Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (12): 1153-1167.DOI: 10.3724/SP.J.1258.2013.00118
• Review • Previous Articles Next Articles
HOU Yan-Hui1,2, ZHOU Guang-Sheng1,3,*(), XU Zhen-Zhu1,*()
Received:
2013-06-17
Accepted:
2013-11-06
Online:
2013-06-17
Published:
2013-12-04
Contact:
ZHOU Guang-Sheng,XU Zhen-Zhu
HOU Yan-Hui, ZHOU Guang-Sheng, XU Zhen-Zhu. An overview of research progress on responses of grassland ecosystems to global warming based on infrared heating experiments[J]. Chin J Plant Ecol, 2013, 37(12): 1153-1167.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00118
增温装置 Warming facilities | 增温机理 Mechanism of warming | 优点 Advantages | 缺点 Disadvantages | 应用实例 Applications |
---|---|---|---|---|
温室 Field greenhouse | 温室效应(即再辐射的红外能量反射和对流的能量损失减少) Greenhouse warming (i.e., reflection of reradiated infrared energy and reduced advective energy loss) | 简便、廉价, 无需电力供应 Simple and inexpensive in construction and maintenance; no requirement for electrical power | 无法控制增温幅度, 对小气候(光照、风速、降水和湿度)干扰大 Little or no temperature control and large temperature variability; disturbance to microclimate (light, wind speed, rainfall and humidity) | |
被动式开顶箱 Passive open-top chamber | 同上 Same as above | 同上, 并可与CO2控制试验耦合 Same as above and can be combined with CO2 control | 同上, 而且均匀升温的面积有限 Same as above and only small areas can be manipulated uniformly | Alerts et al., 2006 |
主动式开顶箱 Active Open-top chamber | 温室效应和电加热 Greenhouse warming plus electrical heating | 同上, 且可精确地控制空气温度 Same as above and precise control on air temperature | 影响小环境(光照、风速、降水、湿度和蒸发散), 且可模拟的面积有限 Disturbance to microclimate (light, wind speed, rainfall , humidity and evapotranspiration), and only small areas can be manipulated uniformly | |
土壤加热管道和加热电缆 Heating fluid pipes and electric resistance cables | 埋于地下的加热管道和电缆的热传导 Warming by thermal conduction from buried heating fluid pipes and electrical resistance cables | 能精确控制土壤温度且可与温室或OTC等想结合 Precise control on soil temperature and easy combination with greenhouses or OTCs | 昂贵, 加热不均匀, 影响土壤水分, 且不能加热植物地上部分和空气 Expensive in construction and maintenance, spatial heterogeneity of warming effect, altered soil moisture regimes, and no warming effect on air temperature and aboveground parts of plant | |
红外线反射器 Infrared reflectors | 反射地面辐射引起的增温 Warming by reflected ground radiation | 经济、方便, 仅需少量电力, 相对真实模拟夜间增温, 干扰小 Low cost and convenient, little electrical power, better simulation of global warming patterns at night-time, little physical disturbance | 不能模拟白天增温, 影响风速和雨、雪、露水的输入 No warming effect during daytime, affect wind speed and the input of rainfall, snow, and dew | |
红外线辐射器 Infrared radiators | 红外辐射灯管引起的增强的红外辐射 Increased infrared radiation by infrared lamps | 精确控制能量输入, 更真实模拟全球变暖和日变化, 对周围环境干扰小 Precise control on energy input, better simulation of global warming patterns, little physical disturbance on surroundings | 耗电较多, 价格昂贵, 受限于电力供应, 不能模拟全球变暖情形中的对流加热效应 Expensive in terms of cost on electricity, can only be used with availability of electric power supply, does not simulate the advective effect |
Table 1 Comparison of currently used field warming facilities
增温装置 Warming facilities | 增温机理 Mechanism of warming | 优点 Advantages | 缺点 Disadvantages | 应用实例 Applications |
---|---|---|---|---|
温室 Field greenhouse | 温室效应(即再辐射的红外能量反射和对流的能量损失减少) Greenhouse warming (i.e., reflection of reradiated infrared energy and reduced advective energy loss) | 简便、廉价, 无需电力供应 Simple and inexpensive in construction and maintenance; no requirement for electrical power | 无法控制增温幅度, 对小气候(光照、风速、降水和湿度)干扰大 Little or no temperature control and large temperature variability; disturbance to microclimate (light, wind speed, rainfall and humidity) | |
被动式开顶箱 Passive open-top chamber | 同上 Same as above | 同上, 并可与CO2控制试验耦合 Same as above and can be combined with CO2 control | 同上, 而且均匀升温的面积有限 Same as above and only small areas can be manipulated uniformly | Alerts et al., 2006 |
主动式开顶箱 Active Open-top chamber | 温室效应和电加热 Greenhouse warming plus electrical heating | 同上, 且可精确地控制空气温度 Same as above and precise control on air temperature | 影响小环境(光照、风速、降水、湿度和蒸发散), 且可模拟的面积有限 Disturbance to microclimate (light, wind speed, rainfall , humidity and evapotranspiration), and only small areas can be manipulated uniformly | |
土壤加热管道和加热电缆 Heating fluid pipes and electric resistance cables | 埋于地下的加热管道和电缆的热传导 Warming by thermal conduction from buried heating fluid pipes and electrical resistance cables | 能精确控制土壤温度且可与温室或OTC等想结合 Precise control on soil temperature and easy combination with greenhouses or OTCs | 昂贵, 加热不均匀, 影响土壤水分, 且不能加热植物地上部分和空气 Expensive in construction and maintenance, spatial heterogeneity of warming effect, altered soil moisture regimes, and no warming effect on air temperature and aboveground parts of plant | |
红外线反射器 Infrared reflectors | 反射地面辐射引起的增温 Warming by reflected ground radiation | 经济、方便, 仅需少量电力, 相对真实模拟夜间增温, 干扰小 Low cost and convenient, little electrical power, better simulation of global warming patterns at night-time, little physical disturbance | 不能模拟白天增温, 影响风速和雨、雪、露水的输入 No warming effect during daytime, affect wind speed and the input of rainfall, snow, and dew | |
红外线辐射器 Infrared radiators | 红外辐射灯管引起的增强的红外辐射 Increased infrared radiation by infrared lamps | 精确控制能量输入, 更真实模拟全球变暖和日变化, 对周围环境干扰小 Precise control on energy input, better simulation of global warming patterns, little physical disturbance on surroundings | 耗电较多, 价格昂贵, 受限于电力供应, 不能模拟全球变暖情形中的对流加热效应 Expensive in terms of cost on electricity, can only be used with availability of electric power supply, does not simulate the advective effect |
草地类型 Grassland type | 红外加热器设计 Infrared heater design | 红外增温效果 Infrared warming effects | 参考文献 References | |||||
---|---|---|---|---|---|---|---|---|
辐射功率 Radiation power (W) | 离地高度 Height above the ground (m) | 加热小区面积 Heated plot area (m2) | 土壤温度 Soil temperature (℃) | 土壤水分 Soil moisture (%) | 空气温度 Air temperature (℃) | |||
荒漠草原 Desert steppe | 800 | 1.50 | 4.0 | +4.10 (10 cm) | -18.70 (0-20 cm, R) | / | ||
1 600 | 2.25 | 12.0 | +0.92 (7.5 cm) | +1.38 (0-10 cm, A) | / | |||
典型草原 Typical steppe | 1 600 | 2.25 | 12.0 | +1.71 (10 cm) | -1.44 (0-40 cm, A) | / | ||
1 600 | 2.25 | 12.0 | +0.98 (10 cm) | -1.04 (0-10 cm, A) | / | |||
草甸草原 Meadow steppe | 1 600 | 2.25 | 12.0 | +1.45 (0-15 cm) | -12.82 (0-15 cm R) | / | Gao, 2012 | |
高寒草甸 Alpine meadow | 1 000 × 6 | 2.15 | 7.1 | +1.20 (10 cm) | / | / | Luo et al., 2010 | |
亚高山草甸 Subalpine meadow | 1 500 × 2 | 2.50 | 10.0 | +3.00 (0-25 cm) | -25.00 (0-25 cm, R) | / | ||
高草草原 Tallgrass prairie | 1 500 | 1.50 | 4.0 | +2.00 (10 cm) | / | +1.1 |
Table 2 The warming effects by infrared heating from different grassland ecosystems
草地类型 Grassland type | 红外加热器设计 Infrared heater design | 红外增温效果 Infrared warming effects | 参考文献 References | |||||
---|---|---|---|---|---|---|---|---|
辐射功率 Radiation power (W) | 离地高度 Height above the ground (m) | 加热小区面积 Heated plot area (m2) | 土壤温度 Soil temperature (℃) | 土壤水分 Soil moisture (%) | 空气温度 Air temperature (℃) | |||
荒漠草原 Desert steppe | 800 | 1.50 | 4.0 | +4.10 (10 cm) | -18.70 (0-20 cm, R) | / | ||
1 600 | 2.25 | 12.0 | +0.92 (7.5 cm) | +1.38 (0-10 cm, A) | / | |||
典型草原 Typical steppe | 1 600 | 2.25 | 12.0 | +1.71 (10 cm) | -1.44 (0-40 cm, A) | / | ||
1 600 | 2.25 | 12.0 | +0.98 (10 cm) | -1.04 (0-10 cm, A) | / | |||
草甸草原 Meadow steppe | 1 600 | 2.25 | 12.0 | +1.45 (0-15 cm) | -12.82 (0-15 cm R) | / | Gao, 2012 | |
高寒草甸 Alpine meadow | 1 000 × 6 | 2.15 | 7.1 | +1.20 (10 cm) | / | / | Luo et al., 2010 | |
亚高山草甸 Subalpine meadow | 1 500 × 2 | 2.50 | 10.0 | +3.00 (0-25 cm) | -25.00 (0-25 cm, R) | / | ||
高草草原 Tallgrass prairie | 1 500 | 1.50 | 4.0 | +2.00 (10 cm) | / | +1.1 |
[1] |
Aerts R, Cornelissen JHC, Dorrepaal E (2006). Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 182, 65-78.
DOI URL |
[2] |
Amthor JS, Hanson PJ, Norby RJ, Wullschleger SD (2010). A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by Aronson and McNulty. Agricultural and Forest Meteorology, 150, 497-498.
DOI URL |
[3] |
Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791-1799.
DOI URL |
[4] | Bai CH, Hong M, Han GD, Zhao ML, Lu BT (2012). Response of three kinds of enzyme activity to simulate warming and nitrogen addition. Acta Scientiarum Naturalium Universitatis Neimongol, 43, 509-513. (in Chinese with English abstract). |
[ 白春华, 红梅, 韩国栋, 赵萌莉, 卢秉韬 (2012). 土壤三种酶活性对温度升高和氮肥添加的响应. 内蒙古大学学报(自然科学版), 43, 509-513.] | |
[5] |
Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 16, 1306-1316.
DOI URL |
[6] |
Baker NR (1991). A possible role for photosystem II in environmental perturbations of photosynthesis. Physiologia Plantarum, 81, 563-570.
DOI URL |
[7] | Bao XR (2009). The Effects of Experimental Warming and Nitrogen Addition on Soil in Desert Steppe. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract). |
[ 包秀荣 (2009). 控制性增温和施氮肥对荒漠草原土壤的影响. 硕士学位论文. 内蒙古农业大学, 呼和浩特.] | |
[8] |
Beier C, Emmett B, Gundersen P, Tietema A, Peñuelas J, Estiarte M, Gordon C, Gorissen A, Llorens L, Roda F, Williams D (2004). Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems, 7, 583-597.
DOI URL |
[9] |
Beyschlag W, Eckstein J (2001). Towards a causal analysis of stomatal patchiness: the role of stomatal size variability and hydrological heterogeneity. Acta Oecologica, 22, 161-173.
DOI URL |
[10] | Björkman O, Badger MR, Armond PA (1980). Response and adaptation of photosynthesis to high temperatures. In: Turner NC, Kramer PJ eds. Adaptation of Plants to Water and High Temperature Stress. John Wiley & Sons, New York. 233-249. |
[11] | Chapin III FS, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. |
[12] |
Chapin III FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995). Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76, 694-711.
DOI URL |
[13] |
Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002). How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89, 907-916.
DOI URL PMID |
[14] |
Cheng X, Luo Y, Xu X, Sherry R, Zhang Q (2011). Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming. Biogeosciences, 8, 1487-1498.
DOI URL |
[15] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
DOI URL PMID |
[16] |
de Boeck HJ, Dreesen FE, Janssens IA, Nijs I (2010). Climatic characteristics of heat waves and their simulation in plant experiments. Global Change Biology, 16, 1992-2000.
DOI URL |
[17] |
de Valpine P, Harte J (2001). Plant responses to experimental warming in a montane meadow. Ecology, 82, 637-648.
DOI URL |
[18] |
Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF (2010). Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytologist, 187, 426-437.
DOI URL |
[19] | Ding Y, Hou XY, Leonid U, Wu XH, Yin YT, Li XL, Yun XJ (2012). An overview of climate change of temperate grassland and its impacts on vegetation. Chinese Agricultural Science Bulletin, 28, 310-316. (in Chinese with English abstract). |
[ 丁勇, 侯向阳, Leonid U, 吴新宏, 尹燕亭, 李西良, 运向军 (2012). 温带草原区气候变化及其对植被影响的研究进展. 中国农学通报, 28, 310-316.] | |
[20] |
Emmett BA, Beier C, Estiarte M, Tietema A, Kristensen HL, Williams D, Peñuelas J, Schmidt I, Sowerby A (2004). The response of soil processes to climate change: results from manipulation studies of shrublands across an environmental gradient. Ecosystems, 7, 625-637.
DOI URL |
[21] | Franks PJ, Beerling DJ (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 106, 10343-10347. |
[22] | Gao FG (2010). Effect of Warming and N Addition on Sexual Reproduction of Stipa breviflora. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract). |
[ 高福光 (2010). 增温和施氮对短花针茅有性繁殖的影响. 硕士学位论文. 内蒙古农业大学, 呼和浩特.] | |
[23] | Gao S (2008). Effects of Simulated Warming and Nitrogen Deposition on the Characteristics of Leymus chinensis Community and Reproductive Phenophase. Master degree dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract). |
[ 高嵩 (2008). 模拟增温和氮素沉降对羊草群落特征及物候期的影响. 硕士学位论文. 东北师范大学, 长春.] | |
[24] | Garcia C, Hernandez T, Costa F (1997). Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science & Plant Analysis, 28, 123-134. |
[25] | Han X (2008). Study of Simulated Greenhouse Effect on System Gas Exchange in the Stipa breviflora Griseb. Desert Steppe. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract). |
[ 韩雄 (2008). 模拟增温对短花针茅草原生态系统气体交换影响的研究. 硕士学位论文. 内蒙古农业大学, 呼和浩特.] | |
[26] | Harte J, Saleska S, Shih T (2006). Shifts in plant dominance control carbon-cycle responses to experimental warming and widespread drought. Environmental Research Letters, 1, doi: 10.1088/1748-9326/1/1/014001. |
[27] |
Harte J, Shaw R (1995). Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science, 267, 876-880.
DOI URL PMID |
[28] |
Harte J, Torn MS, Chang FR, Feifarek B, Kinzig AP, Shaw R, Shen K (1995). Global warming and soil microclimate: results from a meadow-warming experiment. Ecological Applications, 5, 132-150.
DOI URL |
[29] |
Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999). Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos, 86, 331-343.
DOI URL |
[30] |
He JS, Wang ZQ, Fang JY (2004). The below-ground ecology under global change: problems and prospect. Chinese Science Bulletin, 49, 1226-1233. (in Chinese).
DOI URL |
[ 贺金生, 王政权, 方精云 (2004). 全球变化下的地下生态学: 问题与展望. 科学通报, 49, 1226-1233.] | |
[31] |
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901-908.
DOI URL PMID |
[32] |
Hoeppner SS, Dukes JS (2012). Interactive responses of old-field plant growth and composition to warming and precipitation. Global Change Biology, 18, 1754-1768.
DOI URL |
[33] |
Hou YH, Zhou GS, Xu ZZ, Liu T, Zhang XS (2013). Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe. PLoS ONE, 8, e70114. doi: 10.1371/journal.pone.0070114.
DOI URL PMID |
[34] | Houghton JT, Meira Filho LG, Callander BA, Harris N, Kat- tenburg A, Maskell K (2013). Climate Change 1995: the Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[35] |
Hovenden MJ, Wills KE, Vander Schoor JK, Williams AL, Newton PCD (2008). Flowering phenology in a species- rich temperate grassland is sensitive to warming but not elevated CO2. New Phytologist, 178, 815-822.
DOI URL |
[36] |
Hu YG, Chang XF, Lin XY, Wang YF, Wang SP, Duan JC, Zhang ZH, Yang XX, Luo CY, Xu GP, Zhao XQ (2010). Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan Plateau. Soil Biology & Biochemistry, 42, 944-952.
DOI URL |
[37] | IPCC (Intergovernmental Panel on Climate Change) (2001). Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[38] | IPCC (Intergovernmental Panel on Climate Change) (2007). Summary for Policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climate Change 2007: the Physical Sci- ence Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[39] | Jiang GM (2001). Review on some hot topics towards researches in the field of plant physioecology. Acta Phytoecologica Sinica, 25, 514-519. (in Chinese with English abstract). |
[ 蒋高明 (2001). 当前植物生理生态学研究的几个热点问题. 植物生态学报, 25, 514-519.] | |
[40] | Jiang L (2012). Responses of Songnen Grassland Photosynthetic Characteristics to Warming and Nitrogen Addition. PhD dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract). |
[ 蒋丽 (2012). 松嫩草地光合特性对增温和氮素施加的响应. 博士学位论文. 东北师范大学, 长春.] | |
[41] |
Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999). Responses in microbes and plants to changed temperature, nutrient, and light regimes in the arctic. Ecology, 80, 1828-1843.
DOI URL |
[42] | Kimball BA (2005). Theory and performance of an infrared heater for ecosystem warming. Global Change Biology, 11, 2041-2056. |
[43] |
Kimball BA (2011). Comment on the comment by Amthor et al. on “Appropriate experimental ecosystem warming methods” by Aronson and McNulty. Agricultural and Forest Meteorology, 151, 420-424.
DOI URL |
[44] |
Kimball BA, Conley MM (2009). Infrared heater arrays for warming field plots scaled up to 5-m diameter. Agricultural and Forest Meteorology, 149, 721-724.
DOI URL |
[45] |
Kimball BA, Conley MM, Wang S, Lin X, Luo C, Morgan J, Smith D (2008). Infrared heater arrays for warming ecosystem field plots. Global Change Biology, 14, 309-320.
DOI URL |
[46] |
Klanderud K (2005). Climate change effects on species interactions in an alpine plant community. Journal of Ecology, 93, 127-137.
DOI URL |
[47] |
Klein JA, Harte J, Zhao XQ (2004). Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 7, 1170-1179.
DOI URL |
[48] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI URL PMID |
[49] |
Kudo G, Suzuki S (2003). Warming effects on growth, production, and vegetation structure of alpine shrubs: a five-year experiment in northern Japan. Oecologia, 135, 280-287.
DOI URL PMID |
[50] | Levitt J (1980). Responses of Plants to Environmental Stresses, VolumeⅡ: Chilling, Freezing, and High Temperature Stresses. 2nd edn. Academic Press, New York. |
[51] | Li N (2010). Effects of Warming and Nitrogen Addition on Soil Greenhouse Gases Fluxes of Desert Steppe Ecosystem. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract). |
[ 李娜 (2010). 增温和施氮肥对荒漠草原生态系统土壤温室气体通量的影响. 硕士学位论文. 内蒙古农业大学, 呼和浩特.] | |
[52] |
Lin XW, Zhang ZH, Wang SP, Hu YG, Xu GP, Luo CY, Chang XF, Duan JC, Lin QY, Xu BB, Wang YF, Zhao XQ, Xie ZB (2011). Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 151, 792-802.
DOI URL |
[53] | Liu Q, Lai XZ, Li JJ, Peng PH (2011). Effects of climate warming on growth and morphological characteristics of Centaurea maculosa from different regions. Acta Botanica Boreali-Occidentalia Sinica, 31, 2078-2083. (in Chinese with English abstract). |
[ 刘勤, 赖星竹, 李景吉, 彭培好 (2011). 模拟气候变暖对不同地区多斑矢车菊形态属性的影响. 西北植物学报, 31, 2078-2083.] | |
[54] |
Liu T, Zhang YX, Xu ZZ, Zhou GS, Hou YH, Lin L (2012). Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 36, 1043-1053. (in Chinese with English abstract).
DOI URL |
[ 刘涛, 张永贤, 许振柱, 周广胜, 侯彦会, 林琳 (2012). 短期增温和增加降水对内蒙古荒漠草原土壤呼吸的影响. 植物生态学报, 36, 1043-1053.] | |
[55] |
Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W (2013). The critical role of extreme heat for maize production in the United States. Nature Climate Change, 3, 497-501.
DOI URL |
[56] |
Loik ME, Harte J (1996). High-temperature tolerance of Artemisia tridentata and Potentilla gracilis under a climate change manipulation. Oecologia, 108, 224-231.
DOI URL PMID |
[57] |
Loik ME, Harte J (1997). Changes in water relations for leaves exposed to a climate-warming manipulation in the Rocky Mountains of Colorado. Environmental and Experimental Botany, 37, 115-123.
DOI URL |
[58] |
Luo YQ (2007). Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology, Evolution, and Systematics, 38, 683-712.
DOI URL |
[59] |
Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625.
DOI URL PMID |
[60] | Ma LN (2009). Responses of Soil Organic Carbon, Nitrogen and Phosphorus to Simulated Warming and Nitrogen Application in Songnen Grassland. PhD dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract). |
[ 马琳娜 (2009). 松嫩草原土壤有机碳、氮素、磷素对模拟增温及施氮的响应. 博士学位论文. 东北师范大学, 长春.] | |
[61] |
Melillo JM, McGuire AD, Kicklighter DW, Moore III B, Vorosmarty CJ, Schloss AL (1993). Global climate change and terrestrial net primary production. Nature, 363, 234-240.
DOI URL |
[62] | Mo JM, Yu MD, Kong GH (1997). The dynamics of soil NH4+-N and NO3--N in a pine forest of Dinghushan, as assessed by ion exchanged resin bag method. Acta Phytoecologica Sinica, 21, 335-341. (in Chinese with English abstract). |
[ 莫江明, 郁梦德, 孔国辉 (1997). 鼎湖山马尾松人工林土壤硝态氮和铵态氮动态研究. 植物生态学报, 21, 335-341.] | |
[63] | Mooney H, Roy J, Saugier B (2001). Terrestrial Global Productivity: Past, Present and Future. Academic Press, San Diego, USA. |
[64] |
Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476, 202-205.
DOI URL PMID |
[65] | Nijs I, Kockelbergh F, Teughels H, Blum H, Hendrey G, Impens I (1996). Free air temperature increase (FATI): a new tool to study global warming effects on plants in the field. Plant, Cell & Environment, 19, 495-502. |
[66] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. (in Chinese with English abstract). |
[ 牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] | |
[67] |
Niu SL, Li ZX, Xia JY, Han Y, Wu MY, Wan SQ (2008). Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and Experimental Botany, 63, 91-101.
DOI URL |
[68] |
Norby RJ, Edwards NT, Riggs JS, Abner CH, Wullschleger SD, Gunderson CA (1997). Temperature-controlled open-top chambers for global change research. Global Change Biology, 3, 259-267.
DOI URL |
[69] |
Norby RJ, Luo YQ (2004). Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist, 162, 281-293.
DOI URL |
[70] |
Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo YQ, Megonigal JP, Olsrud M, Ryan MG, Wan SQ (2004). Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist, 162, 311-322.
DOI URL |
[71] |
Peñuelas J, Gordon C, Llorens L, Nielsen T, Tieteman A, Beier C, Bruna P, Emmett B, Estiarte M, Gorissen A (2004). Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient. Ecosystems, 7, 598-612.
DOI URL |
[72] |
Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications, 4, 617-625.
DOI URL |
[73] |
Price MV, Waser NM (1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology, 79, 1261-1271.
DOI URL |
[74] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
DOI URL PMID |
[75] |
Saleska SR, Harte JN, Torn MS (1999). The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biology, 5, 125-141.
DOI URL |
[76] |
Shah NH, Paulsen GM (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 257, 219-226.
DOI URL |
[77] | Shan D (2008). The Effects of Experimental Warming and Nitrogen Addition on Plant Community and Soil in Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract). |
[ 珊丹 (2008). 控制性增温和施氮对荒漠草原植物群落和土壤的影响. 博士学位论文. 内蒙古农业大学, 呼和浩特.] | |
[78] |
Shaver GR, Canadell J, Chapin III FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000). Global warming and terrestrial ecosys- tems: a conceptual framework for analysis. BioScience, 50, 871-882.
DOI URL |
[79] |
Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298, 1987-1990.
DOI URL PMID |
[80] | Shen KP, Harte J (2000). Ecosystem climate manipulations. In: Sala OE, Jackson RB, Mooney HA, Howarth RW eds. Methods in Ecosystem Science. Springer-Verlag, New York. 353-369. |
[81] |
Sherry RA, Weng E, Arnone III JA, Johnson DW, Schimel DS, Verburg PS, Wallace LL, Luo LQ (2008). Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Global Change Biology, 14, 2923-2936.
DOI URL |
[82] | Shi FS, Wu N, Luo P (2008). Effect of temperature enhancement on community structure and biomass of subalpine meadow in Northwestern Sichuan. Acta Ecologica Sinica, 28, 5286-5293. (in Chinese with English abstract). |
[ 石福孙, 吴宁, 罗鹏 (2008). 川西北亚高山草甸植物群落结构及生物量对温度升高的响应. 生态学报, 28, 5286-5293.] | |
[83] | Tan CY (2010). Microbial Activities Responses to Simulated Warming and Nitrogen Addition. Master degree disserta- tion, Northeast Normal University, Changchun. (in Chinese with English abstract). |
[ 谭成玉 (2010). 松嫩草原微生物活性对模拟增温及施氮的响应. 硕士学位论文. 东北师范大学, 长春.] | |
[84] |
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[85] | Usami T, Lee J, Oikawa T (2001). Interactive effects of increased temperature and CO2 on the growth of Quercus myrsinaefolia saplings. Plant, Cell & Environment, 24, 1007-1019. |
[86] | Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeo- chemical Cycles, 19, GB2014, doi: 10.1029/2004GB-002315. |
[87] |
Wan SQ, Luo YQ, Wallace LL (2002). Changes in micro- climate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology, 8, 754-768.
DOI URL |
[88] |
Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424.
DOI URL |
[89] | Wang B, Sun G, Luo P, Wang M, Wu N (2010). Effects of climate warming and precipitation variations on process of belowground ecosystem. World Sci-Tech R & D, 32, 358-362. (in Chinese with English abstract). |
[ 王蓓, 孙庚, 罗鹏, 王萌, 吴宁 (2010). 气候变暖和降水变化对地下生态过程的影响. 世界科技研究与发展, 32, 358-362.] | |
[90] | Wang SP, Duan JC, Xu GP, Wang YF, Zhang ZH, Rui YC, Luo CY, Xu B, Zhu XX, Chang XF, Cui XF, Niu HS, Zhao XQ, Wang WY (2012). Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365-2376. |
[91] | Wei YY, Yin HJ, Liu Q, Li YX (2011). Responses on rhizosphere effect of two subalpine coniferous species to night-time warming and nitrogen fertilization in western Sichuan, China. Acta Ecologica Sinica, 31, 698-708. (in Chinese with English abstract). |
[ 卫云燕, 尹华军, 刘庆, 黎云祥 (2011). 夜间增温和施肥对川西亚高山针叶林两种树苗根际效应的影响. 生态学报, 31, 698-708.] | |
[92] |
Welker JM, Fahnestock JT, Henry GHR, O’Dea KW, Chimner RA (2004). CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming. Global Change Biology, 10, 1981-1995.
DOI URL |
[93] | Welker JM, Molau U, Parsons AN, Robinson CH, Wookey PA (1997). Responses of Dryas octopetala to ITEX environ- mental manipulations: a synthesis with circumpolar comparisons. Global Change Biology, 3, 61-73. |
[94] |
Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000). Response of bog and fen plant communities to warming and water-table manipulations. Ecology, 81, 3464-3478.
DOI URL |
[95] |
Woodwell GM, Mackenzie FT, Houghton RA, Apps M, Gorham E, Davidson E (1998). Biotic feedbacks in the warming of the earth. Climatic Change, 40, 495-518.
DOI URL |
[96] | Xi Y (2012). Study of Photosynthetic Characteristics of Dominant Plants in Typical Steppe of Inner Mongolia Under the Background of Climate Change. Master degree dissertation, Minzu University of China, Beijing. (in Chinese with English abstract). |
[ 席溢 (2009). 气候变化背景下内蒙古典型草原优势植物光合生理特征研究. 硕士学位论文. 中央民族大学, 北京.] | |
[97] |
Xia JY, Chen SP, Wan SQ (2010). Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe. Science of the Total Environment, 408, 2807-2816.
DOI URL |
[98] |
Xiong P, Xu ZF, Lin B, Liu Q (2010). Short-term response of winter soil respiration to simulated warming in a Pinus armandii plantation in the upper reaches of the Minjiang River, China. Chinese Journal of Plant Ecology, 34, 1369-1376. (in Chinese with English abstract).
DOI URL |
[ 熊沛, 徐振锋, 林波, 刘庆 (2010). 岷江上游华山松林冬季土壤呼吸对模拟增温的短期响应. 植物生态学报, 34, 1369-1376.] | |
[99] |
Xu MH, Xue X (2013). A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 33, 2071-2083. (in Chinese with English abstract).
DOI URL |
[ 徐满厚, 薛娴 (2013). 青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应. 生态学报, 33, 2071-2083.] | |
[100] | Xu ZF, Hu TX, Zhang YB, Xian JR, Wang KY (2008). Responses of phenology and growth of Betula utilis and Abies faxoniana in subalpine timberline ecotone to simulated global warming, Western Sichuan, China. Journal of Plant Ecology (Chinese Version), 32, 1061-1071. (in Chinese with English abstract). |
[ 徐振锋, 胡庭兴, 张远彬, 鲜骏仁, 王开运 (2008). 川西亚高山林线交错带糙皮桦和岷江冷杉幼苗物候与生长对模拟增温的响应. 植物生态学报, 32, 1061-1071.] | |
[101] |
Xu ZZ, Shimizu H, Yagasaki Y, Ito S, Zheng YR, Zhou GS (2013). Interactive effects of elevated CO2, drought, and warming on plants. Journal of Plant Growth Regulation, 32, 692-707.
DOI URL |
[102] |
Xu ZZ, Zhou GS (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224, 1080-1090.
DOI URL |
[103] |
Xu ZZ, Zhou GS (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59, 3317-3325.
DOI URL PMID |
[104] |
Xu ZZ, Zhou GS, Shimizu H (2009). Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Science, 49, 1843-1851.
DOI URL |
[105] | Xu ZZ, Zhou GS, Wang YH (2005). Responses of grassland ecosystem to CO2 enrichment and climate change. Journal of Applied Meteorological Science, 16, 385-395. (in Chinese with English abstract). |
[ 许振柱, 周广胜, 王玉辉 (2005). 草原生态系统对气候变化和CO2浓度升高的响应. 应用气象学报, 16, 385-395.] | |
[106] |
Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2011). Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452-465.
DOI URL |
[107] | Yang JQ (2011). Responses of Soil Microbial Biomass and Nutrient to Simulated Warming and Nitrogen Application in Songnen Grassland. Master degree dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract). |
[ 杨建琴 (2011). 松嫩草地土壤微生物量碳、氮对模拟增温及氮沉降的响应. 硕士学位论文. 东北师范大学, 长春.] | |
[108] |
Yin HJ, Lai T, Cheng XY, Jiang XM, Liu Q (2009). Warming effect on growth and physiology of seedlings of Betula albo-sinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forests of western Sichuan, China. Frontiers of Forestry in China, 4, 432-442.
DOI URL |
[109] | Zhang LR, Niu HS, Wang SP, Li YN, Zhao XQ (2010). Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species, Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 30, 6961-6969. (in Chinese with English abstract) |
[ 张立荣, 牛海山, 汪诗平, 李英年, 赵新全 (2010). 增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响. 生态学报, 30, 6961-6969.] | |
[110] | Zhang NY (2010). Impacts of Simulated Warming and Nitrogen Deposition to Coupling Effect Between Soil Nitrogen and Phosphorus in Songnen Grassland. Master degree dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract). |
[ 张南翼 (2010). 模拟增温及氮沉降对松嫩草原土壤氮素、磷素耦合作用的影响. 硕士学位论文. 东北师范大学, 长春.] | |
[111] |
Zhang W, Parker KM, Luo Y, Wan S, Wallace LL, Hu S (2005). Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 11, 266-277.
DOI URL |
[112] | Zhang XS, Zhou GS, Gao Q, Ni J, Tang HP (1997). Study of global change and terrestrial ecosystems in China. Earth Science Frontiers, 4, 137-144. (in Chinese with English abstract) |
[ 张新时, 周广胜, 高琼, 倪健, 唐海萍 (1997). 中国全球变化与陆地生态系统关系研究. 地学前缘, 4, 137-144.] | |
[113] | Zhou GS, Wang YH, Bai LP, Xu ZZ, Shi RX, Zhou L, Yuan WP (2004). Study on the interaction between terrestrial ecosystems and global change. Acta Meteorologica Sinica, 62, 693-707. (in Chinese with English abstract) |
[ 周广胜, 王玉辉, 白莉萍, 许振柱, 石瑞香, 周莉, 袁文平 (2004). 陆地生态系统与全球变化相互作用的研究进展. 气象学报, 62, 693-707.] | |
[114] |
Zhou XH, Sherry RA, An Y, Wallace LL, Luo YQ (2006). Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochemical Cycles, 20, GB1003, doi: 10.1029/2005GB002526.
DOI URL PMID |
[115] | Zhou GS, Wang YH, Zhang XS (1999). Advance in the responses of vegetation/ecosystems in China to global change. Bulletin of the Chinese Academy of Sciences, 13, 158-165. |
[116] | Zhou GS, Wang YH, Jiang YL (2002). Global change and water-driven IGBP-NECT, Northeast China. Earth Science Frontiers, 9, 198-216. (in Chinese with English abstract) |
[ 周广胜, 王玉辉, 蒋延玲 (2002). 全球变化与中国东北样带(NECT). 地学前缘, 9, 198-216.] |
[1] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[2] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[3] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[4] | YU Hai-Ying, YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[5] | LI Xue-Ying, ZHU Wen-Quan, LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method [J]. Chin J Plant Ecol, 2020, 44(7): 742-751. |
[6] | XIA Jian-Yang, LU Rui-Ling, ZHU Chen, CUI Er-Qian, DU Ying, HUANG Kun, SUN Bao-Yu. Response and adaptation of terrestrial ecosystem processes to climate warming [J]. Chin J Plant Ecol, 2020, 44(5): 494-514. |
[7] | LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming [J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214. |
[8] | SHEN Jia-Yan, LI Shuai-Feng, HUANG Xiao-Bo, LEI Zhi-Quan, SHI Xing-Quan, SU Jian-Rong. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin [J]. Chin J Plant Ecol, 2019, 43(11): 946-958. |
[9] | WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 116-125. |
[10] | WANG Guan-Qin, LI Fei, PENG Yun-Feng, CHEN Yong-Liang, HAN Tian-Feng, YANG Gui-Biao, LIU Li, ZHOU Guo-Ying, YANG Yuan-He. Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 105-115. |
[11] | Yong-Xing CHANG, Zhen-Ju CHEN, Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming [J]. Chin J Plant Ecol, 2017, 41(3): 279-289. |
[12] | Xiao-Hong LI, Jian-Cheng XU, Yi-An XIAO, Wen-Hai HU, Yu-Song CAO. Responses in allometric growth of two dominant species of subalpine meadow—Arundinella anomala and Miscanthus sinensis—to climate warming in Wugongshan Mountains, China [J]. Chin J Plant Ecol, 2016, 40(9): 871-882. |
[13] | ZHANG Wen-Tao, JIANG Yuan, WANG Ming-Chang, ZHANG Ling-Nan, DONG Man-Yu, GUO Yuan-Yuan. Responses of radial growth to climate warming in Picea meyeri trees growing at different elevations on the southern slope of Luya Mountain [J]. Chin J Plant Ecol, 2013, 37(12): 1142-1152. |
[14] | WU Tian-Xiang, HUANG Jian-Hui. Effects of grazing on the δ 15N values of foliage and soil in a typical steppe ecosystem in Inner Mongolia, China [J]. Chin J Plant Ecol, 2010, 34(2): 160-169. |
[15] | ZHANG Nai-Li, GUO Ji-Xun, WANG Xiao-Yu, MA Ke-Ping. SOIL MICROBIAL FEEDBACKS TO CLIMATE WARMING AND ATMOSPHERIC N DEPOSITION [J]. Chin J Plant Ecol, 2007, 31(2): 252-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn