Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (5): 494-514.DOI: 10.17521/cjpe.2019.0323
Special Issue: 全球变化与生态系统; 生物地球化学
• Reviews • Previous Articles Next Articles
XIA Jian-Yang*(), LU Rui-Ling, ZHU Chen, CUI Er-Qian, DU Ying, HUANG Kun, SUN Bao-Yu
Received:
2019-11-22
Accepted:
2020-02-02
Online:
2020-05-20
Published:
2020-08-27
Contact:
XIA Jian-Yang
Supported by:
XIA Jian-Yang, LU Rui-Ling, ZHU Chen, CUI Er-Qian, DU Ying, HUANG Kun, SUN Bao-Yu. Response and adaptation of terrestrial ecosystem processes to climate warming[J]. Chin J Plant Ecol, 2020, 44(5): 494-514.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0323
Fig. 1 Impact of climate warming on key processes in terrestrial ecosystems. ① N mineralization; ② N immobilization; ③ N uptake; ④ N denitrification; ⑤ N fixation; ⑥ N leaching and running off. GPP, gross primary productivity; NPP, net primary productivity. Green dashed boxes indicate key processes, blue boxes show C and N storage pools, and dashed arrows represent the carbon-nitrogen coupling processes.
Fig. 2 Evidence, agreement and thus confidence of key ecosystem processes in response to climate warming. “Evidence” shows the number of studies that report on ecosystem processes. “Agreement” indicates the percentage of evidence supporting the specific warming response. Confidence is the product of “Evidence” and “Agreement” and is based on the confidence concept in the fifth IPCC report (IPCC, 2013). The figure was adapted from Xia et al. (2014). Data was obtained by a comprehensive literature search (Supplement I). ① photosynthetic acclimation; ② photosynthetic overcomepensation; ③ acclimation of plant respiration; ④ acclimation of soil respiration; ⑤ earlier spring phenology; ⑥ delayed autumn phenology; ⑦ changed species composition of plant community; ⑧ enhanced ecosystem productivity; ⑨ faster decomposition of soil organic matter; ⑩ faster soil nutrient mineralization.
Fig. 3 Publications of four high-impact journals (Science、Nature、PNAS与Global Change Biology (GCB))(2000-2019), including the total number of papers (A) and their distribution in different methods (B) and ecological processes (C). Literature was first searched by the keyword “warming” from the homepage of each journal, then manually screened for whether it includes terrestrial ecosystem processes. The black line for “China” represents the published papers with the first affiliated address located in China.
Fig. 4 Conceptual framework of experiments, field observations, and modeling to study response and adaptation of terrestrial ecosystems to warming. The integration of experiments and models in the figure was adapted from Medlyn et al. (2015). It should be noted that this framework needs to be adjusted according to the specific scientific question.
[1] |
Abramoff R, Xu X, Hartman M, O’Brien S, Feng W, Davidson E, Finzi A, Moorhead D, Schimel J, Torn M, Mayes MA (2018). The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry, 137, 51-71.
DOI URL |
[2] | Allen CD, Breshears DD, McDowell NG (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6, 129. DOI: 10.1890/ES15-00203.1. |
[3] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHT, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010). A global overview of drought and heat- induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
DOI URL |
[4] |
Allison SD, Romero-Olivares AL, Lu Y, Taylor JW, Treseder KK (2018). Temperature sensitivities of extracellular enzyme Vmax and Km across thermal environments. Global Change Biology, 24, 2884-2897.
DOI URL PMID |
[5] |
An Y, Wan S, Zhou X, Subedar AA, Wallace LL, Luo Y (2005). Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology, 11, 1733-1744.
DOI URL |
[6] |
Anderegg WRL, Ballantyne AP, Smith WK, Majkut J, Rabin S, Beaulieu C, Birdsey R, Dunne JP, Houghton RA, Myneni RB, Pan Y, Sarmiento JL, Serota N, Shevliakova E, Tans P, Pacala SW (2015). Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 112, 15591-15596.
DOI URL PMID |
[7] |
Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 109, 233-237.
URL PMID |
[8] |
Armstrong AF, Logan DC, Atkin OK (2006). On the developmental dependence of leaf respiration: responses to short- and long-term changes in growth temperature. American Journal of Botany, 93, 1633-1639.
DOI URL PMID |
[9] |
Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, OʼDonnell D, Schurgers G, Sorvari S, Vesala T (2010). Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience, 3, 525-532.
DOI URL |
[10] | Atkin OK, Atkinson LJ, Fisher RA, Campbell CD, Zaragoza- Castells J, Pitchford JW, Woodward FI, Hurry V (2008). Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model. Global Change Biology, 14, 2709-2726. |
[11] | Atkin OK, Bruhn D, Tjoelker MG (2005). Response of plant respiration to changes in temperature: mechanisms and consequences of variations in Q10 values and acclimation//Lambers H, Ribas-Carbo M. Plant Respiration. Springer, Dordrecht. 95-135. |
[12] |
Atkin OK, Tjoelker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343-351.
DOI URL PMID |
[13] |
Bai E, Li S, Xu W, Li W, Dai W, Jiang P (2013). A metaanalysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451.
DOI URL PMID |
[14] |
Berry J, Björkman O (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491-543.
DOI URL |
[15] |
Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G, de Ruffray P, Vidal C, Pierrat JC, Gégout JC (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479, 517-520.
DOI URL PMID |
[16] |
Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83.
DOI URL PMID |
[17] |
Bradford MA, Warren II RJ, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR (2014). Climate fails to predict wood decomposition at regional scales. Nature Climate Change, 4, 625-630.
DOI URL |
[18] |
Buermann W, Forkel M, O’Sullivan M, Sitch S, Friedlingstein P, Haverd V, Jain AK, Kato E, Kautz M, Lienert S, Lombardozzi D, Nabel JEMS, Tian H, Wiltshire AJ, Zhu D, Smith WK, Richardson AD (2018). Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature, 562, 110-114.
DOI URL PMID |
[19] |
Busch FA, Sage RF (2017). The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New Phytologist, 213, 1036-1051.
DOI URL PMID |
[20] |
Cao M, Woodward FI (1998). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252.
DOI URL |
[21] |
Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences of the United States of America, 111, 723-727.
DOI URL |
[22] |
Chaopricha NT, Marín-Spiotta E (2014). Soil burial contributes to deep soil organic carbon storage. Soil Biology & Biochemistry, 69, 251-264.
DOI URL |
[23] |
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Brandon Pratt R, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
DOI URL |
[24] |
Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533.
URL PMID |
[25] |
Clark DA, Piper S, Keeling C, Clark DB (2003). Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. Proceedings of the National Academy of Sciences of the United States of America, 100, 5852-5857.
URL PMID |
[26] |
Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM, Pascual M, Pielke Jr. R, Pizer W, Pringle C, Reid WV, Rose KA, Sala O, Schlesinger WH, Wall DH, Wear D (2001). Ecological forecasts: an emerging imperative. Science, 293, 657-660.
URL PMID |
[27] | Clark RJ, Menary RC (1980). Environmental effects on peppermint (Mentha piperita L.). II. Effects of temperature on photosynthesis, photorespiration and dark respiration in peppermint with reference to oil composition. Australian Journal of Plant Physiology, 7, 693-697. |
[28] |
Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 103, 13740-13744.
DOI URL PMID |
[29] |
Cohen JM, Lajeunesse MJ, Rohr JR (2018). A global synthesis of animal phenological responses to climate change. Nature Climate Change, 8, 224-228.
DOI URL |
[30] |
Collalti A, Prentice IC (2019). Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiology, 39, 1473-1483.
DOI URL PMID |
[31] | Cowden CC, Shefferson RP, Mohan JE (2019). Mycorrhizal mediation of plant and ecosystem responses to soil warming//Mohan JE. Ecosystem Consequences of Soil Warming. Academic Press, Salt Lake City, USA. 157-173. |
[32] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
URL PMID |
[33] |
Crafts-Brandner SJ, Salvucci ME (2000). Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences of the United States of America, 97, 13430-13435.
DOI URL PMID |
[34] |
Crous KY, Wallin G, Atkin OK, Uddling J, af Ekenstam A (2017). Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in Eucalyptus globulus. Tree Physiology, 37, 1069-1083.
URL PMID |
[35] |
Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, MacHmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, Bradford MA (2016). Quantifying global soil carbon losses in response to warming. Nature, 540, 104-108.
URL PMID |
[36] |
Cui E, Weng E, Yan E, Xia J (2020). Robust leaf trait relationships across species under global environmental changes. Nature Communications, 11, 2999. DOI: 10.1038/s41467-020-16839-9.
DOI URL PMID |
[37] |
Dietze MC, Fox A, Beck-Johnson LM, Betancourt JL, Hooten MB, Jarnevich CS, Keitt TH, Kenney MA, Laney CM, Larsen LG, Loescher HW, Lunch CK, Pijanowski BC, Randerson JT, Read EK, Tredennick AT, Vargas R, Weathers KC, White EP (2018). Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proceedings of the National Academy of Sciences of the United States of America, 115, 1424-1432.
URL PMID |
[38] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
DOI URL |
[39] |
Ding J, Chen L, Ji C, Hugelius G, Li Y, Liu L, Qin S, Zhang B, Yang G, Li F, Fang K, Chen Y, Peng Y, Zhao X, He H, Smith P, Fang J, Yang Y (2017). Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10, 420-424.
DOI URL |
[40] |
Dong B, Sutton RT, Shaffrey L (2017). Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Climate Dynamics, 48, 1537-1554.
DOI URL |
[41] |
Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002). Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517-520.
URL PMID |
[42] | Doughty CE, Metcalfe DB, Girardin CAJ, Amezquita FF, Durand L, Huaraca Huasco W, Silva-Espejo JE, Araujo-Murakami A, da Costa MC, da Costa ACL, Rocha W, Meir P, Galbraith D, Malhi Y (2015). Source and sink carbon dynamics and carbon allocation in the Amazon basin. Global Biogeochemical Cycles, 29, 645-655. |
[43] |
Doughty CE, Santos-Andrade PE, Shenkin A, Goldsmith GR, Bentley LP, Blonder B, Díaz S, Salinas N, Enquist BJ, Martin RE, Asner GP, Malhi Y (2018). Tropical forest leaves may darken in response to climate change. Nature Ecology & Evolution, 2, 1918-1924.
DOI URL PMID |
[44] |
Drake JE, Furze ME, Tjoelker MG, Carrillo Y, Barton CVM, Pendall E (2019). Climate warming and tree carbon use efficiency in a whole-tree13CO2 tracer study. New Phytologist, 222, 1313-1324.
URL PMID |
[45] |
Du Y, Lu R, Xia J (2020). Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Functional Ecology, 34, 1525-1536.
DOI URL |
[46] |
Dusenge ME, Duarte AG, Way DA (2019). Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221, 32-49.
DOI URL PMID |
[47] |
Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, James Salinger M, Razuvayev V, Plummer N, Jamason P, Folland CK (1997). Maximum and minimum temperature trends for the globe. Science, 277, 364-367.
DOI URL |
[48] |
Emanuel WR, Shugart HH, Stevenson MP (1985). Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change, 7, 29-43.
DOI URL |
[49] | Fang JY, Zhu JL, Shi Y (2018). The responses of ecosystems to global warming. Chinese Science Bulletin, 63, 136-140. |
[ 方精云, 朱江玲, 石岳 (2018). 生态系统对全球变暖的响应. 科学通报, 63, 136-140.] | |
[50] |
Firth LB, Knights AM, Bell SS (2011). Air temperature and winter mortality: implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States. Journal of Experimental Marine Biology and Ecology, 400, 250-256.
DOI URL |
[51] |
Fischer EM, Knutti R (2015). Anthropogenic contribution to global occurrence of heavy-precipitation and high- temperature extremes. Nature Climate Change, 5, 560-564.
DOI URL |
[52] |
Fitter AH, Fitter RSR (2002). Rapid changes in flowering time in British plants. Science, 296, 1689-1691.
DOI URL PMID |
[53] |
Fitzhugh RD, Driscoll CT, Groffman PM, Tierney GL, Fahey TJ, Hardy JP (2001). Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 56, 215-238.
DOI URL |
[54] | Flach M, Sippel S, Gans F, Bastos A, Brenning A, Reichstein M, Mahecha MD (2018). Contrasting biosphere response to climate extremes: revisiting the western Russian Heatwave 2010 and other events. Biogeosciences, 15, 6067-6085. |
[55] |
Frey SD, Lee J, Melillo JM, Six J (2013). The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change, 3, 395-398.
DOI URL |
[56] |
Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Scheitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006). Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353.
DOI URL |
[57] |
Friedlingstein P, Dufresne JL, Cox PM, Rayner P (2003). How positive is the feedback between climate change and the carbon cycle? Tellus B, 55, 692-700.
DOI URL |
[58] | Fu BJ, Niu D, Zhao SD (2005). Study on global change and terrestrial ecosystems: history and prospect. Advance in Earth Sciences, 20, 556-560. |
[ 傅伯杰, 牛栋, 赵士洞 (2005). 全球变化与陆地生态系统研究: 回顾与展望. 地球科学进展, 20, 556-560.] | |
[59] |
Fu YH, Piao S, Op de Beeck M, Cong N, Zhao H, Zhang Y, Menzel A, Janssens IA (2014). Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecology and Biogeography, 23, 1255-1263.
DOI URL |
[60] |
Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z, Janssens IA (2015). Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526, 104-107.
DOI URL PMID |
[61] |
Gaston KJ (2019). Nighttime ecology: the “nocturnal problem” revisited. The American Naturalist, 193, 481-502.
DOI URL PMID |
[62] |
Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, McDowell NG (2013). Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytologist, 198, 567-578.
DOI URL PMID |
[63] |
Ge Q, Wang H, Rutishauser T, Dai J (2015). Phenological response to climate change in China: a meta-analysis. Global Change Biology, 21, 265-274.
URL PMID |
[64] |
Greaver TL, Clark CM, Compton JE, Vallano D, Talhelm AF, Weaver CP, Band LE, Baron JS, Davidson EA, Tague CL, Felker-Quinn E, Lynch JA, Herrick JD, Liu L, Goodale CL, Novak KJ, Haeuber RA (2016). Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 6, 836-843.
DOI URL |
[65] |
Gregorich EG, Janzen H, Ellert BH, Helgason BL, Qian B, Zebarth BJ, Angers DA, Beyaert RP, Drury CF, Duguid SD, May WE, McConkey BG, Dyck MF (2017). Litter decay controlled by temperature, not soil properties, affecting future soil carbon. Global Change Biology, 23, 1725-1734.
URL PMID |
[66] | Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, Warren JM, Barbier C (2017). Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences, 14, 861-883. |
[67] | Harris RMB, Beaumont LJ, Vance TR, Tozer CR, Remenyi TA, Perkins-Kirkpatrick SE, Mitchell PJ, Nicotra AB, McGregor S, Andrew NR, Letnic M, Kearney MR, Wernberg T, Hutley LB, Chambers LE, Fletcher MS, Keatley MR, Woodward CA, Williamson G, Duke NC, Bowman DMJS (2018). Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 8, 579-587. |
[68] |
Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040-1049.
URL PMID |
[69] | Hartmann DL, Tank A, Rusticucci M, Alexander LV, Bronnimann S, Charabi YAR, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM, Adler R, Allan R, Allan R, Blake D, Cooper O, Dai AG, Davis R, Davis S, Donat M, Fioletov V, Fischer E, Haimberger L, Ho B, Kennedy J, Kent E, Kinne S, Kossin J, Loeb N, Mears C, Merchant C, Montzka S, Morice C, Myhre CL, Norris J, Parker D, Randel B, Richter A, Rigby M, Santer B, Seidel D, Smith T, Stephenson D, Teuling R, Wang JH, Wang XL, Weiss R, Willett K, Wood S (2013). Observations: atmosphere and surface//Climate Change 2013: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[70] |
He NP, Liu CC, Piao SL, Sack L, Xu L, Luo YQ, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR (2019). Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 34, 200-210.
DOI URL PMID |
[71] |
Heimann M, Reichstein M (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289-292.
DOI URL PMID |
[72] |
Heskel MA, O’Sullivan OS, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, Egerton JJG, Creek D, Bloomfield KJ, Xiang J, Sinca F, Stangl ZR, Martinez-de la Torre A, Griffin KL, Huntingford C, Hurry V, Meir P, Turnbull MH, Atkin OK (2016). Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proceedings of the National Academy of Sciences of the United States of America, 113, 3832-3837.
URL PMID |
[73] | Hoch G, Richter A, Körner C (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 26, 1067-1081. |
[74] |
Hofstra G, Hesketh JD (1969). Effects of temperature on the gas exchange of leaves in the light and dark. Planta, 85, 228-237.
DOI URL PMID |
[75] |
Holdridge LR (1947). Determination of world plant formations from simple climatic data. Science, 105, 367-368.
DOI URL PMID |
[76] | Hopkins AD (1920). The bioclimatic law. Monthly Weather Review, 48, 355. |
[77] |
Huang M, Piao S, Ciais P, Peñuelas J, Wang X, Keenan TF, Peng S, Berry JA, Wang K, Mao J (2019). Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution, 3, 772-779.
DOI URL PMID |
[78] | IPCC (Intergovernmental Panel on Climate Change) (2001). Climate Change 2001: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[79] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate change 2013: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[80] | IPCC (Intergovernmental Panel on Climate Change) (2018). Global Warming of 1.5 °C: an IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change,. World Meteorological Organization, Geneva Switzerland. |
[81] |
Jentsch A, Beierkuhnlein C (2008). Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Comptes Rendus Geoscience, 340, 621-628.
DOI URL |
[82] |
Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Ågren GI, Sebastià MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014). Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513, 81-84.
DOI URL PMID |
[83] |
Keeling CD, Chin JFS, Whorf TP (1996). Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149.
DOI URL |
[84] |
Kharouba HM, Ehrlén J, Gelman A, Bolmgren K, Allen JM, Travers SE, Wolkovich EM (2018). Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences of the United States of America, 115, 5211-5216.
URL PMID |
[85] |
Knorr W, Prentice IC, House JI, Holland EA (2005). Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298-301.
DOI URL PMID |
[86] |
Knutti R, Sedláček J (2013). Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3, 369-373.
DOI URL |
[87] |
Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011). Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences of the United States of America, 108, 14769-14774.
DOI URL |
[88] |
Kroner Y, Way DA (2016). Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer. Global Change Biology, 22, 2913-2928.
DOI URL PMID |
[89] |
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
DOI URL PMID |
[90] |
Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006). Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany, 98, 693-713.
DOI URL PMID |
[91] |
Li F, Peng Y, Natali SM, Chen K, Han T, Yang G, Ding J, Zhang D, Wang G, Wang J, Yu J, Liu F, Yang Y (2017). Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients. Ecology, 98, 2851-2859.
DOI URL PMID |
[92] |
Li J, Wang G, Allison SD, Mayes MA, Luo Y (2014). Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry, 119, 67-84.
DOI URL |
[93] |
Liang J, Zhou Z, Huo C, Shi Z, Cole JR, Huang L, Konstantinidis KT, Li X, Liu B, Luo Z, Penton CR, Schuur EAG, Tiedje JM, Wang Y, Wu L, Xia J, Zhou J, Luo Y (2018). More replenishment than priming loss of soil organic carbon with additional carbon input. Nature Communications, 9, 3175. DOI: 10.1038/s41467-018-05667-7.
DOI URL PMID |
[94] | Lieth H (1975). Modeling the primary productivity of the world//Lieth H, Whittaker RH. Primary Productivity of the Biosphere. Springer-Verlag, New York. |
[95] |
Lin D, Xia J, Wan S (2010). Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188, 187-198.
URL PMID |
[96] |
Liu Q, Fu YH, Zhu Z, Liu Y, Liu Z, Huang M, Janssens IA, Piao S (2016). Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Global Change Biology, 22, 3702-3711.
DOI URL PMID |
[97] |
Lu M, Zhou X, Yang Q, Li H, Luo Y, Fang C, Chen J, Yang X, Li B (2013). Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 94, 726-738.
DOI URL PMID |
[98] |
Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625.
URL PMID |
[99] |
Luo Y, Weng E, Wu X, Gao C, Zhou X, Zhang L (2009). Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models. Ecological Applications, 19, 571-574.
DOI URL PMID |
[100] | Luo Y, White LW, Canadell JG, DeLucia EH, Ellsworth DS, Finzi AC, Lichter J, Schlesinger WH (2003). Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Global Biogeochemical Cycles, 17, 1021. DOI: 10.1029/2002GB001923. |
[101] |
Ma R, Zhang L, Tian X, Zhang J, Yuan W, Zheng Y, Zhao X, Kato T (2017). Assimilation of remotely-sensed leaf area index into a dynamic vegetation model for gross primary productivity estimation. Remote Sensing, 9, 188. DOI: 10.3390/rs9030188.
DOI URL |
[102] |
Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL PMID |
[103] |
Ma Z, Liu H, Mi Z, Zhang Z, Wang Y, Xu W, Jiang L, He JS (2017). Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378. DOI: 10.1038/ncomms15378.
DOI URL PMID |
[104] |
Malhi Y, Girardin CAJ, Goldsmith GR, Doughty CE, Salinas N, Metcalfe DB, Huaraca Huasco W, Silva-Espejo JE, del Aguilla‐Pasquell J, Farfán Amézquita F, Aragão LEOC, Guerrieri R, Ishida FY, Bahar NHA, Farfan-Rios W, Phillips OL, Meir P, Silman M (2017). The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist, 214, 1019-1032.
DOI URL PMID |
[105] |
Marchand FL, Verlinden M, Kockelbergh F, Graae BJ, Beyens L, Nijs I (2006). Disentangling effects of an experimentally imposed extreme temperature event and naturally associated desiccation on Arctic tundra. Functional Ecology, 20, 917-928.
DOI URL |
[106] |
McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B, Davies S, Doughty C, Duque A (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 219, 851-869.
DOI URL PMID |
[107] |
McManus KM, Morton DC, Masek JG, Wang D, Sexton JO, Nagol JR, Ropars P, Boudreau S (2012). Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986 to 2010. Global Change Biology, 18, 2313-2323.
DOI URL |
[108] |
Medlyn BE, de Kauwe MG, Zaehle S, Walker AP, Duursma RA, Luus K, Mishurov M, Pak B, Smith B, Wang YP, Yang XJ, Crous KY, Drake JE, Gimeno TE, MacDonald CA, Norby RJ, Power SA, Tjoelker MG, Ellsworth DS (2016). Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland. Global Change Biology, 22, 2834-2851.
DOI URL PMID |
[109] |
Medlyn BE, Zaehle S, de Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo Y, Parton W, Prentice IC, Thornton PE, Wang SS, Wang YP, Weng ES, Iversen CM, McCarthy HR, Warren JM, Oren R, Norby RJ (2015). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5, 528-534.
DOI URL |
[110] |
Meentemeyer V (1978). Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472.
DOI URL |
[111] |
Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America, 108, 9508-9512.
DOI URL |
[112] |
Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105.
DOI URL PMID |
[113] |
Melillo JM, Steudler P, Aber J, Newkirk K, Lux H, Bowles F, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176.
DOI URL PMID |
[114] | Meng TT, Wang H, Harrison SP, Prentice IC, Ni J, Wang G (2015). Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences, 12, 5339-5352. |
[115] |
Menzel A (2003). Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change, 57, 243-263.
DOI URL |
[116] |
Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská Og, Briede A (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969-1976.
DOI URL |
[117] | Midolo G, Alkemade R, Schipper AM, Benítez-López A, Perring MP, de Vries W (2019). Impacts of nitrogen addition on plant species richness and abundance: a global meta- analysis. Global Ecology and Biogeography, 28, 398-413. |
[118] | Miller FL, Barry SJ (2009). Long-term control of Peary caribou numbers by unpredictable, exceptionally severe snow or ice conditions in a non-equilibrium grazing system. Arctic, 62, 175-189. |
[119] |
Moinet GYK, Hunt JE, Kirschbaum MUF, Morcom CP, Midwood AJ, Millard P (2018). The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biology & Biochemistry, 116, 333-339.
DOI URL |
[120] |
Mooshammer M, Hofhansl F, Frank AH, Wanek W, Hämmerle I, Leitner S, Schnecker J, Wild B, Watzka M, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2017). Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Science Advances, 3, e1602781. DOI: 10.1126/sciadv.1602781.
DOI URL PMID |
[121] | Morton AG (1981). History of Botanical Science. An Account of the Development of Botany from Ancient Times to the Present Day. Academic Press, London. |
[122] |
Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6, 045509. DOI: 10.1088/1748-9326/6/4/045509.
DOI URL |
[123] |
Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702.
DOI URL |
[124] |
Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563.
DOI URL PMID |
[125] |
Niu S, Classen AT, Dukes JS, Kardol P, Liu L, Luo Y, Rustad L, Sun J, Tang J, Templer PH, Thomas RQ, Tian DS, Vicca S, Wang YP, Xia JY, Zaehle S (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 19, 697-709.
DOI URL PMID |
[126] |
Niu S, Luo Y, Fei S, Yuan W, Schimel D, Law BE, Ammann C, Altaf Arain M, Arneth A, Aubinet M (2012). Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 194, 775-783.
DOI URL |
[127] |
Norby RJ, de Kauwe MG, Domingues TF, Duursma RA, Ellsworth DS, Goll DS, Lapola DM, Luus KA, MacKenzie AR, Medlyn BE, Pavlick R, Rammig A, Smith B, Thomas R, Thonicke K, Walker AP, Yang XJ, Zaehle S (2016). Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist, 209, 17-28.
URL PMID |
[128] |
Ovaskainen O, Skorokhodova S, Yakovleva M, Sukhov A, Kutenkov A, Kutenkova N, Shcherbakov A, Meyke E, del Mar Delgado M (2013). Community-level phenological response to climate change. Proceedings of the National Academy of Sciences of the United States of America, 110, 13434-13439.
DOI URL PMID |
[129] |
Parker TC, Sanderman J, Holden RD, Blume-Werry G, Sjögersten S, Large D, Castro-Díaz M, Street LE, Subke JA, Wookey PA (2018). Exploring drivers of litter decomposition in a greening Arctic: results from a transplant experiment across a treeline. Ecology, 99, 2284-2294.
URL PMID |
[130] |
Parmesan C (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13, 1860-1872.
DOI URL |
[131] |
Parmesan C, Yohe G (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.
DOI URL PMID |
[132] |
Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF (2012). Recent plant diversity changes on Europe’s mountain summits. Science, 336, 353-355.
DOI URL PMID |
[133] |
Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016). Climate-smart soils. Nature, 532, 49-57.
URL PMID |
[134] |
Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971-9975.
DOI URL PMID |
[135] |
Peng S, Piao S, Ciais P, Myneni RB, Chen A, Chevallier F, Dolman AJ, Janssens IA, Peñuelas J, Zhang G, Vicca S, Wan S, Wang S, Zeng H (2013). Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501, 88-92.
DOI URL PMID |
[136] |
Penner JF, Frank DA (2019). Litter decomposition in Yellowstone grasslands: the roles of large herbivores, litter quality, and climate. Ecosystems, 22, 929-937.
DOI URL |
[137] |
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 10.1038/ncomms3934.
URL PMID |
[138] |
Perkins SE (2015). A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmospheric Research, 164-165, 242-267.
DOI URL |
[139] | Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007). Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles, 21, GB3018. DOI: 10.1029/2006GB002888. |
[140] |
Piao S, Nan H, Huntingford C, Ciais P, Friedlingstein P, Sitch S, Peng S, Ahlström A, Canadell JG, Cong N, Levis S, Levy PE, Liu L, Lomas MR, Mao J, Myneni RB, Peylin P, Poulter B, Shi X, Yin G, Viovy N, Wang T, Wang X, Zaehle S, Zeng N, Zeng Z, Chen A (2014). Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 5, 5018. DOI: 10.1038/ncomms6018.
DOI URL PMID |
[141] |
Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng Z, Jeong SJ, Li Y, Myneni RB, Peng S, Shen M, Peñuelas J (2015). Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 6, 6911. DOI: 10.1038/ncomms7911.
DOI URL PMID |
[142] | Piao SL, Zhang XZ, Wang T, Liang EY, Wang SP, Zhu JT, Niu B (2019). Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chinese Science Bulletin, 27, 2842-2855. |
[ 朴世龙, 张宪洲, 汪涛, 梁尔源, 汪诗平, 朱军涛, 牛犇 (2019). 青藏高原生态系统对气候变化的响应及其反馈. 科学通报, 27, 2842-2855.] | |
[143] |
Pries CEH, Castanha C, Porras RC, Torn MS (2017). The whole-soil carbon flux in response to warming. Science, 355, 1420-1423.
DOI URL PMID |
[144] |
Quan Q, Tian D, Luo Y, Zhang F, Crowther TW, Zhu K, Chen HYH, Zhou Q, Niu S (2019). Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 5, eaav1131. DOI: 10.1126/sciadv.aav1131.
URL PMID |
[145] | Rayner PJ, Scholze M, Knorr W, Kaminski T, Giering R, Widmann H (2005). Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochemical Cycles, 19, GB2026, DOI: 10.1029/2004GB002254. |
[146] | Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[147] |
Reich PB, Hobbie SE, Lee TD, Pastore MA (2018a). Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science, 360, 317-320.
DOI URL PMID |
[148] |
Reich PB, Sendall KM, Stefanski A, Rich RL, Hobbie SE, Montgomery RA (2018b). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562, 263-267.
DOI URL PMID |
[149] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[150] |
Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles WR, Heiderman RR, Warren JM, Hanson PJ (2018). Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature, 560, 368-371.
URL PMID |
[151] |
Rowland L, da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528, 119-122.
DOI URL PMID |
[152] |
Rumpel C, Kögel-Knabner I (2011). Deep soil organic matter —A key but poorly understood component of terrestrial C cycle. Plant and Soil, 338, 143-158.
DOI URL |
[153] |
Ruthrof KX, Breshears DD, Fontaine JB, Froend RH, Matusick G, Kala J, Miller BP, Mitchell PJ, Wilson SK, van Keulen M, Enright NJ, Law DJ, Wernberg T, Hardy GEJ (2018). Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Scientific Reports, 8, 13094. DOI: 10.1038/s41598-018-31236-5.
URL PMID |
[154] |
Sage RF, Kubien DS (2007). The temperature response of C3 and C4 photosynthesis. Plant, Cell & Environment, 30, 1086-1106.
DOI URL PMID |
[155] |
Salome C, Nunan N, Pouteau V, Lerch, TZ, Chenu C (2010). Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biology, 16, 416-426.
DOI URL |
[156] | Schlesinger WH, Bernhardt ES (2012). Biogeochemistry: an Analysis of Global Change. 3rd ed. Academic Press, Elsevier, Oxford, UK. |
[157] |
Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015). Climate change and the permafrost carbon feedback. Nature, 520, 171-179.
DOI URL PMID |
[158] |
Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-559.
DOI URL PMID |
[159] |
Sharkey TD (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 28, 269-277.
DOI URL |
[160] |
Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000). Global warming and terrestrial ecosystems: a conceptual framework for analysis. BioScience, 50, 871-882.
DOI URL |
[161] |
Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202.
DOI URL PMID |
[162] |
Shi Z, Crowell S, Luo Y, Moore BIII (2018). Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 9, 2171. DOI: 10.1038/s41467-018-04526-9.
DOI URL PMID |
[163] |
Shi Z, Sherry R, Xu X, Hararuk O, Souza L, Jiang L, Xia J, Liang J, Luo Y (2015). Evidence for long-term shift in plant community composition under decadal experimental warming. Journal of Ecology, 103, 1131-1140.
DOI URL |
[164] |
Slot M, Kitajima K (2015). General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia, 177, 885-900.
DOI URL PMID |
[165] |
Smith MD (2011). The ecological role of climate extremes: current understanding and future prospects. Journal of Ecology, 99, 651-655.
DOI URL |
[166] |
Smith MD, Knapp AK, Collins SL (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289.
DOI URL PMID |
[167] |
Smith NG, Dukes JS (2013). Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Global Change Biology, 19, 45-63.
DOI URL PMID |
[168] |
Smith NG, Dukes JS (2017). Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Global Change Biology, 23, 4840-4853.
DOI URL PMID |
[169] |
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, OʼMara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 789-813.
DOI URL |
[170] |
Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, Luo Y, Guo D, Langley JA, Zscheischler J, Dukes JS, Tang J, Chen J, Hofmockel KS, Kueppers LM, Rustad L, Liu L, Smith MD, Templer PH, Thomas RQ, Norby RJ, Phillips RP, Niu S, Fatichi S, Wang Y, Shao P, Han H, Wang D, Lei L, Wang J, Li X, Zhang Q, Li X, Su F, Liu B, Yang F, Ma G, Li G, Liu Y, Liu Y, Yang Z, Zhang K, Miao Y, Hu M, Yan C, Zhang A, Zhong M, Hui Y, Li Y, Zheng M (2019). A meta- analysis of 1119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 3, 1309-1320.
DOI URL PMID |
[171] |
Steinbauer MJ, Grytnes J-A, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556, 231-234.
DOI URL PMID |
[172] |
Steltzer H, Post E (2009). Seasons and life cycles. Science, 324, 886-887.
DOI URL PMID |
[173] | Tarnocai C, Canadell J, Schuur EA, Kuhry P, Mazhitova G, Zimov S (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023. DOI: 10.1029/2008GB003327. |
[174] |
Taylor WA, Skinner JD, Williams MC, Krecek RC (2006). Population dynamics of two sympatric antelope species, grey rhebok (Pelea capreolus) and mountain reedbuck (Redunca fulvorufula), in a highveld grassland region of South Africa. Journal of Zoology, 268, 369-379.
DOI URL |
[175] |
Tenney FG, Waksman SA (1929). Composition of natural organic materials and their decomposition in the soil. IV. The nature and rapidity of decomposition of the various organic complexes in different plant materials, under aerobic conditions. Soil Science, 28, 55. DOI: 10.1097/00010694-192907000-00005.
DOI URL |
[176] |
Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K (2015). Responses of tree species to heat waves and extreme heat events. Plant, Cell & Environment, 38, 1699-1712.
DOI URL PMID |
[177] |
Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Helaouet P, Johns DG, Jones ID, Leech DI (2016). Phenological sensitivity to climate across taxa and trophic levels. Nature, 535, 241-245.
DOI URL PMID |
[178] |
Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque J-F, Feddema JJ, Lee Y-H (2009). Carbon-nitrogen interactions regulate climate- carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 2099-2120.
DOI URL |
[179] | Tjoelker MG, Reich PB, Oleksyn J (1999). Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant, Cell & Environment, 22, 767-778. |
[180] |
Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013). Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 10, 1717-1736.
DOI URL |
[181] | Turnbull MH, Murthy R, Griffin KL (2002). The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant, Cell & Environment, 25, 1729-1737. |
[182] |
van Bodegom PM, Douma JC, Witte JPM, Ordoñez JC, Bartholomeus RP, Aerts R (2012). Going beyond limitations of plant functional types when predicting global ecosystem- atmosphere fluxes: exploring the merits of traits-based approaches. Global Ecology and Biogeography, 21, 625-636.
DOI URL |
[183] | van Gestel N, Shi Z, van Groenigen KJ, Osenberg CW, Andresen LC, Dukes JS, Hovenden MJ, Luo Y, Michelsen A, Pendall E, Reich PB, Schuur EAG, Hungate BA (2018). Predicting soil carbon loss with warming. Nature, 554, 4-5. |
[184] |
van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009). Widespread increase of tree mortality rates in the western United States. Science, 323, 521-524.
DOI URL PMID |
[185] | van Nes EH, Scheffer M, Brovkin V, Lenton TM, Ye H, Deyle E, Sugihara G (2015). Causal feedbacks in climate change. Nature Climate Change, 5, 445-448. |
[186] |
Verheijen LM, Aerts R, Brovkin V, Cavender-Bares J, Cornelissen JHC, Kattge J, van Bodegom PM (2015). Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Global Change Biology, 21, 3074-3086.
URL PMID |
[187] |
Vitasse Y, Signarbieux C, Fu YH (2018). Global warming leads to more uniform spring phenology across elevations. Proceedings of the National Academy of Sciences of the United States of America, 115, 1004-1008.
DOI URL PMID |
[188] |
Walker MD, Wahren CH, Hollister RD, Henry GH, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB (2006). Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 103, 1342-1346.
DOI URL PMID |
[189] |
Walker TWN, Janssens IA, Weedon JT, Sigurdsson BD, Richter A, Peñuelas J, Leblans NIW, Bahn M, Bartrons M, de Jonge C, Fuchslueger L, Gargallo-Garriga A, Gunnarsdóttir GE, Marañón-Jiménez S, Oddsdóttir ES, Ostonen I, Poeplau C, Prommer J, Radujković D, Sardans J, Sigurðsson P, Soong JL, Vicca S, Wallander H, Ilieva-Makulec K, Verbruggen E (2019). A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology and Evolution, 4, 101-108.
URL PMID |
[190] | Wall DH, Bradford MA, John MGST, Trofymow JA, Behan- Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W (2008). Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biology, 14, 2661-2677. |
[191] |
Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002). Ecological responses to recent climate change. Nature, 416, 389-395.
DOI URL PMID |
[192] |
Wan S, Xia J, Liu W, Niu S (2009). Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 90, 2700-2710.
DOI URL PMID |
[193] |
Ward SE, Orwin KH, Ostle NJ, Briones MJI, Thomson BC, Griffiths RI, Oakley S, Quirk H, Bardgett RD (2015). Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology, 96, 113-123.
DOI URL PMID |
[194] |
Way DA, Oren R (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology, 30, 669-688.
DOI URL PMID |
[195] |
Way DA, Yamori W (2014). Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynthesis Research, 119, 89-100.
URL PMID |
[196] |
Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000). Response of bog and fen plant communities to warming and water-table manipulations. Ecology, 81, 3464-3478.
DOI URL |
[197] |
While GM, Uller T (2014). Quo vadis amphibia? Global warming and breeding phenology in frogs, toads and salamanders. Ecography, 37, 921-929.
DOI URL |
[198] |
Wieder WR, Grandy AS, Kallenbach CM, Taylor PG, Bonan GB (2015). Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geoscientific Model Development, 8, 1789-1808.
DOI URL |
[199] |
Wilson RM, Hopple AM, Tfaily MM, Sebestyen SD, Schadt CW, Pfeifer-Meister L, Medvedeff C, McFarlane KJ, Kostka JE, Kolton M, Kolka RK, Kluber LA, Keller JK, Guilderson TP, Griffiths NA, Chanton JP, Bridgham SD, Hanson PJ (2016). Stability of peatland carbon to rising temperatures. Nature Communications, 7, 13723. DOI: 10.1038/ncomms13723.
DOI URL PMID |
[200] |
Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005). Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310, 993-996.
DOI URL PMID |
[201] |
Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012). Warming experiments underpredict plant phenollogical responses to climate change. Nature, 485, 494-497.
URL PMID |
[202] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[203] |
Wu Z, Dijkstra P, Koch GW, Hungate BA (2012). Biogeochemical and ecological feedbacks in grassland responses to warming. Nature Climate Change, 2, 458-461.
DOI URL |
[204] |
Xia J, Chen J, Piao S, Ciais P, Luo Y, Wan S (2014). Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience, 7, 173-180.
DOI URL |
[205] |
Xia J, Luo Y, Wang YP, Hararuk O (2013). Traceable components of terrestrial carbon storage capacity in biogeochemical models. Global Change Biology, 19, 2104-2116.
DOI URL PMID |
[206] | Xia J, McGuire AD, Lawrence D, Burke E, Chen G, Chen X, Delire C, Koven C, MacDougall A, Peng S, Rinke A, Saito K, Zhang W, Alkama R, Bohn TJ, Ciais P, Decharme B, Gouttevin I, Hajima T, Hayes DJ, Huang K, Ji D, Krinner G, Lettenmaier DP, Miller PA, Moore JC, Smith B, Sueyoshi T, Shi Z, Yan L, Liang J, Jiang L, Zhang Q, Luo Y (2017). Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research, 122, 430-446. |
[207] |
Xia J, Niu S, Wan S (2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556.
DOI URL |
[208] |
Xia J, Wan S (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI URL PMID |
[209] |
Xia J, Wan S (2013). Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 111, 1207-1217.
DOI URL PMID |
[210] |
Xiong D, Yang Z, Chen G, Liu X, Lin W, Huang J, Bowles FP, Lin C, Xie J, Li Y, Yang Y (2018). Interactive effects of warming and nitrogen addition on fine root dynamics of a young subtropical plantation. Soil Biology & Biochemistry, 123, 180-189.
DOI URL |
[211] |
Xu L, Myneni RB, Chapin III FS, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Bi J, Ciais P, Tømmervik H, Euskirchen ES, Forbes BC, Piao S, Anderson BT, Ganguly S, Nemani RR, Goetz SJ, Beck PSA, Bunn AG, Cao C, Stroeve JC (2013). Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 3, 581-586.
DOI URL |
[212] | Xu XF, Tian HQ, Wan SQ (2007). Climate warming impacts on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version), 31, 175-188. |
[ 徐小锋, 田汉勤, 万师强 (2007). 气候变暖对陆地生态系统碳循环的影响. 植物生态学报, 31, 175-188.] | |
[213] |
Xue K, Yuan MM, Shi ZJ, Qin Y, Deng Y, Cheng L, Wu L, He Z, Van Nostrand JD, Bracho R, Natali S, Schuur EAG, Luo C, Konstantinidis KT, Wang Q, Cole JR, Tiedje JM, Luo Y, Zhou J (2016). Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 6, 595-600.
DOI URL |
[214] |
Yamori W, Hikosaka K, Way DA (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 119, 101-117.
DOI URL PMID |
[215] |
Yamori W, von Caemmerer S (2009). Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiology, 151, 2073-2082.
DOI URL PMID |
[216] | Yang H, Wu M, Liu W, Zhang Z, Zhang N, Wan S (2011). Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452-465. |
[217] |
Yao Y, Wang X, Li Y, Wang T, Shen M, Du M, He H, Li Y, Luo W, Ma M, Ma Y, Tang Y, Wang H, Zhang X, Zhang Y, Zhao L, Zhou G, Piao S (2018). Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 24, 184-196.
DOI URL PMID |
[218] |
Yuan Z, Chen HY (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 5, 465-469.
DOI URL |
[219] |
Zhang D, Hui D, Luo Y, Zhou G (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93.
DOI URL |
[220] | Zheng J, Ge Q, Hao Z (2002). Impacts of climate warming on plants phenology during recent 40 years in China. Scientific Bulletin, 47, 1582-1587. |
[221] |
Zhu Z, Piao S, Lian X, Myneni RB, Peng S, Yang H (2017). Attribution of seasonal leaf area index trends in the northern latitudes with “optimally” integrated ecosystem models. Global Change Biology, 23, 4798-4813.
DOI URL PMID |
[222] | Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A (2016). Greening of the Earth and its drivers. Nature Climate Change, 6, 791-795. |
[1] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[2] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[3] | YANG Yu-Meng, LAI Quan, LIU Xin-Yi. Quantitative analysis of climate change and human activities on vegetation gross primary productivity in Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(3): 306-316. |
[4] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[5] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[6] | YU Hai-Xia, QU Lu-Ping, TANG Xing-Hao, LIU Nan, ZHANG Zi-Lei, WANG Hao, WANG Yi-Xuan, SHAO Chang-Liang, DONG Gang, HU Ya-Lin. Divergent responses of non-structural carbohydrates in Phoebe bournei and Schima superba to different heat wave patterns [J]. Chin J Plant Ecol, 2023, 47(2): 249-261. |
[7] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[8] | LIU Pei-Rong, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru, YU Pei-Yang, ZHOU Yu. Effect of diffuse radiation on gross primary productivity of typical planted forests in eastern China [J]. Chin J Plant Ecol, 2022, 46(8): 904-918. |
[9] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[10] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[11] | HAN Cong, LIU Peng, MU Yan-Mei, YUAN Yuan, HAO Shao-Rong, TIAN Yun, ZHA Tian-Shan, JIA Xin. Response of ecosystem carbon balance to asymmetric daytime vs nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
[12] | YU Hai-Ying, YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[13] | ZANG Yong-Xin, MA Jian-Ying, ZHOU Xiao-Bing, TAO Ye, YIN Ben-Feng, Shayaguli JIGEER, ZHANG Yuan-Ming. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes [J]. Chin J Plant Ecol, 2022, 46(12): 1537-1550. |
[14] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[15] | Yang ZHAO, Jun-Wei LUAN, Yi WANG, Huai YANG, Shi-Rong LIU. Effects of simulated drought and phosphorus addition on nitrogen mineralization in tropical lowland rain forests [J]. Chin J Plant Ecol, 2022, 46(1): 102-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn