Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (1): 66-77.DOI: 10.17521/cjpe.2017.0251
Special Issue: 青藏高原植物生态学:种群生态学
• Research Articles • Previous Articles Next Articles
SONG Wen-Qi1,ZHU Liang-Jun1,ZHANG Xu1,WANG Xiao-Chun1,*(),ZHANG Yuan-Dong2,*()
Online:
2018-01-20
Published:
2018-01-18
Contact:
WANG Xiao-Chun ORCID: 0000-0002-8897-5077, ZHANG Yuan-Dong
Supported by:
SONG Wen-Qi, ZHU Liang-Jun, ZHANG Xu, WANG Xiao-Chun, ZHANG Yuan-Dong. Comparison of growth-climate relationship of Sabina przewalskii at different timberlines along a precipitation gradient in the northeast Qinghai-Xizang Plateau, China[J]. Chin J Plant Ecol, 2018, 42(1): 66-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0251
Fig. 1 Location of the sampling sites, weather stations and grid weather stations. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang; Prec, precipitation.
采样点 Sampling sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope (°) | 年降水量 Annual precipitation (mm) | 年平均气温 Annual mean air temperature (°C) |
---|---|---|---|---|---|---|---|
哈里哈图 Halihatu (HL) | 37.05° | 98.67° | 3β972 | 西 West | 25 | 217 | -2.0 |
曲什岗 Qushi hillock (QS) | 36.03° | 98.19° | 4β024 | 东 East | 20 | 281 | -1.8 |
河北林场 Hebei forest farm (HB) | 34.76° | 100.79° | 3β791 | 西南 Southwest | 21 | 470 | -1.2 |
Table 1 The information of the sampling sites for tree-ring standard chronologies of Sabina przewalskii
采样点 Sampling sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope (°) | 年降水量 Annual precipitation (mm) | 年平均气温 Annual mean air temperature (°C) |
---|---|---|---|---|---|---|---|
哈里哈图 Halihatu (HL) | 37.05° | 98.67° | 3β972 | 西 West | 25 | 217 | -2.0 |
曲什岗 Qushi hillock (QS) | 36.03° | 98.19° | 4β024 | 东 East | 20 | 281 | -1.8 |
河北林场 Hebei forest farm (HB) | 34.76° | 100.79° | 3β791 | 西南 Southwest | 21 | 470 | -1.2 |
Fig. 2 Monthly and seasonally mean, maximum, and minimum air temperatures, and precipitation at each sampling site, 1955-2015. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang. pWin, last winter; Spr, current spring; Sum, current summer; Aut, current autumn.
Fig. 3 Tree-ring index of Sabina przewalskii in timberline and sampling depth of each chronology. The left and right figures indicate the tree-ring index of young- and old-growth S. przewalskii respectively. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang.
采样点 Sampling site | 时间跨度 Time span | 标准年表特征值 Eigenvalue of standard chronology | 公共区间统计量 Common interval analysis | |||||
---|---|---|---|---|---|---|---|---|
MS | SD | MC | AC | SNR | EPS | VF | ||
HL (高龄) HL (Old-growth) | 1β112-2β015 | 0.17 | 0.22 | 0.29 | 0.45 | 27.1 | 0.96 | 30.7 |
HL (低龄) HL (Young-growth) | 1β845-2β015 | 0.13 | 0.22 | 0.51 | 0.76 | 19.6 | 0.95 | 56.6 |
QS (高龄) QS (Old-growth) | 1β275-2β015 | 0.14 | 0.18 | 0.20 | 0.50 | 15.2 | 0.94 | 25.0 |
QS (低龄) QS (Young-growth) | 1β825-2β015 | 0.23 | 0.29 | 0.26 | 0.52 | 1.70 | 0.63 | 51.7 |
HB (低龄) HB (Young-growth) | 1β841-2β015 | 0.24 | 0.27 | 0.29 | 0.48 | 17.6 | 0.95 | 32.7 |
Table 2 Statistics of the standard chronologies of Sabina przewalskii
采样点 Sampling site | 时间跨度 Time span | 标准年表特征值 Eigenvalue of standard chronology | 公共区间统计量 Common interval analysis | |||||
---|---|---|---|---|---|---|---|---|
MS | SD | MC | AC | SNR | EPS | VF | ||
HL (高龄) HL (Old-growth) | 1β112-2β015 | 0.17 | 0.22 | 0.29 | 0.45 | 27.1 | 0.96 | 30.7 |
HL (低龄) HL (Young-growth) | 1β845-2β015 | 0.13 | 0.22 | 0.51 | 0.76 | 19.6 | 0.95 | 56.6 |
QS (高龄) QS (Old-growth) | 1β275-2β015 | 0.14 | 0.18 | 0.20 | 0.50 | 15.2 | 0.94 | 25.0 |
QS (低龄) QS (Young-growth) | 1β825-2β015 | 0.23 | 0.29 | 0.26 | 0.52 | 1.70 | 0.63 | 51.7 |
HB (低龄) HB (Young-growth) | 1β841-2β015 | 0.24 | 0.27 | 0.29 | 0.48 | 17.6 | 0.95 | 32.7 |
Fig. 4 Correlation coefficients between the radial growth of Qilian juniper and seasonal climatic data along the precipitation gradient. The red rectangles denote positive correlations. The blue rectangles denote negative correlations. The shaded background denotes significance at p < 0.05 level of Pearson correlation. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang.
Fig. 5 Correlation coefficients between the radial growth of Qilian juniper and seasonal climate data in different temperature and precipitation years along the precipitation gradient. The red rectangles denote the positive value. The blue rectangles denote the negative value. The shaded background denotes significance at p < 0.05 level of Pearson correlation. GHT, year of growing-season high temperature; GLT, year of growing-season low temperature; PHT, year of pre-season high temperature; PLT, year of pre-season low temperature. GD, year of drought growing season; GW, year of wet growing season; PD, year of drought pre-season; PW, year of wet pre-season. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang.
[1] |
Allen SK, Plattner GK, Nauels A, Xia Y, Stocker TF ( 2013). Climate change 2013: The physical science basis. An overview of the Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Computational Geometry, 18, 95-123.
DOI URL |
[2] |
Carnwath GC, Nelson CR, Zhou S ( 2016). The effect of competition on responses to drought and interannual climate variability of a dominant conifer tree of western North America. Journal of Ecology, 104, 1421-1431.
DOI URL |
[3] |
Cavin L, Jump AS ( 2017). Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Global Change Biology, 23, 362-379.
DOI URL PMID |
[4] | Cook ER, Holmes RL ( 1984). Program ARSTAN User Manual. Laboratory of Tree Ring Research, University of Arizona, Tucson. |
[5] | Cui HT, Liu HY, Dai JH ( 2005). Mountain Ecology and Alpine Timberline Research. Science Press, Beijing. |
[ 崔海亭, 刘鸿雁, 戴君虎 ( 2005). 山地生态学与高山林线研究. 科学出版社, 北京.] | |
[6] |
Dodson R, Marks D ( 1997). Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Research, 8, 1-20.
DOI URL |
[7] | Editorial Board of Forest in China ( 1999). Forest in China. China Forestry Publishing House, Beijing. 1108-1115. |
[ 中国森林编辑委员会 ( 1999). 中国森林. 中国林业出版社, 北京. 1108-1115.] | |
[8] |
Elliott GP, Baker WL ( 2004). Quaking aspen (Populus tremuloides Michx.) at treeline: A century of change in the San Juan Mountains, Colorado, USA. Journal of Biogeography, 31, 733-745.
DOI URL |
[9] |
Feurdean A, Galka M, Tantau I, Geanta A, Hutchinson SM, Hickler T ( 2016). Tree and timberline shifts in the northern Romanian Carpathians during the Holocene and the responses to environmental changes. Quaternary Science Reviews, 134, 100-113.
DOI URL |
[10] |
Gao L, Gou X, Deng Y, Liu W, Yang M, Zhao Z ( 2012). Climate-growth analysis of Qilian juniper across an altitudinal gradient in the central Qilian Mountains, northwest China. Trees, 27, 379-388.
DOI URL |
[11] |
Grace J, Norton DA ( 1990). Climate and growth of Pinus sylvestris at its upper altitudinal limit in Scotland: Evidence from tree growth-rings. Journal of Ecology, 78, 601-610.
DOI URL |
[12] |
Harsch MA, Hulme PE, McGlone MS, Duncan RP ( 2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040-1049.
DOI URL PMID |
[13] |
Holtmeier FK, Broll G ( 2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14, 395-410.
DOI URL |
[14] | Hu HR, Liang L ( 2013). Temporal and spatial variations of rainfall at the east of Qinghai-Tibet Plateau in last 50 years. Plateau and Mountain Meteorology Research, 33(4), 1-7, 15. |
[ 胡豪然, 梁玲 ( 2013). 近50年青藏高原东部降水的时空变化特征. 高原山地气象研究, 33(4), 1-7, 15.] | |
[15] |
Lavergne A, Daux V, Villalba R, Barichivich J ( 2015). Temporal changes in climatic limitation of tree-growth at upper treeline forests: Contrasted responses along the west-to- east humidity gradient in Northern Patagonia. Dendrochronologia, 36, 49-59.
DOI URL |
[16] | Leuschner C, Schulte M ( 1991). Microclimatological investigations in the tropical alpine scrub of Maui, Hawaii: Evidence for a drought-induced alpine timberline. Pacific Science, 45, 152-168. |
[17] | Li B, Yang C, Lin P ( 2000). Ecology. Higher Education Press, Beijing. |
[ 李博, 杨持, 林鹏 ( 2000). 生态学. 高等教育出版社, 北京.] | |
[18] |
Liang E, Dawadi B, Pederson N, Eckstein D ( 2014). Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology, 95, 2453-2465.
DOI URL |
[19] | Liang E, Wang Y, Xu Y, Liu B, Shao X ( 2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees, 24, 363-373. |
[20] |
Liu GF, Lu HL ( 2010). Basic characteristics of major climatic factors on Qinghai-Tibet Plateau in recent 45 years. Geography Research, 29, 2281-2288.
DOI URL |
[ 刘桂芳, 卢鹤立 ( 2010). 1961-2005年来青藏高原主要气候因子的基本特征. 地理研究, 29, 2281-2288.]
DOI URL |
|
[21] |
Lloyd AH, Fastie CL ( 2002). Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Climatic Change, 52, 481-509.
DOI URL |
[22] |
Lloyd AH, Rupp TS, Fastie CL, Starfield AM ( 2002). Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska. Journal of Geophysical Research, 108, 8161. DOI: 10.1029/2001JD000852.
DOI URL |
[23] |
Lü L, Zhang Q ( 2013). Tree-ring based summer minimum temperature reconstruction for the southern edge of the Qinghai-Tibetan Plateau, China. Climate Research, 56, 91-101.
DOI URL |
[24] |
Macalady AK, Bugmann H ( 2014). Growth-mortality relationships in pinon pine (Pinus edulis) during severe droughts of the past century: Shifting processes in space and time. PLOS ONE, 9, e92770. DOI: 10.1371/journal.pone.? 0092770.
DOI URL PMID |
[25] |
Minder JR, Mote PW, Lundquist JD ( 2010). Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. Journal of Geophysical Research, 115, 1307-1314.
DOI URL |
[26] |
Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM ( 2004). Extracting more out of relocation ata: Building movement models as mixtures of random walks. Ecology, 85, 2436-2445.
DOI URL |
[27] |
Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW ( 2003). Climate- driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563.
DOI URL PMID |
[28] | Pan RC, Wang XJ, Li NH ( 2012). Plant Physiology. Higher Education Press, Beijing. |
[ 潘瑞炽, 王小菁, 李娘辉 ( 2012). 植物生理学. 高等教育出版社, 北京.] | |
[29] |
Peng JF, Gou XH, Chen FH, Fang KY, Zhang F ( 2010). Influences of slope aspect on the growth of Sabina przewalskii along an elevation gradient in China’s Qinghai Province. Chinese Journal of Plant Ecology, 34, 517-525.
DOI URL |
[ 彭剑峰, 勾晓华, 陈发虎, 方克艳, 张芬 ( 2010). 坡向对海拔梯度上祁连圆柏树木生长的影响. 植物生态学报, 34, 517-525.]
DOI URL |
|
[30] |
Peng JF, Gou XH, Chen FH, Li JB, Liu P, Zhang Y, Fang KY ( 2008). Difference in tree growth responses to climate at the upper treeline: Qilian juniper in the Anyemaqen Mountains. Journal of Integrative Plant Biology, 50, 982-990.
DOI URL PMID |
[31] |
Piper FI, Vi?egla B, Linares JC, Camarero JJ, Cavieres LA, Fajardo A ( 2016). Mediterranean and temperate treelines are controlled by different environmental drivers. Journal of Ecology, 104, 691-702.
DOI URL |
[32] |
Qi Z, Liu H, Wu X, Hao Q ( 2015). Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Global Change Biology, 21, 816-826.
DOI URL PMID |
[33] |
Ren P, Rossi S, Gricar J, Liang E, Cufar K ( 2015). Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Annals of Botany, 115, 629-639.
DOI URL PMID |
[34] |
Rollinson CR, Kaye MW, Canham CD ( 2016). Interspecific variation in growth responses to climate and competition of five eastern tree species. Ecology, 97, 1003-1011.
DOI URL PMID |
[35] |
Shi C, Masson-Delmotte V, Daux V, Li Z, Carre M, Moore JC ( 2014). Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from alpine treeline dendrochronology. Climate Dynamics, 45, 1367-1380.
DOI URL |
[36] |
Smith WK, Germino MJ, Johnson DM, Reinhardt K ( 2009). The altitude of alpine treeline: A bellwether of climate change effects. The Botanical Review, 75, 163-190.
DOI URL |
[37] |
Solberg B, Hofgaard A, Hytteborn H ( 2016). Shifts in radial growth responses of coastal Picea abies induced by climatic change during the 20th Century, central Norway. Ecoscience, 9, 79-88.
DOI URL |
[38] | Stokes MA, Smiley TL ( 1968). An Introduction to Tree-ring Dating. University of Arizona Press, Tucson, USA. |
[39] |
Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, Hails RS, Hays GC, Hodgson DJ, Hutchings MJ, Johnson D, Jones JPG, Keeling MJ, Kokko H, Kunin WE, Lambin X, Lewis OT, Malhi Y, Mieszkowska N, Milner-Gulland EJ, Norris K, Phillimore AB, Purves DW, Reid JM, Reuman DC, Thompson K, Travis JMJ, Turnbull LA, Wardle DA, Wiegand T, Gibson D ( 2013). Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67.
DOI URL |
[40] |
Takahashi K, Azuma H, Yasue K ( 2003). Effects of climate on the radial growth of tree species in the upper and lower distribution limits of an altitudinal ecotone on Mount Norikura, central Japan. Ecological Research, 18, 549-558.
DOI URL |
[41] |
Toromani E, Sanxhaku M, Pasho E ( 2011). Growth responses to climate and drought in silver fir (Abies alba) along an altitudinal gradient in southern Kosovo. Canadian Journal of Forest Research, 41, 1795-1807.
DOI URL |
[42] |
Vicenteserrano SM, Begueria S, Lorenzolacruz J, Camarero JJ, Lopezmoreno JI, Azorinmolina C, Revuelto J, Morantejeda E, Sanchezlorenzo A ( 2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16, 1-27.
DOI URL |
[43] | Wang QS, Wang XP, Luo JC, Feng ZW, Li JT, Ma YH, Su YH ( 1997). Ecotones and biodiversity. Chinese Biodiversity, 2, 47-52. |
[ 王庆锁, 王襄平, 罗菊春, 冯宗炜, 李经天, 马玉华, 苏玉华 ( 1997). 生态交错带与生物多样性. 生物多样性, 2, 47-52.] | |
[44] |
Wang T, Peng S, Lin X, Chang J ( 2013). Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 110, 2854-2855.
DOI URL PMID |
[45] |
Wang W, Liu X, Shao X, Qin D, Xu G, Wang B, Zeng X, Wu G, Zhang X ( 2015). Differential response of Qilian juniper radial growth to climate variations in the middle of Qilian Mountains and the northeastern Qaidam Basin. Climatic Change, 133, 237-251.
DOI URL |
[46] |
Wang XC, Zhou XF, Li SJ, Sun L, Mu CC ( 2004). The effect of climate warming on the structure characteristic of the timberline in Laotudingzi Mountain. Acta Ecologica Sinica, 11, 2412-2421.
DOI URL |
[ 王晓春, 周晓峰, 李淑娟, 孙龙, 牟长城 ( 2004). 气候变暖对老秃顶子林线结构特征的影响. 生态学报, 11, 2412-2421.]
DOI URL |
|
[47] |
Wilmking M, Myers-Smith I ( 2008). Changing climate sensitivity of black spruce (Picea mariana Mill.) in a peatlandforest landscape in Interior Alaska. Dendrochronologia, 25, 167-175.
DOI URL |
[48] |
Yang B, He M, Melvin TM, Zhao Y, Briffa KR ( 2013). Climate control on tree growth at the upper and lower treelines: A case study in the Qilian Mountains, Tibetan Plateau. PLOS ONE, 8, e69065. DOI: 10.1371/journal.pone.0069065.
DOI URL PMID |
[49] |
Yang B, He M, Shishov V, Tychkov I, Vaganov E, Rossi S, Ljungqvist FC, Brauning A, Griessinger J ( 2017). New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences of the United States of America, 114, 6966-6971.
DOI URL PMID |
[50] |
Yin ZY, Li M, Zhang Y, Shao X ( 2016). Growth climate relationships along an elevation gradient on a southeast- facing mountain slope in the semi-arid eastern Qaidam Basin, northeastern Tibetan Plateau. Trees, 30, 1095-1109.
DOI URL |
[51] |
Zhang H, Shao X, Zhang Y ( 2015 a). Which climatic factors limit radial growth of Qilian juniper at the upper treeline on the northeastern Tibetan Plateau? Journal of Geographical Sciences, 25, 1173-1182.
DOI URL |
[52] | Zhang J, Gou X, Zhang Y, Lu M, Xu X, Zhang F, Liu W, Gao L ( 2015 b). Forward modeling analyses of Qilian Juniper (Sabina przewalskii) growth in response to climate factors in different regions of the Qilian Mountains, northwestern China. Trees, 30, 175-188. |
[53] |
Zhang Y, Shao X, Yin Z, Wang Y ( 2014). Millennial minimum temperature variations in the Qilian Mountains, China: Evidence from tree rings. Climate of the Past, 10, 1763-1778.
DOI URL |
[54] |
Zhang Y, Tian Q, Guillet S, Stoffel M ( 2016). 500-yr. precipitation variability in Southern Taihang Mountains, China, and its linkages to ENSO and PDO. Climatic Change, 144, 419-432.
DOI URL |
[55] |
Zhang Y, Wilmking M ( 2010). Divergent growth responses and increasing temperature limitation of Qinghai spruce growth along an elevation gradient at the northeast Tibet Plateau. Forest Ecology and Management, 260, 1076-1082.
DOI URL |
[56] |
Zheng YH, Liang EY, Zhu HF, Shao XM ( 2008). Response of radial growth of Qilian juniper to climatic change under different habitats. Journal of Beijing Forestry University, 30(3), 7-12.
DOI URL |
[ 郑永宏, 梁尔源, 朱海峰, 邵雪梅 ( 2008). 不同生境祁连圆柏径向生长对气候变化的响应. 北京林业大学学报, 30(3), 7-12.]
DOI URL |
|
[57] |
Zhu H, Zheng Y, Shao X, Xu Y, Liang E ( 2008). Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China. Chinese Science Bulletin, 53, 3914-3920.
DOI URL |
[58] |
Zimmermann J, Hauck M, Dulamsuren C, Leuschner C ( 2015). Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central European mixed forests. Ecosystems, 18, 560-572.
DOI URL |
[1] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[2] | WANG Guan-Qin, LI Fei, PENG Yun-Feng, CHEN Yong-Liang, HAN Tian-Feng, YANG Gui-Biao, LIU Li, ZHOU Guo-Ying, YANG Yuan-He. Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 105-115. |
[3] | CHEN Ya-Mei, HE Run-Lian, DENG Chang-Chun, LIU Yang, YANG Wan-Qin, ZHANG Jian. Litter cellulolytic enzyme activities in alpine timberline ecotone of western Sichuan [J]. Chin J Plant Ecol, 2014, 38(4): 334-342. |
[4] | PENG Jian-Feng, GOU Xiao-Hua, CHEN Fa-Hu, FANG Ke-Yan, ZHANG Fen. Influences of slope aspect on the growth of Sabina przewalskii along an elevation gradient in China’s Qinghai Province [J]. Chin J Plant Ecol, 2010, 34(5): 517-525. |
[5] | ZHANG Peng, WANG Gang, ZHANG Tao, CHEN Nian-Lai. Responses of foliar δ13C in Sabina przewalskii and Picea crassifolia to altitude and its mechanism in the Qilian Mountains, China [J]. Chin J Plant Ecol, 2010, 34(2): 125-133. |
[6] | ZHANG Tao, AN Li-Zhe, CHEN Tuo, DAI Chun-Yan, CHEN Nian-Lai. ANTIOXIDATIVE SYSTEM IN LEAVES OF PICEA CRASSIFOLIA AND SABINA PRZEWALSKII ALONG AN ALTITUDINAL GRADIENT [J]. Chin J Plant Ecol, 2009, 33(4): 802-811. |
[7] | ZHANG Qiao-Ying, ZHANG Yun-Chun, LUO Peng, WANG Qian, WU Ning. ECOLOGICAL CHARACTERISTICS OF A SABINA SALTUARIA POPULATION AT TIMBERLINE ON THE SOUTH-FACING SLOPE OF BAIMA SNOW MOUNTAIN, SOUTHWEST CHINA [J]. Chin J Plant Ecol, 2007, 31(5): 857-864. |
[8] | LIU Hong-Yan, CAO Yan-Li, TIAN Jun, DAI Jun-Hu, TIAN Yu-Hong, CUI Hai-Ting. Vegetation Landscape of the Alpine Timberline on Mt. Wutai, Shanxi Province [J]. Chin J Plan Ecolo, 2003, 27(2): 263-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn