Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (1): 95-104.DOI: 10.17521/cjpe.2017.0100
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:植物-土壤-微生物
• Research Articles • Previous Articles Next Articles
QIN Shu-Qi1,2,FANG Kai1,2,WANG Guan-Qin1,2,PENG Yun-Feng1,ZHANG Dian-Ye1,2,LI Fei1,2,ZHOU Guo-Ying3,YANG Yuan-He1,2,*()
Online:
2018-01-20
Published:
2018-03-08
Contact:
Yuan-He YANG
Supported by:
QIN Shu-Qi, FANG Kai, WANG Guan-Qin, PENG Yun-Feng, ZHANG Dian-Ye, LI Fei, ZHOU Guo-Ying, YANG Yuan-He. Responses of exchangeable base cations to continuously increasing nitrogen addition in alpine steppe: A case study of Stipa purpurea steppe[J]. Chin J Plan Ecolo, 2018, 42(1): 95-104.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0100
年 Year | N0 | N1 | N2 | N4 | N8 | N16 | N24 | N32 | |
---|---|---|---|---|---|---|---|---|---|
pH值 pH value | 2014 | 8.9 ± 0.10b | 9.2 ± 0.06a | 9.2 ± 0.08a | 9.1 ± 0.07ab | 9.1 ± 0.08ab | 9.1 ± 0.07ab | 9.0 ± 0.03ab | 9.1 ± 0.10ab |
2015 | 9.0 ± 0.07bc | 9.1 ± 0.06a | 9.0 ± 0.03ab | 9.0 ± 0.05ab | 8.9 ± 0.03cd | 9.0 ± 0.04ab | 8.8 ± 0.04d | 8.8 ± 0.05d | |
2016 | 8.5 ± 0.11a | 8.5 ± 0.05a | 8.5 ± 0.09a | 8.4 ± 0.07ab | 8.3 ± 0.07bc | 8.6 ± 0.02a | 8.2 ± 0.05c | 8.2 ± 0.05c | |
TIN (mg·kg-1) | 2014 | 34.3 ± 2.6cd | 37.8 ± 3.1bcd | 35.9 ± 3.7bcd | 33.1 ± 0.9d | 52.6 ± 9.1a | 46.8 ± 3.4ab | 43.5 ± 1.8abcd | 45.5 ± 1.4abc |
2015 | 9.5 ± 0.3e | 11.4 ± 1.5e | 11.8 ± 1.1e | 11.9 ± 0.7e | 22.4 ± 2.5d | 41.8 ± 2.5c | 56.7 ± 5.0b | 69.6 ± 7.1a | |
2016 | 32.0 ± 0.9d | 32.3 ± 1.5cd | 31.2 ± 2.0d | 32.9 ± 2.0cd | 37.4 ± 1.9bc | 41.4 ± 2.8ab | 43.2 ± 3.0a | 41.1 ± 2.1ab | |
AGB (g·m-2) | 2014 | 126.9 ± 10.0d | 142.2 ± 17.8d | 152.4 ± 13.9cd | 186.7 ± 13.9c | 256.6 ± 14.3ab | 241.2 ± 21.4b | 271.7 ± 26.1ab | 284.9 ± 27.6a |
2015 | 146.0 ± 11.6c | 146.8 ± 8.3c | 175.7 ± 14.7c | 180.4 ± 13.6c | 265.1 ± 23.5b | 287.5 ± 21.0b | 350.4 ± 13.3a | 373.0 ± 18.6a | |
2016 | 93.7 ± 9.3e | 117.0 ± 17.8de | 127.0 ± 19.3cde | 144.2 ± 9.3bcd | 181.2 ± 18.4ab | 161.9 ± 8.3abc | 190.2 ± 21.1a | 195.7 ± 7.1a |
Table 1 Soil and plant properties under different nitrogen rates (mean ± SE)
年 Year | N0 | N1 | N2 | N4 | N8 | N16 | N24 | N32 | |
---|---|---|---|---|---|---|---|---|---|
pH值 pH value | 2014 | 8.9 ± 0.10b | 9.2 ± 0.06a | 9.2 ± 0.08a | 9.1 ± 0.07ab | 9.1 ± 0.08ab | 9.1 ± 0.07ab | 9.0 ± 0.03ab | 9.1 ± 0.10ab |
2015 | 9.0 ± 0.07bc | 9.1 ± 0.06a | 9.0 ± 0.03ab | 9.0 ± 0.05ab | 8.9 ± 0.03cd | 9.0 ± 0.04ab | 8.8 ± 0.04d | 8.8 ± 0.05d | |
2016 | 8.5 ± 0.11a | 8.5 ± 0.05a | 8.5 ± 0.09a | 8.4 ± 0.07ab | 8.3 ± 0.07bc | 8.6 ± 0.02a | 8.2 ± 0.05c | 8.2 ± 0.05c | |
TIN (mg·kg-1) | 2014 | 34.3 ± 2.6cd | 37.8 ± 3.1bcd | 35.9 ± 3.7bcd | 33.1 ± 0.9d | 52.6 ± 9.1a | 46.8 ± 3.4ab | 43.5 ± 1.8abcd | 45.5 ± 1.4abc |
2015 | 9.5 ± 0.3e | 11.4 ± 1.5e | 11.8 ± 1.1e | 11.9 ± 0.7e | 22.4 ± 2.5d | 41.8 ± 2.5c | 56.7 ± 5.0b | 69.6 ± 7.1a | |
2016 | 32.0 ± 0.9d | 32.3 ± 1.5cd | 31.2 ± 2.0d | 32.9 ± 2.0cd | 37.4 ± 1.9bc | 41.4 ± 2.8ab | 43.2 ± 3.0a | 41.1 ± 2.1ab | |
AGB (g·m-2) | 2014 | 126.9 ± 10.0d | 142.2 ± 17.8d | 152.4 ± 13.9cd | 186.7 ± 13.9c | 256.6 ± 14.3ab | 241.2 ± 21.4b | 271.7 ± 26.1ab | 284.9 ± 27.6a |
2015 | 146.0 ± 11.6c | 146.8 ± 8.3c | 175.7 ± 14.7c | 180.4 ± 13.6c | 265.1 ± 23.5b | 287.5 ± 21.0b | 350.4 ± 13.3a | 373.0 ± 18.6a | |
2016 | 93.7 ± 9.3e | 117.0 ± 17.8de | 127.0 ± 19.3cde | 144.2 ± 9.3bcd | 181.2 ± 18.4ab | 161.9 ± 8.3abc | 190.2 ± 21.1a | 195.7 ± 7.1a |
Fig. 1 Effects of nitrogen addition on soil exchangeable base cations (mean ± SE). N0-N32, nitrogen addition 0, 1, 2, 4, 8, 16, 24, 32 g·m-2·a-1, respectively. Different letters indicate significant differences among treatments (p < 0.05).
Fig. 2 Effects of nitrogen addition on soil exchangeable Ca2+, Mg2+, K+, Na+ (mean ± SE)。A, Ca2+. B, Mg2+. C, K+. D, Na+. N0-N32, nitrogen addition 0, 1, 2, 4, 8, 16, 24, 32 g·m-2·a-1, respectively. Different letters indicate significant differences among treatments (p < 0.05).
Fig. 3 Relationships of soil exchangeable base cations with above-ground biomass and soil total inorganic nitrogen in 2015. A, above-ground biomass (AGB). B, soil total inorganic nitrogen (TIN). The black lines represent the fitted curves and shades for 95% confidence intervals.
Fig. 4 Relationships of soil exchangeable Mg2+ with above-ground biomass and soil total inorganic nitrogen in different years. A, AGB in 2014. B, TIN in 2014. C, AGB in 2015. D, TIN in 2015. E, AGB in 2016. F, TIN in 2016. AGB, above-ground biomass, TIN, soil total inorganic nitrogen. The black lines represent the fitted curves and shades for 95% confidence intervals.
Fig. 5 Relationships of soil exchangeable Na+ with soil total inorganic nitrogen in different years. A, 2014. B, 2015. TIN, soil total inorganic nitrogen. The black lines represent the fitted curves and shades for 95% confidence intervals.
Appendix I Frequency distribution of pH values on the Qinghai-Xizang Plateau. Data from 173 sampling sites along a grassland transect across Qinghai-Xizang alpine grasslands during 2013-2014, which were collected by members from Dr. Yuanhe Yang’s group
Appendix II Effects of nitrogen addition on Mg pool in aboveground plant (mean ± SE). A, 2014. B, 2015. C, 2016. N0-N32, nitrogen addition 0, 1, 2, 4, 8, 16, 24, 32 g·m -2·a -1, respectively. Different letters indicate significant differences among treatments (p < 0.05)
Appendix III Effects of nitrogen addition on NO3 - leaching in top 0-10 cm soil in 2016 (mean ± SE). N0-N32, nitrogen addition 0, 1, 2, 4, 8, 16, 24, 32 g·m -2·a -1, respectively. Different letters indicate significant differences among treatments (p < 0.05)
[1] |
Blake L, Goulding KWT, Mott CJB, Johnston AE ( 1999). Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. European Journal of Soil Science, 50, 401-412.
DOI URL |
[2] |
Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, Weindl I, Schmitz C, Muller C, Bonsch M, Humpenoder F, Biewald A, Stevanovic M ( 2014). Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 5, 3858, DOI: 10.1038/ncomms4858.
DOI URL PMID |
[3] |
Bowman WD, Cleveland CC, Halada ?, Hre?ko J, Baron JS ( 2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767-770.
DOI URL |
[4] | Brady NC, Weil RR ( 2002). The Nature and Properties of Soils. Prentice Hall, New Jersey. |
[5] | Chapin III FS, Matson PA, Vitousek PM ( 2011). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[6] |
Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF ( 2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669.
DOI URL |
[7] |
Cusack DF, Macy J, Mcdowell WH ( 2016). Nitrogen additions mobilize soil base cations in two tropical forests. Biogeochemistry, 128, 67-88.
DOI URL |
[8] |
DeHayes DH, Schaberg PG, Hawley GJ, Strimbeck GR ( 1999). Acid rain impacts on calcium nutrition and forest health— Alteration of membrane-associated calcium leads to membrane destabilization and foliar injury in red spruce. Bioscience, 49, 789-800.
DOI URL |
[9] |
Demchik MC, Sharpe WE ( 2000). The effect of soil nutrition, soil acidity and drought on northern red oak (Quercus rubra L.) growth and nutrition on Pennsylvania sites with high and low red oak mortality. Forest Ecology and Management, 136, 199-207.
DOI URL |
[10] |
Ding JZ, Li F, Yang GB, Chen LY, Zhang BB, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji CJ, He HL, Smith P, Yang YH ( 2016). The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology, 22, 2688-2701.
DOI URL PMID |
[11] |
Dise NB, Wright RF ( 1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153-161.
DOI URL |
[12] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA ( 2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI URL PMID |
[13] |
Gundersen P, Schmidt IK, Raulund-Rasmussen K ( 2006). Leaching of nitrate from temperate forests—Effects of air pollution and forest management. Environmental Reviews, 14, 1-57.
DOI URL |
[14] |
Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS ( 2010). Significant acidification in major Chinese croplands. Science, 327, 1008-1010.
DOI URL |
[15] |
H?gberg P, Fan HB, Quist M, Binkley D, Tamm CO ( 2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499.
DOI URL |
[16] |
Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR ( 2008). Base cation depletion, eutrophication and acidifycation of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, 155, 336-349.
DOI URL PMID |
[17] |
Huntington TG ( 2005). Assessment of calcium status in Maine forests: Review and future projection. Canadian Journal of Forest Research, 35, 1109-1121.
DOI URL |
[18] |
Ji FT, Li N, Deng X ( 2009). Calcium contents and high calcium adaptation of plants in karst areas of China. Chinese Journal of Plant Ecology, 33, 926-935.
DOI URL |
[ 姬飞腾, 李楠, 邓馨 ( 2009). 喀斯特地区植物钙含量特征与高钙适应方式分析. 植物生态学报, 33, 926-935.]
DOI URL |
|
[19] | Jiang TH, Zhan XH, Xu YC, Zhou LX, Zong LG ( 2005). Roles of calcium in stress-tolerance of plants and its ecological significance. Chinese Journal of Applied Ecology, 16, 971-976. |
[ 蒋廷惠, 占新华, 徐阳春, 周立祥, 宗良纲 ( 2005). 钙对植物抗逆能力的影响及其生态学意义. 应用生态学报, 16, 971-976.] | |
[20] |
Kinzel H ( 1989). Calcium in the vacuoles and cell walls of plant tissue: Forms of deposition and their physiological and ecological significance. Flora, 182, 99-125.
DOI URL |
[21] |
LeBauer DS, Treseder KK ( 2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL PMID |
[22] |
Lieb AM, Darrouzet-Nardi A, Bowman WD ( 2011). Nitrogen deposition decreases acid buffering capacity of alpine soils in the southern Rocky Mountains. Geoderma, 164, 220-224.
DOI URL |
[23] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS ( 2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI URL PMID |
[24] |
Lu XK, Mao QG, Gilliam FS, Luo YQ, Mo JM ( 2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790-3801.
DOI URL PMID |
[25] |
Lu XK, Mao QG, Mo JM, Gilliam FS, Zhou GY, Luo YQ, Zhang W, Huang J ( 2015). Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history. Environmental Science & Technology, 49, 4072-4080.
DOI URL PMID |
[26] |
Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, H?gberg P ( 2011). A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management, 262, 95-104.
DOI URL |
[27] | Marschner H ( 1995). Mineral Nutrition of Higher Plants. 2nd edn. Academic Press, London. |
[28] |
Matschonat G, Matzner E ( 1996). Soil chemical properties affecting NH4 + sorption in forest soils . Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 159, 505-511.
DOI URL |
[29] | National Agricultural Technology Extension and Service Center ( 2006). Soil Analysis Technology Standard. 2nd edn. China Agriculture Press, Beijing. |
[ 全国农业技术推广服务中心 ( 2006). 土壤分析技术规范. 第2版. 中国农业出版社, 北京.] | |
[30] |
Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Mohammat A, Yang YH ( 2017 a). Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe. Environmental Research Letters, 12, 024018. DOI: 10.1088/1748-9326/? aa5ba6.
DOI URL |
[31] |
Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH ( 2017 b). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23, 5249-5259.
DOI URL PMID |
[32] |
Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA ( 2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 10.1038/ncomms3934.
DOI URL PMID |
[33] |
Pilon-Smits EaH, Quinn CF, Tapken W, Malagoli M, Schiavon M ( 2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12, 267-274.
DOI URL PMID |
[34] |
Poovaiah BW, Reddy ASN ( 1993). Calcium and signal transduction in plants. Critical Reviews in Plant Sciences, 12, 185-211.
DOI URL PMID |
[35] |
Saarsalmi A, Malkonen E ( 2001). Forest fertilization research in Finland: A literature review. Scandinavian Journal of Forest Research, 16, 514-535.
DOI URL |
[36] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences, ( 2001). 1: 1 000 000 Vegetation Atlas of China. Science Press, Beijing. |
[ 中国科学院中国植被图编辑委员会 ( 2001).1: 1 000 000中国植被图集. 科学出版社, 北京.] | |
[37] |
Tian DS, Niu SL ( 2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 10. DOI: 10.1088/1748-9326/10/2/024019.
DOI URL |
[38] |
Wang H, Chu TD ( 1999). The progress of study on magnesium nutrition in plants. Chinese Bulletin of Botany, 16, 245-250.
DOI URL |
[ 汪洪, 褚天铎 ( 1999). 植物镁素营养的研究进展. 植物学通报, 16, 245-250.]
DOI URL |
|
[39] |
Wang Y, Wu WH ( 2009). Molecular genetic mechanism of high efficient potassium uptake in plants. Chinese Bulletin of Botany, 44, 27-36.
DOI URL |
[ 王毅, 武维华 ( 2009). 植物钾营养高效分子遗传机制. 植物学报, 44, 27-36.]
DOI URL |
|
[40] |
Watmough SA, Dillon PJ ( 2003). Base cation and nitrogen budgets for a mixed hardwood catchment in South-Central Ontario. Ecosystems, 6, 675-693.
DOI URL |
[41] |
Xia JY, Wan SQ ( 2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI URL PMID |
[42] |
Yang YH, Fang JY, Ji CJ, Ma WH, Mohammat A, Wang SF, Wang SP, Datta A, Robinson D, Smith P ( 2012 a). Widespread decreases in topsoil inorganic carbon stocks across China’s grasslands during 1980s-2000s. Global Change Biology, 18, 3672-3680.
DOI URL |
[43] |
Yang YH, Ji CJ, Ma WH, Wang SF, Wang SP, Han WX, Mohammat A, Robinson D, Smith P ( 2012 b). Significant soil acidification across northern China’s grasslands during 1980s-2000s. Global Change Biology, 18, 2292-2300.
DOI URL |
[44] | Zhang BB, Liu F, Ding JZ, Fang K, Yang GB, Liu L, Chen YL, Li F, Yang YH ( 2016). Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores. Chinese Journal of Plant Ecology, 40, 93-101. |
[ 张蓓蓓, 刘芳, 丁金枝, 房凯, 杨贵彪, 刘莉, 陈永亮, 李飞, 杨元合 ( 2016). 青藏高原高寒草地3米深度土壤无机碳库及分布特征. 植物生态学报, 40, 93-101.] | |
[45] |
Zhang YT, He XH, Liang H, Zhao J, Zhang YQ, Xu C, Shi XJ ( 2016). Long-term tobacco plantation induces soil acidification and soil base cation loss. Environmental Science and Pollution Research, 23, 5442-5450.
DOI URL PMID |
[46] |
Zhu JX, Wang QF, He NP, Smith MD, Elser JJ, Du JQ, Yuan GF, Yu GR, Yu Q ( 2016). Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research-?Biogeosciences, 121, 1605-1616.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn