Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (9): 1050-1063.DOI: 10.17521/cjpe.2021.0463
• Research Articles • Previous Articles Next Articles
Halibunuer 1, Gulzar ABDUKIRIM1,2, Reyilamu MAIMAITITUERXUN1, Aysajan ABDUSALAM1,2,*()
Received:
2021-12-09
Accepted:
2022-05-07
Online:
2022-09-20
Published:
2022-10-19
Contact:
Aysajan ABDUSALAM
Supported by:
Halibunuer , Gulzar ABDUKIRIM, Reyilamu MAIMAITITUERXUN, Aysajan ABDUSALAM. Flower syndrome and pollination characteristics of two flower morphs in Lycium ruthenicum (Solanaceae)[J]. Chin J Plant Ecol, 2022, 46(9): 1050-1063.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0463
Fig. 1 Measurements of flower traits (A) and relative height of sexual organs (B) of two flower morphs of Lycium ruthenicum (mean ± SE). a(a′)-e(e′), flower length; a(a′)-d(d′), pistil length; a(a′)-c(c′), stamen length; f(f′)-b(b′), corolla diameter. Different lowercase letters in B indicate significant difference between different sexual organs of the same flower morph (p < 0.05).
Fig. 2 Individual plant, inflorescence, fruit, flower morphs and flower color changes in Lycium ruthenicum in Kashi, Xinjiang, China. A, Herkogamous flower. B, Homostylous flower. C, Inflorescence of herkogamous flower. D, Inflorescence of homostylous flower. E, F, Fruit. G, Individual plant. H, Change of flower color in different phases of flower longevity in two flower morphs of L. ruthenicum (upper, homostylous flower; lower, herkogamous flower).
花部特征 Flower characteristic | 紫色阶段 Purple phase | 白色阶段 White phase | 花型×阶段 Morph × phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|
同位花 Homostylous flower | 雌雄异位花 Herkogamous flower | Wald χ12 | p1 | 同位花 Homostylous flower | 雌雄异位花 Herkogamous flower | Wald χ22 | p2 | Wald χ32 | p3 | |
花冠直径 Corolla diameter (mm) | 8.29 ± 0.25 | 7.36 ± 0.33 | 10.411 | 0.001 | 7.18 ± 0.23 | 6.70 ± 0.43 | 0.914 | 0.659 | 17.380 | 0.001 |
花冠筒长 Corolla tube length (mm) | 14.28 ± 0.31 | 10.70 ± 0.54 | 32.514 | <0.001 | 14.92 ± 0.39 | 9.71 ± 0.57 | 57.284 | <0.001 | 4.188 | 0.242 |
雌蕊长 Pistil length (mm) | 11.99 ± 0.33 | 12.20 ± 0.57 | 0.104 | 0.747 | 12.06 ± 0.33 | 13.07 ± 0.48 | 3.005 | 0.083 | 0.043 | 0.998 |
雄蕊长 Stamen length (mm) | 11.99 ± 0.24 | 10.20 ± 0.42 | 13.574 | <0.001 | 12.37 ± 0.36 | 11.14 ± 0.53 | 3.745 | 0.053 | 1.481 | 0.687 |
雌雄蕊空间距离 Stamen-stigma distance (mm) | 0.65 ± 0.16 | 2.00 ± 0.27 | 18.588 | <0.001 | 1.02 ± 0.18 | 1.93 ± 0.27 | 8.042 | 0.005 | 4.358 | 0.225 |
雌蕊-花冠口距离 Corolla tube-stigma distance (mm) | 2.29 ± 0.22 | 1.50 ± 0.39 | 3.175 | 0.075 | 2.86 ± 0.28 | 3.36 ± 0.42 | 0.975 | 0.323 | 12.430 | 0.006 |
雄蕊-花冠口距离 Corolla tube-stamen distance (mm) | 0.70 ± 0.28 | 2.29 ± 0.16 | 24.444 | <0.001 | 2.55 ± 0.29 | 1.86 ± 0.42 | 1.865 | 0.172 | 1.208 | 0.751 |
Table 1 Comparisons of flower traits (mean ± SE) among two flower morphs at early flowering phase (purple) and late flowering phase (white) of Lycium ruthenicum using generalized linear model (GLM)
花部特征 Flower characteristic | 紫色阶段 Purple phase | 白色阶段 White phase | 花型×阶段 Morph × phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|
同位花 Homostylous flower | 雌雄异位花 Herkogamous flower | Wald χ12 | p1 | 同位花 Homostylous flower | 雌雄异位花 Herkogamous flower | Wald χ22 | p2 | Wald χ32 | p3 | |
花冠直径 Corolla diameter (mm) | 8.29 ± 0.25 | 7.36 ± 0.33 | 10.411 | 0.001 | 7.18 ± 0.23 | 6.70 ± 0.43 | 0.914 | 0.659 | 17.380 | 0.001 |
花冠筒长 Corolla tube length (mm) | 14.28 ± 0.31 | 10.70 ± 0.54 | 32.514 | <0.001 | 14.92 ± 0.39 | 9.71 ± 0.57 | 57.284 | <0.001 | 4.188 | 0.242 |
雌蕊长 Pistil length (mm) | 11.99 ± 0.33 | 12.20 ± 0.57 | 0.104 | 0.747 | 12.06 ± 0.33 | 13.07 ± 0.48 | 3.005 | 0.083 | 0.043 | 0.998 |
雄蕊长 Stamen length (mm) | 11.99 ± 0.24 | 10.20 ± 0.42 | 13.574 | <0.001 | 12.37 ± 0.36 | 11.14 ± 0.53 | 3.745 | 0.053 | 1.481 | 0.687 |
雌雄蕊空间距离 Stamen-stigma distance (mm) | 0.65 ± 0.16 | 2.00 ± 0.27 | 18.588 | <0.001 | 1.02 ± 0.18 | 1.93 ± 0.27 | 8.042 | 0.005 | 4.358 | 0.225 |
雌蕊-花冠口距离 Corolla tube-stigma distance (mm) | 2.29 ± 0.22 | 1.50 ± 0.39 | 3.175 | 0.075 | 2.86 ± 0.28 | 3.36 ± 0.42 | 0.975 | 0.323 | 12.430 | 0.006 |
雄蕊-花冠口距离 Corolla tube-stamen distance (mm) | 0.70 ± 0.28 | 2.29 ± 0.16 | 24.444 | <0.001 | 2.55 ± 0.29 | 1.86 ± 0.42 | 1.865 | 0.172 | 1.208 | 0.751 |
Fig. 3 Pollen viability and stigma acceptability in purple phase (1, 2 and 3) and white phase (4 and 5) of two flower morphs of Lycium ruthenicum (mean ± SE). “+” indicates the degree of acceptability of stigma.
Fig. 4 Nectar volume at early flowering phase (purple) and late phase (white) of two flower morphs of Lycium ruthenicum (mean ± SE). Different uppercase letters indicate significant difference between different phases of the same flower morph, and different lowercase letters indicate significant difference between different flower morphs at the same phase (p < 0.05).
传感器 Sensor | 物质 Substance | 紫色阶段 Purple phase | 白色阶段 White phase | 花型×阶段 Morph × phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
同位花 Homostylous flower | 雌雄异位花 Herkogamy flower | Wald χ12 | p1 | 同位花 Homostylous flower | 雌雄异位花 Herkogamy flower | Wald χ22 | p2 | Wald χ32 | p3 | ||
W1C | 芳香成分苯类 Benzenoids | 8.58 ± 0.37 | 9.26 ± 0.46 | 1.408 | 0.235 | 6.31 ± 0.20 | 8.23 ± 0.04 | 130.437 | <0.001 | 3.385 | 0.066 |
W3C | 氨类, 芳香成分 Ammonia, benzenoids | 8.19 ± 0.40 | 7.01 ± 1.49 | 0.463 | 0.496 | 5.45 ± 0.27 | 7.76 ± 0.05 | 106.682 | <0.001 | 3.120 | 0.077 |
W5C | 烷烃芳香成分 Alkane aromatic composition | 8.06 ± 0.41 | 8.92 ± 0.55 | 1.566 | 0.211 | 5.28 ± 0.28 | 7.64 ± 0.05 | 103.141 | <0.001 | 3.424 | 0.064 |
W2W | 芳香成分, 有机硫化物 Benzenoids, organic sulfide | 10.92 ± 0.39 | 10.11 ± 0.27 | 4.025 | 0.045 | 14.97 ± 0.24 | 10.28 ± 0.22 | 309.736 | <0.001 | 87.539 | <0.001 |
W1S | 甲基类 Methyl | 19.83 ± 0.55 | 15.87 ± 1.60 | 4.450 | 0.035 | 25.47 ± 1.01 | 19.86 ± 0.31 | 42.106 | <0.001 | 0.531 | 0.466 |
W1W | 无机硫化物 Inorganic sulfide | 7.61 ± 2.61 | 10.25 ± 0.22 | 2.484 | 0.115 | 13.67 ± 0.19 | 10.48 ± 0.14 | 267.990 | <0.001 | 9.389 | 0.002 |
W2S | 醇类, 醛酮类 Alcohols, aldehydes and ketones | 10.40 ± 0.30 | 10.67 ± 0.14 | 1.223 | 0.269 | 10.92 ± 0.39 | 10.70 ± 0.10 | 0.357 | 0.550 | 0.279 | 0.598 |
W3S | 烷烃 Alkane | 8.28 ± 0.40 | 8.99 ± 0.53 | 1.131 | 0.288 | 5.37 ± 0.27 | 7.77 ± 0.04 | 112.877 | <0.001 | 4.695 | 0.030 |
W5S | 氮氧化合物 Nitrogen oxides | 9.68 ± 0.29 | 9.85 ± 0.33 | 0.160 | 0.689 | 7.41 ± 0.36 | 9.35 ± 0.09 | 40.361 | <0.001 | 10.389 | 0.001 |
W6S | 氢化物 Hydride | 8.46 ± 0.39 | 9.08 ± 0.51 | 0.952 | 0.329 | 5.46 ± 0.26 | 7.93 ± 0.05 | 125.947 | <0.001 | 6.120 | 0.013 |
Table 2 Mean relative composition of two flower morphs at early flowering phase (purple) and late flowering phase (white) of Lycium ruthenicum flower volatiles in Kashi, Xinjiang, China (mean ± SE)
传感器 Sensor | 物质 Substance | 紫色阶段 Purple phase | 白色阶段 White phase | 花型×阶段 Morph × phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
同位花 Homostylous flower | 雌雄异位花 Herkogamy flower | Wald χ12 | p1 | 同位花 Homostylous flower | 雌雄异位花 Herkogamy flower | Wald χ22 | p2 | Wald χ32 | p3 | ||
W1C | 芳香成分苯类 Benzenoids | 8.58 ± 0.37 | 9.26 ± 0.46 | 1.408 | 0.235 | 6.31 ± 0.20 | 8.23 ± 0.04 | 130.437 | <0.001 | 3.385 | 0.066 |
W3C | 氨类, 芳香成分 Ammonia, benzenoids | 8.19 ± 0.40 | 7.01 ± 1.49 | 0.463 | 0.496 | 5.45 ± 0.27 | 7.76 ± 0.05 | 106.682 | <0.001 | 3.120 | 0.077 |
W5C | 烷烃芳香成分 Alkane aromatic composition | 8.06 ± 0.41 | 8.92 ± 0.55 | 1.566 | 0.211 | 5.28 ± 0.28 | 7.64 ± 0.05 | 103.141 | <0.001 | 3.424 | 0.064 |
W2W | 芳香成分, 有机硫化物 Benzenoids, organic sulfide | 10.92 ± 0.39 | 10.11 ± 0.27 | 4.025 | 0.045 | 14.97 ± 0.24 | 10.28 ± 0.22 | 309.736 | <0.001 | 87.539 | <0.001 |
W1S | 甲基类 Methyl | 19.83 ± 0.55 | 15.87 ± 1.60 | 4.450 | 0.035 | 25.47 ± 1.01 | 19.86 ± 0.31 | 42.106 | <0.001 | 0.531 | 0.466 |
W1W | 无机硫化物 Inorganic sulfide | 7.61 ± 2.61 | 10.25 ± 0.22 | 2.484 | 0.115 | 13.67 ± 0.19 | 10.48 ± 0.14 | 267.990 | <0.001 | 9.389 | 0.002 |
W2S | 醇类, 醛酮类 Alcohols, aldehydes and ketones | 10.40 ± 0.30 | 10.67 ± 0.14 | 1.223 | 0.269 | 10.92 ± 0.39 | 10.70 ± 0.10 | 0.357 | 0.550 | 0.279 | 0.598 |
W3S | 烷烃 Alkane | 8.28 ± 0.40 | 8.99 ± 0.53 | 1.131 | 0.288 | 5.37 ± 0.27 | 7.77 ± 0.04 | 112.877 | <0.001 | 4.695 | 0.030 |
W5S | 氮氧化合物 Nitrogen oxides | 9.68 ± 0.29 | 9.85 ± 0.33 | 0.160 | 0.689 | 7.41 ± 0.36 | 9.35 ± 0.09 | 40.361 | <0.001 | 10.389 | 0.001 |
W6S | 氢化物 Hydride | 8.46 ± 0.39 | 9.08 ± 0.51 | 0.952 | 0.329 | 5.46 ± 0.26 | 7.93 ± 0.05 | 125.947 | <0.001 | 6.120 | 0.013 |
Fig. 6 Visiting frequency of main pollinators at early flowering phase (purple) and late flowering phase (white) of Lycium ruthenicum of two flower morphs (mean ± SE). Different uppercase letters indicate significant difference between different pollinators of the same morph, and different lowercase letters indicate significant difference between different flower morphs of same pollinator (p < 0.05).
Fig. 7 Proportion of total pollen grains removed (A), deposited pollen grains (B), pollen transfer efficiency (C) and fruit and seed set rate (D) in the two flower morphs of Lycium ruthenicum at early flowering phase (purple) and late flowering phase (white)(mean ± SE). Different uppercase letters indicate significant difference between different phases of the same morph, and different lowercase letters indicate significant difference between different flower morph at the same phase (p < 0.05).
[1] | Abdusalam A, Abdukirim G (2018). Pollination characteristics of two sympatrically distributed Tamarix species in south Xinjiang, China. Plant Science Journal, 36, 162-169. |
[艾沙江·阿不都沙拉木, 古丽扎尔·阿不都克力木 (2018). 同域分布柽柳属两种植物的传粉生物学研究. 植物科学学报, 36, 162-169.] | |
[2] |
Abdusalam A, Maimaitituerxun R, Hashan H, Abdukirim G (2021). Pollination adaptations of group-by-group stamen movement in a meadow plant with temporal flower closure. Plant Diversity, 43, 308-316.
DOI |
[3] |
Abdusalam A, Tan DY (2014). Contribution of temporal flower closure to reproductive success of the spring-flowering Tulipa iliensis. Journal of Systematics and Evolution, 52, 186-194.
DOI URL |
[4] |
Arroyo MTK, Armesto JJ, Primack RB (1985). Community studies in pollination ecology in the high temperate Andes of central Chile. II. Effect of temperature on visitation rates and pollination possibilities. Plant Systematics and Evolution, 149, 187-203.
DOI URL |
[5] |
Arroyo MTK, Dudley LS, Jespersen G, Pacheco DA, Cavieres LA (2013). Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance. New Phytologist, 200, 1260-1268.
DOI PMID |
[6] |
Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004). Pollen limitation of plant reproduction ecological and evolutionary causes and consequences. Ecology, 85, 2408-2421.
DOI URL |
[7] |
Ashman TL, Schoen DJ (1994). How long should flowers live? Nature, 371, 788-791.
DOI URL |
[8] |
Barrett SCH (1998). The evolution of mating strategies in flowering plants. Trends in Plant Science, 3, 335-341.
DOI URL |
[9] | Barrett SCH (2003). Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 358, 991-1004. |
[10] | Barrett SCH (2010). Understanding plant reproductive diversity. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 365, 99-109. |
[11] |
Barrett SCH, Harder LD (1996). Ecology and evolution of plant mating. Trends in Ecology & Evolution, 11, 73-79.
DOI URL |
[12] |
Barrett SCH, Jesson LK, Baker AM (2000). The evolution and function of stylar polymorphisms in flowering plants. Annals of Botany, 85, 253-265.
DOI URL |
[13] |
Bhatnagar S, Meena D, Singh S (2019). Effect of climate change on plants and their pollinators: a review. International Journal of Biotech Trends and Technology, 9, 34-39.
DOI URL |
[14] |
Bingham RA, Orthner AR (1998). Efficient pollination of alpine plants. Nature, 391, 238-239.
DOI URL |
[15] |
Bonamour S, Chevin LM, Charmantier A, Teplitsky C (2019). Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 374, 20180178. DOI: 10.1098/rstb.2018.0178.
DOI |
[16] |
Bosch J, Blas M (1994). Foraging behaviour and pollinating efficiency of Osmia cornuta and Apis mellifera on almond (Hymenoptera: Megachilidae, Apidae). Applied Entomology and Zoology, 29, 1-9.
DOI URL |
[17] |
Brummell DA, Harpster MH, Dunsmuir P (1999). Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Molecular Biology, 39, 161-169.
DOI URL |
[18] | Campbell DR, Waser NM, Price MV (1996). Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Ecology, 77, 1463-1472. |
[19] |
Charlesworth D, Charlesworth B (1979). A model for the evolution of distyly. The American Naturalist, 114, 467-498.
DOI URL |
[20] |
Cheptou PO (2012). Review: part of a special issue on plant mating systems, Clarifying Baker’s Law. Annals of Botany, 109, 633-641.
DOI PMID |
[21] |
Clark MJ, Husband BC (2007). Plasticity and timing of flower closure in response to pollination in Chamerion angustifolium (Onagraceae). International Journal of Plant Science, 168, 619-625.
DOI URL |
[22] | Dafni A, Kevan PG, Husband BC (2005). Practical Pollination Biology. Enviroquest, Ontario, Canada. 130-141. |
[23] | Dai GL, Qin K, Cao YL, Jiao EN, Zhang B (2013). Characteristics of flower dynamic and breeding system of Lycium ruthenicum. Guihaia, 33, 126-132. |
[戴国礼, 秦垦, 曹有龙, 焦恩宁, 张波 (2013). 黑果枸杞的花部结构及繁育系统特征. 广西植物, 33, 126-132.] | |
[24] | Darwin C (1872). The Different Forms of Flowers on Plants of the Same Species. D. Appleton and Co, New York. |
[25] | Duan YW, He YP, Zhang TF, Liu JQ (2007). Delayed selfing in an alpine species Gentianopsis barbata. Journal of Plant Ecology, 31, 110-117. |
[段元文, 何亚平, 张挺锋, 刘建全 (2007). 高山植物扁蕾的延迟自交机制. 植物生态学报, 31, 110-117.]
DOI |
|
[26] |
Elliott SE, Irwin RE (2009). Effects of flowering plant density on pollinator visitation, pollen receipt, and seed production in Delphinium barbeyi (Ranunculaceae). American Journal of Botany, 96, 912-919.
DOI PMID |
[27] |
Etcheverry AV, Alemán MM, Fleming TF (2008). Flower morphology, pollination biology and mating system of the complex flower of Vigna caracalla (Fabaceae: papilionoideae). Annals of Botany, 102, 305-316.
DOI PMID |
[28] | Gao JY, Yang ZH, Li QJ (2009). Effects of flower longevity on male and female fitness in Hedychium villosum var. villosum. Chinese Journal of Plant Ecology, 33, 89-96. |
[高江云, 杨自辉, 李庆军 (2009). 毛姜花原变种花寿命对两性适合度的影响. 植物生态学报, 33, 89-96.]
DOI |
|
[29] |
Gong YB, Huang SQ (2014). Interspecific variation in pollen- ovule ratio is negatively correlated with pollen transfer efficiency in a natural community. Plant Biology, 16, 843-847.
DOI PMID |
[30] |
Harder LD, Johnson SD (2009). Darwin’s beautiful contrivances: evolutionary and functional evidence for flower adaptation. New Phytologist, 183, 530-545.
DOI URL |
[31] |
He YP, Duan YW, Liu JQ, Smith WK (2005). Flower closure in response to temperature and pollination in Gentiana straminea Maxim. (Gentianaceae), an alpine perennial in the Qinghai-Tibetan Plateau. Plant Systematics and Evolution, 256, 17-33.
DOI URL |
[32] |
Hou QZ, Duan YW, Si QW, Yang HL (2009). Pollination ecology of Gentiana lawrencei var. farreri, a late-flowering Qinghai-Tibet Plateau species. Chinese Journal of Plant Ecology, 33, 1156-1164.
DOI |
[侯勤正, 段元文, 司庆文, 杨慧玲 (2009). 青藏高原晚期开花植物线叶龙胆的传粉生态学. 植物生态学报, 33, 1156-1164.]
DOI |
|
[33] | Huang SQ, Guo YH (2000). Advances in pollination biology. Chinese Science Bulletin, 45, 225-237. |
[黄双全, 郭友好(2000). 传粉生物学的研究进展. 科学通报, 45, 225-237.] | |
[34] | Hudabaierdi M, Pan XL (2004). Flora Xinjianggensis: Tomus 4. Xinjiang Science & Technology Publishing House, Ürümqi. 353-354. |
[米吉提·胡达拜尔地, 潘晓玲 (2004). 新疆植物志(第四卷). 新疆科学技术出版社, 乌鲁木齐,354-355.] | |
[35] |
Ida TY, Kudo G (2010). Modification of bumblebee behavior by flower color change and implications for pollen transfer in Weigela middendorffiana. Evolutionary Ecology, 24, 671-684.
DOI URL |
[36] |
Ishii HS, Sakai S (2002). Temporal variation in flower display size and individual flower sex allocation in racemes of Narthecium asiaticum (Liliaceae). American Journal of Botany, 89, 441-446.
DOI URL |
[37] | Ivey CT, Carr DE (2011). Tests for the joint evolution of mating system and drought escape in Mimulus. Annals of Botany, 109, 583-598. |
[38] |
Li QJ, Xu ZF, Kress WJ, Xia YM, Zhang L, Deng XB, Gao JY, Bai ZL (2001). Flexible style that encourages outcrossing. Nature, 410, 432. DOI: 10.1038/35068635.
DOI |
[39] |
Navarro L, Ayensa G, Guitián P (2007). Adaptation of flower traits and mating system to pollinator unpredictibility: the case of Disterigma stereophyllum (Ericaceae) in southwestern Colombia. Plant Systematics and Evolution, 266, 165-174.
DOI URL |
[40] |
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F,van Kleunen M (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684-692.
DOI PMID |
[41] | Nishihiro J, Washitani I, Thomson JD, Thomson BA (2000). Patterns and consequences of stigma height variation in a natural population of a distylous plant Primula sieboldii. Functional Ecology, 14, 502-512. |
[42] |
Nuttman CV, Semida FM, Zalat S, Willmer PG (2006). Visual cues and foraging choices: bee visits to flower colour phases in Alkanna orientalis (Boraginaceae). Biological Journal of the Linnean Society, 87, 427-435.
DOI URL |
[43] |
Oliveira LC, Matias R, Furtado MT, Romero R, Brito VLG (2022). What explains the variation in length of stamens and styles in a pollen flower? A study exemplified by Macairea radula (Melastomataceae). Plant Systematics and Evolution, 308, 1-13.
DOI URL |
[44] |
Ollerton J, Winfree R, Tarrant S (2011). How many flowering plants are pollinated by animals? Oikos, 120, 321-326.
DOI URL |
[45] |
Pacheco DA, Dudley LS, Cabezas J, Cavieres LA, Arroyo MTK (2016). Plastic responses contribute to explaining altitudinal and temporal variation in potential flower longevity in high Andean Rhodolirion montanum. PLOS ONE, 11, e0166350. DOI: 10.1371/journal.pone.0166350.
DOI |
[46] |
Primack RB (1985). Longevity of individual flowers. Annual Review of Ecology and Systematics, 16, 15-37.
DOI URL |
[47] | Ruan CJ, Qin P, Yin ZF (2006). Advancements in reproductive assurance and delayed selfing. Acta Ecologica Sinica, 26, 195-204. |
[阮成江, 钦佩, 尹增芳 (2006). 繁殖保障和延迟自交的研究进展. 生态学报, 26, 195-204.] | |
[48] |
Shi YH, Ren ZX, Zhao YH, Wang H (2021). Effect of climate change on the distribution and phenology of plants, insect pollinators, and their interactions. Biodiversity Science, 29, 495-506.
DOI |
[施雨含, 任宗昕, 赵延会, 王红 (2021). 气候变化对植物-传粉昆虫的分布区和物候及其互作关系的影响. 生物多样性, 29, 495-506.]
DOI |
|
[49] | Shivanna KR, Tandon R, Koul M (2020). “Global Pollinator Crisis” and its impact on crop productivity and sustenance of plant diversity//Tandon R, Shivanna KR, Koul M. Springer, |
[50] | Spigler RB, Kalisz S (2013). Phenotypic plasticity in mating- system traits in the annual Collinsia verna. Botany, 91, 597-604. |
[51] |
Sun S, Cao GX, Luo YJ, Li QJ (2010). Maintenance and functional gender specialization of flexistyly. Chinese Journal of Plant Ecology, 34, 827-838.
DOI |
[孙杉, 操国兴, 罗燕江, 李庆军 (2010). 花柱卷曲性的维持及功能性别特化. 植物生态学报, 34, 827-838.]
DOI |
|
[52] |
Sun SG, Guo YH, Gituru RW, Huang SQ (2005). Corolla wilting facilitates delayed autonomous self-pollination in Pedicularis dunniana (Orobanchaceae). Plant Systematics and Evolution, 251, 229-237.
DOI URL |
[53] |
Tang XX, Huang SQ (2012). Research progress on diversity and variation in flower color. Plant Diversity and Resources, 34, 239-247.
DOI URL |
[汤晓辛, 黄双全 (2012). 花色多样性与变异的研究进展. 植物分类与资源学报, 34, 239-247.] | |
[54] |
Torres-Díaz C, Gómez-González S, Stotz GC, Torres-Morales P, Paredes B, Pérez-Millaqueo M, Gianoli E (2011). Extremely long-lived stigmas allow extended cross- pollination opportunities in a high Andean plant. PLOS ONE, 6, e19497. DOI: 10.1371/journal.pone.0019497.
DOI |
[55] |
Wang XY, Zhu XX, Yang J, Liu YJ, Tang XX (2019). Variation in style length and the effect on reproductive success in Chinese plums (Armeniaca mume). Biodiversity Science, 27, 159-167.
DOI URL |
[王晓月, 朱鑫鑫, 杨娟, 刘云静, 汤晓辛 (2019). 梅花个体内花柱长度的变异及其对繁殖成功的影响. 生物多样性, 27, 159-167.]
DOI |
|
[56] |
Webb CJ, Lloyd DG (1986). The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand Journal of Botany, 24, 163-178.
DOI URL |
[57] |
Wiemer AP, Sérsic AN, Marino S, Simões AO, Cocucci AA (2011). Functional morphology and wasp pollination of two south American asclepiads (Asclepiadoideae- Apocynaceae). Annals of Botany, 109, 77-93.
DOI URL |
[58] |
Wu Y, Liu YR, Peng H, Yang Y, Liu GL, Cao GX, Zhang Q (2015). Pollination ecology of alpine herb Meconopsis integrifolia at different altitudes. Chinese Journal of Plant Ecology, 39, 1-13.
DOI URL |
[吴云, 刘玉蓉, 彭瀚, 杨勇, 刘光立, 操国兴, 张强 (2015). 高山植物全缘叶绿绒蒿在不同海拔地区的传粉生态学研究. 植物生态学报, 39, 1-13.]
DOI |
|
[59] |
Xiang WQ, Ren MX (2019). Adaptive significance of yellow flowered Bombax ceiba (Malvaceae). Biodiversity Science, 27, 373-379.
DOI URL |
[向文倩, 任明迅 (2019). 木棉黄花个体的适应意义. 生物多样性, 27, 373-379.]
DOI |
|
[60] | Zhang DY (2004). Plant Life-History Evolution and Reproductive Ecology. Science Press, Beijing. 96-180. |
[张大勇 (2004). 植物生活史进化与繁殖生态学. 科学出版社, 北京. 96-180.] | |
[61] | Zhang DY, Jiang XH (2001). Mating system evolution, resource allocation, and genetic diversity in plants. Acta Phytoecologica Sinica, 25, 130-143. |
[张大勇, 姜新华 (2001). 植物交配系统的进化、资源分配对策与遗传多样性. 植物生态学报, 25, 130-143.] | |
[62] | Zhang L, Li QJ (2002). Flexistyly and its evolutionary ecological significance. Acta Phytoecologica Sinica, 26, 385-390. |
[张玲, 李庆军 (2002). 花柱卷曲性异交机制及其进化生态学意义. 植物生态学报, 26, 385-390.] | |
[63] | Zhang ZQ, Li QJ (2009). Review of evolutionary ecology of flower longevity. Chinese Journal of Plant Ecology, 33, 598-606. |
[张志强, 李庆军 (2009). 花寿命的进化生态学意义. 植物生态学报, 33, 598-606.]
DOI |
|
[64] |
Zych M, Junker RR, Nepi M, Stpiczyńska M, Stolarska B, Roguz K (2018). Spatiotemporal variation in the pollination systems of a supergeneralist plant: Is Angelica sylvestris (Apiaceae) locally adapted to its most effective pollinators? Annals of Botany, 123, 415-428.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn