15.07 ± 0.55b | 13.87 ± 0.61b | |
p 可塑性指数 PI | 0.000** 0.296 | 0.000** 0.226 | 0.004** 0.151 | |
栅栏组织厚度/海绵组织厚度 Palisade-spongy ratio | L0 | 1.37 ± 0.03a | 1.58 ± 0.13a | 1.56 ± 0.08a |
L1 | 1.11 ± 0.06b | 1.15 ± 0.04b | 1.17 ± 0.03b | |
L2 | 0.83 ± 0.06c | 1.06 ± 0.05bc | 0.93 ± 0.03c | |
L3 | 0.89 ± 0.03c | 0.83 ± 0.10c | 0.90 ± 0.05c | |
p 可塑性指数 PI | 0.000** 0.394 | 0.000** 0.475 | 0.000** 0.423 |
Table 2 Comparison of mesophyll tissue structures of three alfalfa cultivars under different shading conditions (mean ± SE)
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
栅栏组织厚度 Thickness of palisade parenchyma (μm) | L0 | 96.11 ± 2.12a | 89.71 ± 3.27a | 101.08 ± 2.72a |
L1 | 71.83 ± 3.73b | 66.60 ± 1.22b | 74.44 ± 2.78b | |
L2 | 54.41 ± 3.56c | 65.85 ± 2.07b | 51.70 ± 1.32c | |
L3 | 47.12 ± 1.49c | 55.77 ± 3.00c | 48.78 ± 2.53c | |
p 可塑性指数 PI | 0.000** 0.510 | 0.000** 0.378 | 0.000** 0.517 | |
栅栏细胞宽度 Width of palisade cell (μm) | L0 | 16.60 ± 0.54a | 14.67 ± 0.35a | 15.75 ± 0.47a |
L1 | 16.41 ± 0.38a | 14.74 ± 0.44a | 15.06 ± 0.48a | |
L2 | 14.03 ± 0.31b | 14.85 ± 0.30a | 12.90 ± 0.28b | |
L3 | 12.85 ± 0.45b | 16.35 ± 0.30b | 12.58 ± 0.34b | |
p 可塑性指数 PI | 0.000** 0.226 | 0.003** 0.119 | 0.000** 0.201 | |
栅栏组织细胞层数 Layer of palisade cell | L0 | 2-3 | 2-3 | 2-3 |
L1 | 2-3 | 1-2 | 1-2 | |
L2 | 1-2 | 1-2 | 1-2 | |
L3 | 1-2 | 1 | 1 | |
海绵组织厚度 Thickness of spongy parenchyma (μm) | L0 | 70.90 ± 1.97a | 57.82 ± 2.12a | 67.91 ± 3.44a |
L1 | 67.86 ± 4.16a | 57.67 ± 1.17a | 63.68 ± 2.09a | |
L2 | 66.76 ± 2.13a | 64.35 ± 2.08a | 55.79 ± 1.38b | |
L3 | 61.48 ± 3.43b | 79.41 ± 3.25b | 54.18 ± 2.35b | |
p 可塑性指数 PI | 0.248 0.133 | 0.000** 0.274 | 0.000** 0.202 | |
海绵细胞宽度 Width of spongy cell (μm) | L0 | 9.13 ± 0.42a | 11.67 ± 0.38a | 11.78 ± 0.46a |
L1 | 12.20 ± 0.40b | 11.91 ± 0.46a | 12.11 ± 0.36a | |
L2 | 12.84 ± 0.33b | 12.57 ± 0.34a | 12.26 ± 0.21a | |
L3 | 12.96 ± 0.26b | 15.07 ± 0.55b | 13.87 ± 0.61b | |
p 可塑性指数 PI | 0.000** 0.296 | 0.000** 0.226 | 0.004** 0.151 | |
栅栏组织厚度/海绵组织厚度 Palisade-spongy ratio | L0 | 1.37 ± 0.03a | 1.58 ± 0.13a | 1.56 ± 0.08a |
L1 | 1.11 ± 0.06b | 1.15 ± 0.04b | 1.17 ± 0.03b | |
L2 | 0.83 ± 0.06c | 1.06 ± 0.05bc | 0.93 ± 0.03c | |
L3 | 0.89 ± 0.03c | 0.83 ± 0.10c | 0.90 ± 0.05c | |
p 可塑性指数 PI | 0.000** 0.394 | 0.000** 0.475 | 0.000** 0.423 |
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
叶片厚度 Leaf thickness (μm) | L0 | 241.85 ± 5.06a | 218.51 ± 3.78a | 242.94 ± 3.79a |
L1 | 217.38 ± 6.61b | 184.69 ± 4.56b | 202.13 ± 3.40b | |
L2 | 179.52 ± 5.05c | 173.01 ± 3.05bc | 147.42 ± 1.54c | |
L3 | 178.99 ± 2.32c | 172.18 ± 5.09c | 153.76 ± 4.12c | |
p 可塑性指数 PI | 0.000** 0.26 | 0.000** 0.212 | 0.000** 0.393 | |
叶肉厚度 Mesophyll thickness (μm) | L0 | 164.37 ± 3.56a | 156.90 ± 2.52a | 171.53 ± 4.01a |
L1 | 143.87 ± 5.68b | 120.68 ± 1.44b | 140.65 ± 2.06b | |
L2 | 119.39 ± 3.77c | 118.99 ± 2.30b | 104.97 ± 1.94c | |
L3 | 116.20 ± 4.02c | 110.58 ± 3.31c | 101.19 ± 3.81c | |
p 可塑性指数 PI | 0.000** 0.293 | 0.000** 0.295 | 0.000** 0.410 | |
中脉厚度 Midrib thickness (μm) | L0 | 388.99 ± 32.24a | 402.17 ± 23.00a | 511.23 ± 20.63a |
L1 | 370.22 ± 8.82a | 380.37 ± 24.85a | 387.18 ± 19.31b | |
L2 | 367.07 ± 2.13a | 374.11 ± 15.78a | 275.58 ± 11.58c | |
L3 | 278.21 ± 11.50b | 292.78 ± 9.35b | 274.62 ± 2.63c | |
p 可塑性指数 PI | 0.001** 0.285 | 0.000** 0.272 | 0.000** 0.463 | |
组织结构紧密度 Cell tense ratio | L0 | 0.40 ± 0.01a | 0.41 ± 0.02a | 0.42 ± 0.02a |
L1 | 0.33 ± 0.02b | 0.39 ± 0.01ab | 0.37 ± 0.02ab | |
L2 | 0.32 ± 0.02b | 0.38 ± 0.02ab | 0.33 ± 0.02b | |
L3 | 0.26 ± 0.01c | 0.34 ± 0.02b | 0.34 ± 0.02b | |
p 可塑性指数 PI | 0.000** 0.350 | 0.070 0.171 | 0.037* 0.21 | |
组织结构疏松度 Spongy ratio | L0 | 0.30 ± 0.01a | 0.27 ± 0.01a | 0.28 ± 0.02a |
L1 | 0.31 ± 0.02a | 0.34 ± 0.02a | 0.31 ± 0.01a | |
L2 | 0.40 ± 0.03b | 0.37 ± 0.01ab | 0.38 ± 0.01b | |
L3 | 0.34 ± 0.03ab | 0.47 ± 0.07b | 0.39 ± 0.02b | |
p 可塑性指数 PI | 0.035* 0.250 | 0.006** 0.426 | 0.000** 0.282 | |
叶脉突起度 Vein protuberant degree | L0 | 1.61 ± 0.22a | 1.79 ± 0.21a | 2.11 ± 0.15a |
L1 | 1.72 ± 0.08a | 2.15 ± 0.31a | 1.94 ± 0.21a | |
L2 | 2.21 ± 0.15b | 2.17 ± 0.12a | 1.77 ± 0.11a | |
L3 | 1.54 ± 0.11a | 1.81 ± 0.18a | 1.78 ± 0.07a | |
p 可塑性指数 PI | 0.037* 0.303 | 0.368 0.175 | 0.364 0.161 |
Table 3 Comparison of leaf integrated structures of three alfalfa cultivars under different shading treatment (mean ± SE)
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
叶片厚度 Leaf thickness (μm) | L0 | 241.85 ± 5.06a | 218.51 ± 3.78a | 242.94 ± 3.79a |
L1 | 217.38 ± 6.61b | 184.69 ± 4.56b | 202.13 ± 3.40b | |
L2 | 179.52 ± 5.05c | 173.01 ± 3.05bc | 147.42 ± 1.54c | |
L3 | 178.99 ± 2.32c | 172.18 ± 5.09c | 153.76 ± 4.12c | |
p 可塑性指数 PI | 0.000** 0.26 | 0.000** 0.212 | 0.000** 0.393 | |
叶肉厚度 Mesophyll thickness (μm) | L0 | 164.37 ± 3.56a | 156.90 ± 2.52a | 171.53 ± 4.01a |
L1 | 143.87 ± 5.68b | 120.68 ± 1.44b | 140.65 ± 2.06b | |
L2 | 119.39 ± 3.77c | 118.99 ± 2.30b | 104.97 ± 1.94c | |
L3 | 116.20 ± 4.02c | 110.58 ± 3.31c | 101.19 ± 3.81c | |
p 可塑性指数 PI | 0.000** 0.293 | 0.000** 0.295 | 0.000** 0.410 | |
中脉厚度 Midrib thickness (μm) | L0 | 388.99 ± 32.24a | 402.17 ± 23.00a | 511.23 ± 20.63a |
L1 | 370.22 ± 8.82a | 380.37 ± 24.85a | 387.18 ± 19.31b | |
L2 | 367.07 ± 2.13a | 374.11 ± 15.78a | 275.58 ± 11.58c | |
L3 | 278.21 ± 11.50b | 292.78 ± 9.35b | 274.62 ± 2.63c | |
p 可塑性指数 PI | 0.001** 0.285 | 0.000** 0.272 | 0.000** 0.463 | |
组织结构紧密度 Cell tense ratio | L0 | 0.40 ± 0.01a | 0.41 ± 0.02a | 0.42 ± 0.02a |
L1 | 0.33 ± 0.02b | 0.39 ± 0.01ab | 0.37 ± 0.02ab | |
L2 | 0.32 ± 0.02b | 0.38 ± 0.02ab | 0.33 ± 0.02b | |
L3 | 0.26 ± 0.01c | 0.34 ± 0.02b | 0.34 ± 0.02b | |
p 可塑性指数 PI | 0.000** 0.350 | 0.070 0.171 | 0.037* 0.21 | |
组织结构疏松度 Spongy ratio | L0 | 0.30 ± 0.01a | 0.27 ± 0.01a | 0.28 ± 0.02a |
L1 | 0.31 ± 0.02a | 0.34 ± 0.02a | 0.31 ± 0.01a | |
L2 | 0.40 ± 0.03b | 0.37 ± 0.01ab | 0.38 ± 0.01b | |
L3 | 0.34 ± 0.03ab | 0.47 ± 0.07b | 0.39 ± 0.02b | |
p 可塑性指数 PI | 0.035* 0.250 | 0.006** 0.426 | 0.000** 0.282 | |
叶脉突起度 Vein protuberant degree | L0 | 1.61 ± 0.22a | 1.79 ± 0.21a | 2.11 ± 0.15a |
L1 | 1.72 ± 0.08a | 2.15 ± 0.31a | 1.94 ± 0.21a | |
L2 | 2.21 ± 0.15b | 2.17 ± 0.12a | 1.77 ± 0.11a | |
L3 | 1.54 ± 0.11a | 1.81 ± 0.18a | 1.78 ± 0.07a | |
p 可塑性指数 PI | 0.037* 0.303 | 0.368 0.175 | 0.364 0.161 |
项目 Item | 品种 Cultivar | ||
---|---|---|---|
‘巨人201’ ‘Ameristand 201’ (FD = 2) | ‘维多利亚’ ‘Victoria’ (FD = 6) | ‘游客’ ‘Eureka’ (FD = 8) | |
组织结构紧密度 Cell tense ratio | 0.954* | 0.843 | 0.980* |
组织结构疏松度 Spongy ratio | -0.688 | -0.916 | -0.947 |
叶脉突起度 Vein protuberant degree | -0.282 | -0.15 | 0.976* |
海绵组织厚度 Thickness of spongy parenchyma | 0.882 | -0.728 | 0.944 |
海绵细胞宽度 Width of spongy cell | -0.981* | -0.736 | -0.742 |
栅栏组织厚度 Thickness of palisade parenchyma | 0.992** | 0.977* | 0.987* |
栅栏细胞宽度 Width of palisade cell | 0.844 | -0.751 | 0.911 |
栅栏组织厚度/海绵组织厚度 Palisade-spongy ratio | 0.960* | 0.984* | 0.994** |
气孔密度 Stomatal density | 0.996** | 0.964* | 0.998** |
气孔开度 Stomata aperture | 0.982* | 0.738 | 0.766 |
上表皮厚度 Thickness of upper epidermis | -0.882 | -0.957* | -0.904 |
下表皮厚度 Thickness of lower epidermis | -0.869 | -0.902 | 0.833 |
上表皮角质层厚度 Cuticle thickness of upper epidermis | 0.828 | 0.976* | 0.937 |
下表皮角质层厚度 Cuticle thickness of lower epidermis | 0.978* | 0.861 | 0.874 |
中脉厚度 Midrib thickness | 0.725 | 0.765 | 0.982* |
叶片厚度 Leaf thickness | 0.955* | 0.990* | 0.957* |
叶肉厚度 Mesophyll thickness | 0.972* | 0.977* | 0.974* |
Table 4 Correlation of leaf anatomical parameters of different alfalfa cultivars and light intensity
项目 Item | 品种 Cultivar | ||
---|---|---|---|
‘巨人201’ ‘Ameristand 201’ (FD = 2) | ‘维多利亚’ ‘Victoria’ (FD = 6) | ‘游客’ ‘Eureka’ (FD = 8) | |
组织结构紧密度 Cell tense ratio | 0.954* | 0.843 | 0.980* |
组织结构疏松度 Spongy ratio | -0.688 | -0.916 | -0.947 |
叶脉突起度 Vein protuberant degree | -0.282 | -0.15 | 0.976* |
海绵组织厚度 Thickness of spongy parenchyma | 0.882 | -0.728 | 0.944 |
海绵细胞宽度 Width of spongy cell | -0.981* | -0.736 | -0.742 |
栅栏组织厚度 Thickness of palisade parenchyma | 0.992** | 0.977* | 0.987* |
栅栏细胞宽度 Width of palisade cell | 0.844 | -0.751 | 0.911 |
栅栏组织厚度/海绵组织厚度 Palisade-spongy ratio | 0.960* | 0.984* | 0.994** |
气孔密度 Stomatal density | 0.996** | 0.964* | 0.998** |
气孔开度 Stomata aperture | 0.982* | 0.738 | 0.766 |
上表皮厚度 Thickness of upper epidermis | -0.882 | -0.957* | -0.904 |
下表皮厚度 Thickness of lower epidermis | -0.869 | -0.902 | 0.833 |
上表皮角质层厚度 Cuticle thickness of upper epidermis | 0.828 | 0.976* | 0.937 |
下表皮角质层厚度 Cuticle thickness of lower epidermis | 0.978* | 0.861 | 0.874 |
中脉厚度 Midrib thickness | 0.725 | 0.765 | 0.982* |
叶片厚度 Leaf thickness | 0.955* | 0.990* | 0.957* |
叶肉厚度 Mesophyll thickness | 0.972* | 0.977* | 0.974* |
[1] |
Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR (1998). Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock. Canadian Journal of Botany, 76, 1180-1187.
DOI URL |
[2] |
Bergh J, Linder S, Lundmark T, Elfving B (1999). The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. Forest Ecology and Management, 119, 51-62.
DOI URL |
[3] |
Bone RL, Lee DW, Norman JM (1985). Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants. Applied Optics, 24, 1408-1412.
DOI URL PMID |
[4] | Bradshaw AD (1965). Evolutionary significance of phenotypic plasticity in plants. Advanced Genetics, 13, 115-155. |
[5] |
Cooper CS (1966). Response of birdsfoot trefoil and alfalfa to various levels of shade. Crop Science, 6, 63-66.
DOI URL |
[6] |
Cuningham SM, Volence JJ, Teuber LR (1998). Plant survival and root and bud composition of alfalfa populations selected for contrasting fall dormancy. Crop Science, 38, 962-969.
DOI URL |
[7] | Dai LF (戴凌峰), Cui LQ (崔令军), Zhang ZX (张志翔) (2008). Influence of shading treatment on growth of Jatropha curcas seedling. Journal of Anhui Agricultural Sciences (安徽农业科学) 36, 5729-5731. (in Chinese with English abstract) |
[8] | Esau K (1977). Anatomy of Seed Plants 2nd edn. John Wiley and Sons Press, New York. 351-372. |
[9] | Gui KY (桂克印), Li YL (李炎林), Tang QR (唐前瑞), Yin H (尹恒), Chen L (陈丽), He SH (贺苏华) (2007). Leaf anatomy of Scindapsus aureus growing under illumination treatment. Journal of Jishou University (Natural Sciences Edition) (吉首大学学报(自然科学版)), 28(5), 95-98. (in Chinese with English abstract) |
[10] |
Hu QP (胡启鹏), Guo ZH (郭志华), Li CY (李春燕), Ma LY (马履一) (2008). Advance at phenotypic plasticity in plant responses to abiotic factors. Scientia Silvae Sinicae (林业科学) 44(5), 135-142. (in Chinese with English abstract)
DOI URL |
[11] |
Huber H, Lukács S, Watson MA (1999). Spatial structure of stoloniferous herbs: an interplay between structure blue-print, ontogeny and phenotypic plasticity. Plant Ecology, 141, 107-115.
DOI URL |
[12] |
Isanogle IT (1944). Effects of controlled shading upon the development of leaf structure in two deciduous tree species. Ecology, 25, 404-413.
DOI URL |
[13] | Knipe B, Reisen P, McCaslin M , (1997). The importance of fall dormancy to yield, persistence and forage quality. In: Certified Alfalfa Seed Council ed. Proceedings of the 1997 California Alfalfa Symposium. Pennsylvania State University Press, Pennsylvania, USA. 5, 192-197. |
[14] | Knipe B, Reisen P, McCaslin M (1998). The relationship between fall dormancy and stand persistence in alfalfa varieties. In: Certified Alfalfa Seed Council ed. Proceedings of the 1998 California Alfalfa Symposium. Pennsylvania State University Press, Pennsylvania, USA. 3, 203-208. |
[15] | Lee DW (1986). Unusual strategies of light absorption in rainforest herbs. In: Givinish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK. 105-131. |
[16] |
Lee DW, Bone RA, Tersis SL, Storch D (1990). Correlates of leaf optical properties in tropical forest sun and extreme- shade plants. American Journal of Botany, 77, 370-380.
DOI URL |
[17] | Li FL (李芳兰), Bao WK (包维楷) (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany (植物学通报) 22, 118-127. (in Chinese with English abstract) |
[18] | Li GH (李国华), Xu T (徐涛), Chen GY (陈国云), Yue H (岳海), Liang GP (梁国平) (2009). Anatomical structure of leaves of 10 macadamia cultivars. Chinese Journal of Tropical Crops (热带作物学报) 30, 1437-1441. (in Chinese with English abstract) |
[19] | Li XL (李向林), Wan LQ (万里强) (2004). Alfalfa fall dormancy and its relationship to winter hardiness and yield. Acta Prataculturae Sinica (草业学报) 13(3), 57-61. (in Chinese with English abstract) |
[20] |
Lin CH, McGraw RL, George MF, Garrett HE (1999). Shade effects on forage crops with potential in temperate agroforestry practices. Agroforestry Systems, 44, 109-119.
DOI URL |
[21] | Liu SB (刘世彪), Hu ZH (胡正海) (2004). Effects of shading treatment on the leaf morphology, structure and photos- ynthetic characteristics of Gynostemma pentaphyllum. Journal of Wuhan Botanical Research (武汉植物学研究) 22, 339-344. (in Chinese with English abstract) |
[22] | Lu XS (卢欣石), Shen YL (申玉龙) (1991). Research and utilization of alfalfa fall dormancy. Abroad Animal Husbandry― Grassland and Forage (国外畜牧学—草原与牧草) (4), 1-4. (in Chinese) |
[23] | McCaslin M, Brown D, Deery H (1990). Report of the 32nd North American Alfalfa Improvement Conference. Pasco, Washington. |
[24] | Mott KA, Gibson AG, O’Leary JW (1982). The adaptive sign-ificance of amphistomatic leaves. Plant, Cell & Environ- ment, 5, 455-460. |
[25] | Pintado A, Valladares F, Sancho LG (1997). Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations and chlorophyll content in north- and south-facing populations. Annals of Botany, 80, 345-353. |
[26] | Putz FE, Mooney HA (1991). The Biology of Vines. Cambridge University Press, Cambridge, UK. 1-353. |
[27] |
Qin FF (覃凤飞), Shen YX (沈益新), Zhou JG (周建国), Wang QS (王庆师), Sun ZC (孙志成), Wang B (王波) (2010). Seedling morphology and growth responses of nine Medicago sativa varieties to shade conditions. Acta Prataculturae Sinica (草业学报) 19, 204-211. (in Chinese with English abstract)
DOI URL |
[28] | Rôças G, Barros CF, Scarano FR (1997). Leaf anatomy plasticity of Alchornea triplinervia (Euphorbiaceae) under distinct light regimes in a Brazilian montane Atlantic rain forest. Trees, 11, 469-473. |
[29] | Shi GR (史刚荣), Cai QS (蔡庆生) (2006). Leaf anatomic plasticity of white clover and its response to different light intensities. Acta Agrectia Sinica (草地学报) 14, 301-305. (in Chinese with English abstract) |
[30] |
Stout DG, Hall JW (1989). Fall growth and winter survival of alfalfa in interior British Columbia. Canadian Journal of Plant Science, 69, 491-499.
DOI URL |
[31] |
Strauss-Debenedetti S, Bazzaz FA (1991). Plasticity and acclimation to light in tropical Moraceae of different sucessional positions. Oecologia, 87, 377-387.
URL PMID |
[32] |
Sultan SE (1995). Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 44, 363-383.
DOI URL |
[33] |
Sultan SE (2005). An emerging focus on plant ecological development. New Phytologist, 166, 1-5.
DOI URL PMID |
[34] |
Trewavas AJ, Malhó R (1997). Signal perception and transduction: the origin of the phenotype. Plant Cell, 9, 1181-1195.
DOI URL PMID |
[35] | Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, l925-l936. |
[36] |
van Kleunen M, Fischer M (2005). Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytologist, 166, 49-60.
DOI URL PMID |
[37] |
Ventroni LM, Volenec JJ, Cangiano CA (2010). Fall dormancy and cutting frequency impact on alfalfa yield and yield components. Field Crops Research, 119, 252-259.
DOI URL |
[38] | Wang QY (王庆亚) (2010). Biological Electron Microscopy Technique (生物显微技术). China Agriculture Press, Beijing. 43-65. (in Chinese) |
[39] | Wang XL (王勋陵), Wang J (王静) (1989). Plant Morphology and Environment. Lanzhou University Press, Lanzhou. 1-90. (in Chinese) |
[40] | Wang Y (王雁), Su XH (苏雪痕), Peng ZH (彭镇华) (2002). Review of studies on plant shade-tolerance. Forest Research (林业科学研究) 15, 349-355. (in Chinese with English abstract) |
[41] |
Weinig C (2000). Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution, 54, 441-451.
DOI URL PMID |
[42] | Yang Z (杨曌), Li XL (李向林), Zhang XQ (张新全), Wan LQ (万里强), He F (何峰) (2010). Study on the photosyn- thetic characteristics of alfalfa with different fall-dor- mancy levels in the southwest region of Hunan Province. Acta Agrestia Sinica (草地学报) 18, 188-194. (in Chinese with English abstract) |
[43] | Ye DZ, Jiang YD, Dong WJ (2003). The northward shift of climatic belts in China during the last 50 years and the corresponding seasonal responses. Advances in Atmosp- heric Sciences, 20, 959-967. |
[44] | Zhang JC (张家诚) (1991). Climate of China (中国气候总论). China Meteorological Press, Beijing. 156-168. (in Chinese) |
[45] | Zhang SJ (张世君) (2002). Fall dormancy of alfalfa and its application. Pratacultural Science (草业科学) 19, 79. (in Chinese with English abstract) |
[1] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
[2] | ZHONG Nan-Die, WANG Li, XIAO Jie, WANG Qiong. Effect of pollen source on reproductive success of Impatiens oxyanthera under warming conditions [J]. Chin J Plant Ecol, 2022, 46(4): 416-427. |
[3] | DU Jun, WANG Wen, HE Zhi-Bin, CHEN Long-Fei, LIN Peng-Fei, ZHU Xi, TIAN Quan-Yan. Spatial variability of phenological phenotype of Picea crassifolia in Qilian Mountains and its internal mechanism [J]. Chin J Plant Ecol, 2021, 45(8): 834-843. |
[4] | ZHANG Zi-Yan, JIN Guang-Ze, LIU Zhi-Li. Effects of needle age on leaf traits and their correlations of Pinus koraiensis across different regions [J]. Chin J Plant Ecol, 2021, 45(3): 253-264. |
[5] | FENG Yin-Ping, SHEN Hai-Hua, LUO Yong-Kai, XU Long-Chao, LIU Shang-Shi, ZHU Yan-Kun, ZHAO Meng-Ying, XING Ai-Jun, FANG Jing-Yun. Effects of planting density on growth and biomass of Medicago sativa [J]. Chin J Plant Ecol, 2020, 44(3): 248-256. |
[6] | Xue YANG, Jun-Fang SHEN, Nian-Xi ZHAO, Yu-Bao GAO. Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis [J]. Chin J Plant Ecol, 2017, 41(3): 359-368. |
[7] | Yi WU, Wen-Yao LIU, Liang SONG, Xi CHEN, Hua-Zheng LU, Su LI, Xian-Meng SHI. Advances in ecological studies of epiphytes using canopy cranes [J]. Chin J Plan Ecolo, 2016, 40(5): 508-522. |
[8] | TANG Hai-Ping,XUE Hai-Li,FANG Fei. A comparison of measured and calculated net community CO2 exchange: Scaling from leaves to communities [J]. Chin J Plan Ecolo, 2015, 39(9): 924-931. |
[9] | YAN Bang-Guo,LIU Gang-Cai,FAN Bo,HE Guang-Xiong,SHI Liang-Tao,LI Ji-Chao,JI Zhong-Hua. Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China [J]. Chin J Plan Ecolo, 2015, 39(8): 807-815. |
[10] | LIU Zhi-Ying,LI Xi-Liang,LI Feng,WANG Zong-Li,SUN Qi-Zhong. Mechanisms underlying the effects of fall dormancy on the cold acclimation and winter hard- iness of Medicago sativa [J]. Chin J Plan Ecolo, 2015, 39(6): 635-648. |
[11] | HU Wen-Hai,ZHANG Si-Si,XIAO Yi-An,YAN Xiao-Hong. Physiological responses and photo-protective mechanisms of two Rhododendron plants to natural sunlight after long term shading [J]. Chin J Plan Ecolo, 2015, 39(11): 1093-1100. |
[12] | LI Xi-Liang,HOU Xiang-Yang,WU Xin-Hong,null null,JI Lei,CHEN Hai-Jun,LIU Zhi-Ying,DING Yong. Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe [J]. Chin J Plant Ecol, 2014, 38(5): 440-451. |
[13] | PENG Yi-Ke, LUO Fang-Li, LI Hong-Li, YU Fei-Hai. Growth responses of a rhizomatous herb Bolboschoenus planiculmis to scale and contrast of soil nutrient heterogeneity [J]. Chin J Plant Ecol, 2013, 37(4): 335-343. |
[14] | WANG Peng, MOU Pu, LI Yun-Bin. Review of root nutrient foraging plasticity and root competition of plants [J]. Chin J Plant Ecol, 2012, 36(11): 1184-1196. |
[15] | SUN Dong-Bao, WANG Qing-Suo. Effects of water on the photosynthetic characteristics of alfalfa (Medicago sativa) [J]. Chin J Plant Ecol, 2012, 36(1): 72-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn