Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (4): 396-408.DOI: 10.17521/cjpe.2016.0191
Special Issue: 生态系统碳水能量通量
• Orginal Article • Previous Articles Next Articles
Received:
2016-05-31
Accepted:
2017-04-05
Online:
2017-04-10
Published:
2017-05-19
Contact:
Chuan-Kuan WANG
Fei XU, Chuan-Kuan WANG. Seasonality and drivers of stem CO2 efflux for four temperate coniferous tree species[J]. Chin J Plan Ecolo, 2017, 41(4): 396-408.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0191
树种 Species | 叶性状 Leaf trait | 样本数 Sample size | 胸径 Diameter at breast height (cm) | 边材体积 Sapwood volume (cm3) | ||
---|---|---|---|---|---|---|
范围 Range | 平均值±标准误差 Mean ± SE | 范围 Range | 平均值±标准误差 Mean ± SE | |||
红松 Pinus koraiensis | 常绿 Evergreen | 11 | 8.0-30.1 | 18.7 ± 2.2b | 35.7-297.5 | 115.5 ± 26.2b |
红皮云杉 Picea koraiensis | 常绿 Evergreen | 10 | 17.2-43.4 | 29.1 ± 2.9a | 115.1-389.0 | 285.7 ± 30.5a |
樟子松 Pinus sylvestris var. mongolica | 常绿 Evergreen | 11 | 18.9-34.3 | 25.6 ± 1.6ab | 187.2-381.3 | 287.4 ± 17.7a |
落叶松 Larix gmelinii | 落叶 Deciduous | 12 | 11.7-46.4 | 28.2 ± 3.2a | 34.2-208.6 | 131.2 ± 15.6b |
Table 1 Basic characteristics of the sampled trees
树种 Species | 叶性状 Leaf trait | 样本数 Sample size | 胸径 Diameter at breast height (cm) | 边材体积 Sapwood volume (cm3) | ||
---|---|---|---|---|---|---|
范围 Range | 平均值±标准误差 Mean ± SE | 范围 Range | 平均值±标准误差 Mean ± SE | |||
红松 Pinus koraiensis | 常绿 Evergreen | 11 | 8.0-30.1 | 18.7 ± 2.2b | 35.7-297.5 | 115.5 ± 26.2b |
红皮云杉 Picea koraiensis | 常绿 Evergreen | 10 | 17.2-43.4 | 29.1 ± 2.9a | 115.1-389.0 | 285.7 ± 30.5a |
樟子松 Pinus sylvestris var. mongolica | 常绿 Evergreen | 11 | 18.9-34.3 | 25.6 ± 1.6ab | 187.2-381.3 | 287.4 ± 17.7a |
落叶松 Larix gmelinii | 落叶 Deciduous | 12 | 11.7-46.4 | 28.2 ± 3.2a | 34.2-208.6 | 131.2 ± 15.6b |
Fig. 1 Seasonal changes in daily sums of precipitation (Pre) and daily means of air temperature (Ta) and relative air humidity (RH) between July 1, 2013 and July 20, 2014.
Fig. 2 Seasonal changes in stem CO2 efflux (Es) (A), stem temperature (Ts) (B), daily stem circumference increment (Si) (C), and sapwood nitrogen concentration ([N]) (D) for the four tree species (mean ± SE; n = 6-12) between May 10, 2013 and July 3, 2014. The values of Es or Ts are means of 10 to 12 trees measured five to seven times a day.
Fig. 3 Comparisons of mean values of stem CO2 efflux (Es) (A), stem temperature (Ts) (B), annual stem circumference increment (Gi) (C), and sapwood nitrogen concentration ([N]) (D) between the growing and non-growing seasons for the four tree species (mean ± SE; n = 6-12). Different lowercase letters (a-d) stand for significant differences (p < 0.05) in mean values of Es, Ts, Gi, and [N] among different species in the same season, while stars (*) represent significant differences (p < 0.05) in those of Es, Ts, and [N] between the two seasons for the same species.
Fig. 4 Relationships between stem CO2 efflux (Es) and stem temperature (Ts) for the four tree species during the growing and non-growing seasons. Each point is the mean of 10 to 12 trees.
Fig. 5 Comparisons of temperature sensitivity (Q10) of stem CO2 efflux between the growing and non-growing seasons for the four tree species (mean ± SE; n = 10-12). Different lowercase letters (a-d) stand for significant differences (p < 0.05) in Q10 values among different species in the same season, while stars (*) represent significant differences (p < 0.05) in Q10 values between the two seasons for the same species.
Fig. 6 Relationships of stem CO2 efflux (Es) with daily stem circumference increment (Si) (A), air relative humidity (RH) (B), and sapwood nitrogen concentration ([N]) (C) during the growing season for the four tree species (mean ± SE; n = 6-12). The black triangles (▼) indicate the maximum Si at the end of May 2014 (A) and [N] at the time of slow growth in mid-September 2013 (C) for Pinus sylvestris var. mongolica, both of which are excluded when fitting models.
[1] | Amthor JS (1991). Respiration in a future, higher-CO2 world.Plant, Cell & Environment, 14, 13-20. |
[2] | Araki MG, Kajimoto T, Han QM, Kawasaki T, Utsugi H, Gyokusen K, Chiba Y (2015). Effect of stem radial growth on seasonal and spatial variations in stem CO2 efflux of Chamaecyparis obtusa.Trees, 29, 499-514. |
[3] | Araki MG, Utsugi H, Kajimoto T, Han QM, Kawasaki T, Chiba Y (2010). Estimation of whole-stem respiration, incorporating vertical and seasonal variations in stem CO2 efflux rate, of Chamaecyparis obtusa trees.Journal of Forest Research, 15, 115-122. |
[4] | Atkin OK, Tjoelker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature.TRENDS in Plant Science, 8, 343-351. |
[5] | Bowman WP, Barbour MM, Turnbull MH, Tissue DT, Whitehead D, Griffin KL (2005). Sap flow rates and sapwood density are critical factors in within- and between-tree variation in CO2 efflux from stems of mature Dacrydium cupressinum trees.New Phytologist, 167, 815-828. |
[6] | Brito P, Morales D, Wieser G, Jiménez MS (2010). Spatial and seasonal variations in stem CO2 efflux of Pinus canariensis at their upper distribution limit.Trees, 24, 523-531. |
[7] | Cavaleri MA, Oberbauer SF, Ryan MG (2006). Wood CO2 efflux in a primary tropical rain forest.Global Change Biology, 12, 2442-2458. |
[8] | Ceschia É, Damesin C, Lebaube S, Pontailler J-Y, Dufrêne É (2002). Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica).Annals of Forest Science, 59, 801-812. |
[9] | Gruber A, Wieser G, Oberhuber W (2009). Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra.Tree Physiology, 29, 641-649. |
[10] | Jiang LF, Shi FC, Zu YG, Wang WJ, Koike T (2003). Study on stem respiration of Larix gmelinii of different ages and its relationship to environmental factors.Bulletin of Botanical Research, 23, 296-301. |
[11] | Joseph G, Kelsey RG (2004). Ethanol synthesis and aerobic respiration in the laboratory by leader segments of Douglas-fir seedlings from winter and spring.Journal of Experimental Botany, 55, 1095-1103. |
[12] | Katayama A, Kume T, Ohashi M, Matsumoto K, Nakagawa M, Saito T, Kumagai T, Otsuki K (2016). Characteristics of wood CO2 efflux in a Bornean tropical rainforest.Agricultural and Forest Meteorology, 220, 190-199. |
[13] | Köcher P, Horna V, Leuschner C (2012). Environmental control of daily stem growth patterns in five temperate broad-leaved tree species.Tree Physiology, 32, 1021-1032. |
[14] | Lavigne MB, Little CHA, Riding RT (2004). Changes in stem respiration rate during cambial reactivation can be used to refine estimates of growth and maintenance respiration.New Phytologist, 162, 81-93. |
[15] | Lavigne MB, Ryan MG (1997). Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites.Tree Physiology, 17, 543-551. |
[16] | Maier CA (2001). Stem growth and respiration in loblolly pine plantations differing in soil resource availability.Tree Physiology, 21, 1183-1193. |
[17] | Maier CA, Albaugh TJ, Allen HL, Dougherty PM (2004). Respiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations: The effect of site resources on the stand carbon balance.Global Change Biology, 10, 1335-1350. |
[18] | Maier CA, Johnsen KH, Clinton BD, Ludovici KH (2010). Relationships between stem CO2 efflux, substrate supply, and growth in young loblolly pine trees.New Phytologist, 185, 502-513. |
[19] | Maier CA, Zarnoch SJ, Dougherty PM (1998). Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation.Tree Physiology, 18, 11-20. |
[20] | Rodríguez-Calcerrada J, López R, Salomón R, Gordaliza GG, Valbuena-Carabaña M, Oleksyn J, Gil L (2015). Stem CO2 efflux in six co-occurring tree species: Underlying factors and ecological implications.Plant, Cell & Environment, 38, 1104-1115. |
[21] | Rodríguez-Calcerrada J, Martin-StPaul NK, Lempereur M, Ourcival J-M, del Rey MdC, Joffre R, Rambal S (2014). Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand.Agricultural and Forest Meteorology, 195, 61-72. |
[22] | Ryan MG (1990). Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii.Canadian Journal of Forest Research, 20, 48-57. |
[23] | Ryan MG (1991). Effects of climate change on plant respiration.Ecological Applications, 1, 157-167. |
[24] | Ryan MG, Gower ST, Hubbard RM, Waring RH, Gholz HL, Cropper Jr. WP, Running SW (1995). Woody tissue maintenance respiration of four conifers in contrasting climates.Oecologia, 101, 133-140. |
[25] | Ryan MG, Linder S, Vose JM, Hubbard RM (1994). Dark respiration of pines.Ecological Bulletins, 43, 50-63. |
[26] | Saveyn A, Steppe K, Lemeur R (2007). Drought and the diurnal patterns of stem CO2 efflux and xylem CO2 concentration in young oak (Quercus robur).Tree Physiology, 27, 365-374. |
[27] | Saveyn A, Steppe K, McGuire MA, Lemeur R, Teskey RO (2008). Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration.Oecologia, 154, 637-649. |
[28] | Shi XL, Wang CK, Xu F, Wang XC (2010). Temporal dynamics and influencing factors of stem respiration for four temperate tree species.Acta Ecologica Sinica, 30, 3994-4003. (in Chinese with English abstract)[石新立, 王传宽, 许飞, 王兴昌 (2010). 四个温带树种树干呼吸的时间动态及其影响因子. 生态学报, 30, 3994-4003.] |
[29] | Sorz J, Hietz P (2006). Gas diffusion through wood: Implications for oxygen supply.Trees, 20, 34-41. |
[30] | Sprugel DG, Benecke U (1991). Measuring woody-tissue respiration and photosynthesis. In: Lassoie JP, Hinckley TM eds. Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boca Raton, USA. 329-355. |
[31] | Stahl C, Burban B, Goret J-Y, Bonal D (2011). Seasonal variations in stem CO2 efflux in the neotropical rainforest of French Guiana.Annals of Forest Science, 68, 771-782. |
[32] | Steppe K, Saveyn A, McGuire MA, Lemeur R, Teskey RO (2007). Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems.Functional Plant Biology, 34, 785-792. |
[33] | Stockfors J, Linder S (1998). Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.Tree Physiology, 18, 155-166. |
[34] | Sun T, Liu RP, Li XH, Mao ZJ, Huang W, Dong LL (2015). Effects of simulated nitrogen deposition on stem respiration of Larix gmelinii Rupr.in Northeastern China. Acta Ecologica Sinica, 35, 3684-3691. (in Chinese with English abstract)[孙涛, 刘瑞鹏, 李兴欢, 毛子军, 黄唯, 董利利 (2015). 模拟氮沉降对东北地区兴安落叶松树干呼吸的影响. 生态学报, 35, 3684-3691.] |
[35] | Wang CK, Yang JY (2005). Carbon dioxide fluxes from soil respiration and woody debris decomposition in boreal forests.Acta Ecologica Sinica, 25, 633-638. (in Chinese with English abstract)[王传宽, 杨金艳 (2005). 北方森林土壤呼吸和木质残体分解释放出的CO2通量. 生态学报, 25, 633-638.] |
[36] | Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six temperate forests in China.Global Change Biology, 12, 2103-2114. |
[37] | Wang M, Wu YX, Wu JL (2008). Stem respiration of dominant tree species in broad-leaved Korean pine mixed forest in Changbai Mountains.Chinese Journal of Applied Ecology, 19, 956-960. (in Chinese with English abstract)[王淼, 武耀祥, 武静莲 (2008). 长白山红松针阔叶混交林主要树种树干呼吸速率. 应用生态学报, 19, 956-960.] |
[38] | Wang WJ, Yang FJ, Zu YG, Wang HM, Takagi K, Sasa K, Koike T (2003). Stem respiration of a larch ( Larix gmelini) plantation in Northeast China.Acta Botanica Sinica, 45, 1387-1397. |
[39] | Wang XW, Mao ZJ, Sun T, Wu HJ (2011). Effects of temperature and sap flow velocity on CO2 efflux from stems of three tree species in spring and autumn in Northeast China.Acta Ecologica Sinica, 31, 3358-3367. (in Chinese with English abstract)[王秀伟, 毛子军, 孙涛, 吴海军 (2011). 春、秋季节树干温度和液流速度对东北3树种树干表面CO2释放通量的影响. 生态学报, 31, 3358-3367.] |
[40] | Wertin TM, Teskey RO (2008). Close coupling of whole-plant respiration to net photosynthesis and carbohydrates.Tree Physiology, 28, 1831-1840. |
[41] | Wittmann C, Pfanz H, Loreto F, Centritto M, Pietrini F, Alessio G (2006). Stem CO2 release under illumination: Corticular photosynthesis, photorespiration or inhibition of mitochondrial respiration?Plant, Cell & Environment, 29, 1149-1158. |
[42] | Xiao FM, Wang SL, Du TZ, Chen LC, Yu XJ (2005). Respiration of Chinese fir in plantations in Huitong, Hu’nan Province.Acta Ecologica Sinica, 25, 2514-2519. (in Chinese with English abstract)[肖复明, 汪思龙, 杜天真, 陈龙池, 于小军 (2005). 湖南会同林区杉木人工林呼吸量测定. 生态学报, 25, 2514-2519.] |
[43] | Xu F, Wang CK (2015). Diurnal dynamics in stem maintenance respiration in spring and autumn for four temperate coniferous tree species in northeastern China.Acta Ecologica Sinica, 35, 3233-3243. (in Chinese with English abstract)[许飞, 王传宽 (2015). 温带4种针叶树种春、秋季节树干维持呼吸的日动态. 生态学报, 35, 3233-3243.] |
[44] | Xu F, Wang CK, Wang XC (2011). Intra- and inter-specific variations in stem respiration for 14 temperate tree species in northeastern China.Acta Ecologica Sinica, 31, 3581-3589. (in Chinese with English abstract)[许飞, 王传宽, 王兴昌 (2011). 东北东部14个温带树种树干呼吸的种内种间变异. 生态学报, 31, 3581-3589.] |
[45] | Xu M, DeBiase TA, Qi Y (2000). A simple technique to measure stem respiration using a horizontally oriented soil chamber.Canadian Journal of Forest Research, 30, 1555-1560. |
[46] | Yan YP, Sha LQ, Cao M (2008). Stem respiration rates of dominant tree species in a tropical seasonal rain forest in Xishuangbanna, Yunnan, southwest China.Journal of Plant Ecology (Chinese Version), 32, 23-30. (in Chinese with English abstract)[严玉平, 沙丽清, 曹敏 (2008). 西双版纳热带季节雨林优势树种树干呼吸特征. 植物生态学报, 32, 23-30.] |
[47] | Yang JY, He YJ, Aubrey DP, Zhuang QL, Teskey RO (2016). Global patterns and predictors of stem CO2 efflux in forest ecosystems.Global Change Biology, 22, 1433-1444. |
[48] | Yang JY, Teskey RO, Wang CK (2012a). Stem CO2 efflux of ten species in temperate forests in Northeastern China.Trees, 26, 1225-1235. |
[49] | Yang QP, Xu M, Chi YG, Zheng YP, Shen RC, Li PX, Dai HT (2012b). Temporal and spatial variations of stem CO2 efflux of three species in subtropical China.Journal of Plant Ecology, 5, 229-237. |
[50] | Zabuga VF, Zabuga GA, Zinov'eva VP (1983). Ecological characteristics of respiratory CO2 exchange in the growing trunk of Scotch pine.Soviet Plant Physiology, 29, 934-939. |
[51] | Zach A, Horna V, Leuschner C, Zimmermann R (2010). Patterns of wood carbon dioxide efflux across a 2,000-m elevation transect in an Andean moist forest.Oecologia, 162, 127-137. |
[52] | Zha TS, Kellomäki S, Wang KY, Ryyppö A, Niinistö S (2004). Seasonal and annual stem respiration of Scots pine trees under boreal conditions.Annals of Botany, 94, 889-896. |
[53] | Zhang HY, Wang CK, Wang XC (2014). Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species.Trees, 28, 77-89. |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[3] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[4] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[5] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[6] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[7] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[8] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[9] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[10] | YE Jie-Hong, YU Cheng-Long, ZHUO Shao-Fei, CHEN Xin-Lan, YANG Ke-Ming, WEN Yin, LIU Hui. Correlations of photosynthetic heat tolerance with leaf morphology and temperature niche in Magnoliaceae [J]. Chin J Plant Ecol, 2023, 47(10): 1432-1440. |
[11] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[12] | CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu. Process-based simulation of autumn phenology of trees and the regional differentiation attribution in northern China [J]. Chin J Plant Ecol, 2022, 46(7): 753-765. |
[13] | DONG Han-Jun, WANG Xing-Chang, YUAN Dan-Yang, LIU Di, LIU Yu-Long, SANG Ying, WANG Xiao-Chun. Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 722-734. |
[14] | XIONG Bo-Wen, LI Tong, HUANG Ying, YAN Chun-Hua, QIU Guo-Yu. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model [J]. Chin J Plant Ecol, 2022, 46(4): 383-393. |
[15] | ZHU Yu-He, XIAO Hong, WANG Bing, WU Ying, BAI Yong-Fei, CHEN Di-Ma. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus along soil depths in response to climatic variables in grasslands on the Mongolia Plateau [J]. Chin J Plant Ecol, 2022, 46(3): 340-349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn